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We give a unified approach to macroscopic QED in arbitrary linearly responding media, based on the quite
general, nonlocal form of the conductivity tensor as it can be introduced within the framework of linear
response theory, and appropriately chosen sets of bosonic variables. The formalism generalizes the quantization
schemes that have been developed previously for diverse classes of linear media. In particular, it turns out that
the scheme developed for locally responding linear magnetodielectric media can be recovered from the general
scheme as a limiting case for weakly spatially dispersive media. With regard to practical applications, we
furthermore address the dielectric approximation for the conductivity tensor and the surface impedance method
for the calculation of the Green tensor of the macroscopic Maxwell equations, the two central quantities of the
theory.
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I. INTRODUCTION

In both classical and quantum electrodynamics, it is often
advisable to divide, at least notionally, the matter that inter-
acts with the electromagnetic field into a part that plays the
role of a passive background and a remainder, active part that
needs to be considered in more detail. By means of suitable
coarse-graining and averaging procedures, this leads to the
well-known framework of Maxwell’s phenomenological
equations, where the background—the medium—is treated
as a continuum and, quite frequently, by the methods of lin-
ear response theory. From this perspective, the characteriza-
tion of the medium is reduced to the prescription of suitable
constitutive relations, i.e., appropriate response functions or
susceptibilities.

Depending on the specific kinds of media under consider-
ation, it is under many circumstances sufficiently accurate to
work with spatially local response functions, taking into ac-
count only �temporal� dispersion and absorption in accor-
dance with causality. For conducting and semiconducting
media �not to mention plasmas� as well as superconducting
materials, however, the spatially local description can be in-
adequate due to the existence of almost freely movable
charge carriers �conduction electrons, excitons, Cooper pairs�
in such media. Hence if one is not willing to restrict one’s
attention to a crude spatial resolution and/or specific fre-
quency windows, spatial dispersion, i.e., the spatially nonlo-
cal character of the medium response, generally cannot be
disregarded for such media. Electrodynamics problems with
the inclusion of spatial dispersion have been considered by
various authors in different ways, both on the classical and
quantum levels; for classical approaches, see, e.g., Refs.
�1–7�, for quantum ones see, e.g., Refs. �8,9�.

A scheme that takes spatial dispersion into account along
with dispersion and absorption in sufficiently general terms
can also be regarded as an important step towards a satisfac-
tory �quantum� electrodynamics of moving media, which is
very much lacking at present. The reason is that a medium,
even if it can be assumed to respond spatially locally when it

is at rest, will in general appear as responding nonlocally
when it is in motion. Given that the polarization of typical
Drude-Lorentz-type dielectrics responds to the electric field
with a characteristic memory time of the order of
10−9–10−7 s �10�, already moderate �i.e., nonrelativistic� ve-
locities may lead to the appearance of noticeable spatial non-
localities. For example, sonoluminescence experiments show
that the collapse of a bubble with a typical initial radius of
10–50 �m to a final radius of around 1 �m occurs on a time
scale similar to the characteristic memory time of the re-
sponse of the surrounding fluid �11�.

The study of the quantized electromagnetic field in spa-
tially nonlocally responding media and the prospect of elabo-
rating a quantum theory of light in moving media will also
open up new ways of investigating quantum effects related to
the recently proposed “optical black hole” �12,13�. So far,
the theory has concentrated on purely geometrical optics
with some progress being made towards a �scalar� wave-
optical description, but a consistent linear-response approach
is still lacking.

In this paper, we develop a unified approach to macro-
scopic QED in linear media, which generalizes previous
quantization schemes to a theoretical concept applicable to
arbitrary �equilibrium� media that linearly respond to the
electromagnetic field. The only basic prerequisite is to have
available the conductivity tensor of the medium, which en-
ters the macroscopic Maxwell equations as a complex func-
tion of frequency, and, in the general case of spatially dis-
persive media, in a spatially nonlocal way. In particular, we
show that, and how, the quantization schemes proposed for
special classes of media turn out to be limiting cases of a
quite general, universally valid scheme.

Its practical application requires, for a given conductivity
tensor, the determination of the Green tensor of the macro-
scopic Maxwell equations—a nontrivial task, especially if
spatial dispersion must be taken into account. Addressing
this problem, we derive, on the basis of the dielectric ap-
proximation, general relations that can be advantageously
employed to calculate Green tensors using the surface im-
pedance method. To exemplify this, we present exact formu-
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las for a planar, nonmagnetic three-layer system, which show
that the properties of the two surfaces are interconnected by
“crossing” terms referring to both surfaces.

The paper is organized as follows. In Sec. II, we develop
the concept of electromagnetic-field quantization in arbitrary
linearly responding media, and in Sec. III, we study in more
detail possible choices of appropriate dynamical variables.
We then proceed to show in Sec. IV how previously intro-
duced quantization schemes for diverse classes of media can
be obtained as special cases. In Sec. V, we address the prob-
lem of determining the Green tensor for spatially dispersive
systems. We end the paper with some concluding remarks in
Sec. VI.

II. QUANTIZATION SCHEME

The effect of any linear, dispersing, and absorbing me-
dium on the electromagnetic field can be described, within
the framework of linear response theory, by the relation

j��r,�� =� d3r�QJ�r,r�,�� · E� �r�,�� + j�N�r,�� , �1�

where j��r ,�� and E� �r ,��, respectively, are the �linearly re-
sponding� current density and the electric field in the fre-

quency domain, QJ�r ,r� ,�� is the complex conductivity ten-
sor in the frequency domain �7,14�, and j�N�r ,�� is a
Langevin noise source. In order to clearly distinguish quan-
tities such as the electromagnetic fields and the charge and
current densities in the time domain from their respective
frequency-domain counterparts, the latter are underlined.
Other quantities typically given as functions of frequency
such as conductivities, permittivities, or permeabilities, are
not underlined. Throughout the paper, dot products of vec-
tors �typeset in boldface� and/or second-rank tensors �carry-
ing a two-sided arrow�, corresponding to the contraction of
“neighboring” indices of the respective Cartesian compo-
nents, are indicated by a dot between the factors; if no inter-
vening symbol is given, dyadic �or tensor� products are
meant, corresponding to juxtaposition of the components
without contraction.

According to the Onsager reciprocity theorem �7,14�, the
conductivity tensor should be reciprocal, Qij�r ,r� ,��
=Qji�r� ,r ,��. Except for a translationally invariant �bulk�
medium, the spatial arguments r and r� of QJ�r ,r� ,�� must
be kept as two separate variables in general. We assume that,

for chosen �, QJ�r ,r� ,�� is the integral kernel of a reason-
ably well-behaved �integral� operator acting on vector func-
tions in position space. In particular, we assume that

QJ�r ,r� ,�� tends �sufficiently rapidly� to zero for �r−r��
→� and has no strong �i.e., nonintegrable� singularities �spe-
cifically, for r�→r�. To allow for the spatially nondispersive
limit, �-functions and their derivatives must be permitted so

that QJ�r ,r� ,�� may become a �quasi-�local integral kernel.
In the remainder of the paper, we will use the superscripts T
and � to indicate transposition and Hermitian conjugation
with respect to tensor indices. Since the spatial arguments are
not switched by these operations, the operator associated

with an integral kernel AJ�r ,r�� is Hermitian if AJ�r ,r��
=AJ+�r� ,r�. In particular, an operator associated with a real
kernel is Hermitian if it has the reciprocity property

AJ�r ,r��=AJT�r� ,r�. The decomposition QJ�r ,r� ,��
=Re QJ�r ,r� ,��+ i Im QJ�r ,r� ,�� of the conductivity tensor
is therefore identical with the decomposition of the associ-
ated operator into a Hermitian and an anti-Hermitian part,

�J�r,r�,�� � Re QJ�r,r�,��

=
1

2
�QJ�r,r�,�� + QJ+�r�,r,��� , �2�

�J�r,r�,�� � Im QJ�r,r�,��

=
1

2i
�QJ�r,r�,�� − QJ+�r�,r,��� . �3�

Since �J�r ,r� ,�� is associated with the dissipation of electro-
magnetic energy �see, e.g., Refs. �7,14��, the operator asso-
ciated with the integral kernel �J�r ,r� ,�� is, for real �, a
positive definite operator in the case of absorbing media con-
sidered throughout this paper.

The conductivity tensor QJ�r ,r� ,�� is the temporal Fou-
rier transform of a response function,

QJ�r,r�,����2	QJ� �r,r�,��� =� dtei�tQJ�r,r�,t� , �4�

where QJ�r ,r� , t� satisfies causality conditions of the type

QJ�r,r�,t� = 0 if t − cos 
�r − r��/c � 0 �5�

for chosen r and r� and arbitrary directional cosines cos 

�0�cos 
�1�. In particular, for cos 
=0, one finds from
arguments �14–16� similar to those for the case of spatially
locally responding media that, for chosen r and r�,

QJ�r ,r� ,�� is analytic in the upper complex � half-plane,
fulfills Kramers-Kronig �Hilbert transform� relations, and

satisfies the Schwarz reflection principle QJ*�r ,r� ,��
=QJ�r ,r� ,−�*�. Other values of cos 
 could obviously pro-
vide more stringent �spatiotemporal� conditions �see also
Ref. �17�� which are, however, not required here.

Let us identify the current density that enters the macro-
scopic Maxwell equations in the frequency domain with
j��r ,�� as specified in Eq. �1�. In this case, the medium-
assisted electric field in the frequency domain satisfies the
integrodifferential equation

�  �  E� �r,�� −
�2

c2 E� �r,��

− i�0�� d3r�QJ�r,r�,�� · E� �r�,�� = i�0�j�N�r,�� ,

�6�

whose unique solution is
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E� �r,�� = i�0�� d3r�GJ�r,r�,�� · j�N�r�,�� , �7�

with GJ�r ,r� ,�� being the �retarded� Green tensor. It satisfies
Eq. �6� with the �tensorial� �-function source,

�  �  GJ�r,s,�� −
�2

c2 GJ�r,s,��

− i�0�� d3r�QJ�r,r�,�� · GJ�r�,s,�� = IJ��r − s� ,

�8�

together with the boundary condition at infinity, and has all
the attributes of a �Fourier transformed� causal response

function just as QJ�r ,r� ,�� has them. In particular, it is ana-
lytic in the upper � half-plane and the Schwarz reflection

principle GJ*�r ,r� ,��=GJ�r ,r� ,−�*� is valid. Its basic prop-
erties in position space are similar to the ones known from

the spatially local theory, in particular, since QJ�r ,r� ,�� is

reciprocal, so is GJ�r ,r� ,��, GJ�r ,r� ,��=GJT�r� ,r ,��, and,
for real �, the generalized integral relation

�0�� d3s� d3s�GJ�r,s,�� · �J�s,s�,�� · GJ*�s�,r�,��

= Im GJ�r,r�,�� �9�

holds �Appendix A�.
To quantize the theory, the Langevin noise source j�N�r ,��

is regarded as an operator �j�N�r ,��� ĵ�N�r ,��� with the com-
mutation relation

�ĵ�N�r,��, ĵ�N
† �r�,���� =

��

	
��� − ����J�r,r�,�� . �10�

The �now operator-valued� equation �7� relates the electric
field operator

Ê�r� = �
0

�

d�Ê� �r,�� + H.c., �11�

and thus all the electromagnetic field operators, to ĵ�N�r ,��
and ĵ�N

† �r ,��, which may be regarded as the dynamical vari-
ables of the overall system consisting of the electromagnetic
field and the linear medium �incorporating the reservoir de-
grees of freedom responsible for absorption�. It should be
mentioned that, by means of the correspondence

i

�0�
QJ�r,r�,�� ↔ �J�r,r�,�� , �12�

where �J�r ,r� ,�� is the �nonlocal� dielectric susceptibility
tensor, the basic commutation relation �10� becomes equiva-
lent to the commutation relation derived from a microscopic,
linear two-band model of dielectric material �18�, which has
been used to study the quantized electromagnetic field in
spatially dispersive dielectrics �8,9�.

In order to complete the quantization scheme, a Hamil-

tonian Ĥ needs to be introduced �as a functional of ĵ�N�r ,��

and ĵ�N
† �r ,��� so as to generate “free” time evolution accord-

ing to

�ĵ�N�r,��,Ĥ� = ��ĵ�N�r,�� , �13�

which constrains the Hamiltonian to the form

Ĥ = 	�
0

�

d�� d3r� d3r�ĵ�N
† �r,�� · �J�r,r�,�� · ĵ�N�r�,�� ,

�14�

to within irrelevant c-number contributions. A glance at Eqs.
�10� and �13� now shows that �J�r ,r� ,�� is the integral kernel
of the inverse operator of the operator associated with
�J�r ,r� ,�� �which exists�. The validity of the quantization
scheme is confirmed by checking that the well-known equal-
time commutation relations for the electromagnetic field op-
erators hold, which can be done, in analogy to the spatially
local theory �cf. Refs. �19–21��, by properly taking into ac-

count the properties of GJ�r ,r� ,�� and QJ�r ,r� ,�� �in par-
ticular, Eq. �9��.

The Hamiltonian �14� may clearly be brought to the diag-
onal form

Ĥ = �
0

�

d���� d3rf̂†�r,�� · f̂�r,�� �15�

known from the spatially local theory, where f̂�r ,�� is a
bosonic field,

�f̂�r,��, f̂†�r�,���� = ��� − ���IJ��r − r�� , �16�

by performing a linear transformation of the variables which
we shall assume to be invertible. Writing

ĵ�N�r,�� = ���
	
	1/2� d3r�KJ�r,r�,�� · f̂�r�,�� , �17�

the diagonalization is achieved and Eqs. �10� and �16� are
rendered equivalent if we choose the integral kernel

KJ�r ,r� ,�� such that, for real �, the integral equation

� d3sKJ�r,s,�� · KJ+�r�,s,�� = �J�r,r�,�� �18�

holds, which is guaranteed to possess solutions �see Sec. III�
since �J�r ,r� ,�� is the integral kernel of a positive definite
operator.

So far we have considered the “free” medium-assisted
electromagnetic field. Its interaction with additional �e.g.,
atomic� systems can be included in the theory on the basis of
the well-known minimal- or multipolar-coupling schemes in
the usual way. For instance, let us consider �spinless� point-
like, nonrelativistic, charged particles �charges Qa, masses
ma� described in terms of positions r̂a and conjugate mo-
menta p̂a, which interact with the medium-assisted field. One
can simply add to the Hamiltonian �15� the term
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Ĥ = 

a

�2ma�−1�p̂a − QaÂ�r̂a��2 + Ŵ �19�

to obtain the total minimal-coupling Hamiltonian Ĥ+ Ĥ�,
which �together with commutation relations �16� and

�r̂a , p̂a��= i��aa�I
J� may be used to describe the dynamics of

the coupled systems. In Eq. �19�, Â�r� is the vector potential
in the Coulomb gauge. Writing

Â�r� = �
0

�

d�Â� �r,�� + H.c., �20�

we may express Â� �r ,�� in terms of the transverse part

Ê� ��r ,�� of Ê� �r ,�� as given by Eq. �7�,

Â� �r,�� = �i��−1Ê� ��r,�� . �21�

Taking into account Eq. �17�, we may eventually express

Â�r� in terms of the basic bosonic variables f̂�r ,�� and

f̂†�r ,��. The total Coulomb interaction energy Ŵ in Eq. �19�
reads

Ŵ =
1

2

a

QaÛ�r̂a� + 

a

QaV̂�r̂a� , �22�

where Û�r� and V̂�r� are, respectively, the scalar potentials
ascribed to the charged particles and the longitudinal part

Ê��r� of Ê�r�. Making use of Eq. �11� together with Eqs. �7�
and �17�, we may express also V̂�r� in terms of f̂�r ,�� and

f̂†�r ,��. For further details, including the multipolar cou-
pling scheme, we refer the reader, e.g., to Ref. �22�.

III. NATURAL VARIABLES AND PROJECTIVE
VARIABLES

Let us now turn to the problem of constructing the inte-

gral kernel KJ�r ,r� ,�� in Eq. �18�. For this purpose, we con-
sider the eigenvalue problem

� d3r��J�r,r�,�� · F��,r�,�� = ���,��F��,r,�� �23�

which, under appropriate regularity assumptions on the con-

ductivity tensor QJ�r ,r� ,�� such as those listed below Eq.
�1�, is well-defined. In particular, it features a real �positive�
spectrum and a complete set of orthogonal eigensolutions,
which we may take to be ��-� normalized. Note that the real
� plays the role of a parameter here, and � stands for the
collection of �discrete and/or continuous� indices needed to
label the eigenfunctions. Adopting a continuum notation, we
may write

� d�F��,r,��F*��,r�,�� = IJ��r − r�� , �24�

� d3rF*��,r,�� · F���,r,�� = ��� − ��� , �25�

and the diagonal expansion of �J�r ,r� ,�� reads

�J�r,r�,�� =� d����,��F��,r,��F*��,r�,�� , �26�

which resembles the expansion of the dielectric susceptibility
in the microscopic theory �18� mentioned above. Substituting
Eq. �26� into Eq. �18�, we may construct an integral kernel

KJ�r ,r� ,�� in the form of

KJ�r,r�,�� =� d��1/2��,��F��,r,��F*��,r�,�� , �27�

where we choose �1/2�� ,���0 so that the operator associ-

ated with KJ�r ,r� ,�� is the positive, Hermitian square-root of
the operator associated with �J�r ,r� ,��. Obviously, this so-
lution to Eq. �18� is not unique, since any other kernel of the
form

KJ��r,r�,�� =� d3sKJ�r,s,�� · VJ�s,r�,�� �28�

with VJ�r ,s ,�� satisfying

� d3sVJ�r,s,�� · VJ+�r�,s,�� = IJ��r − r�� �29�

also obeys Eq. �18�. As we are interested in invertible trans-

formations �17�, the operator corresponding to VJ�r ,s ,��
should be invertible as well, so that we can replace Eq. �29�
with the stronger unitarity condition

� d3sVJ+�s,r,�� · VJ�s,r�,�� =� d3sVJ�r,s,�� · VJ+�r�,s,��

= IJ��r − r�� . �30�

Without loss of generality �see Appendix B�, we can base our
further calculations on Eq. �27�.

Inserting Eq. �27� into Eq. �17�, we find that

ĵ�N�r,�� = ���
	
	1/2� d��1/2��,��F��,r,��ĝ��,�� ,

�31�

where we have introduced the new variables

ĝ��,�� =� d3rF*��,r,�� · f̂�r,�� , �32�

referred to as the natural variables in the following. Needless
to say that they are again of bosonic type,

�ĝ��,��, ĝ†���,���� = ��� − ������ − ��� . �33�

Since the transformation �32� does not mix different � com-
ponents, the Hamiltonian �15� is still diagonal when ex-
pressed in terms of the natural variables,

Ĥ = �
0

�

d���� d�ĝ†��,��ĝ��,�� , �34�

as can be easily seen by inverting Eq. �32�,
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f̂�r,�� =� d�F��,r,��ĝ��,�� , �35�

and combining with Eq. �15�, on recalling Eq. �25�.
Let us organize the set of eigenfunctions F�� ,r ,�� into �a

discrete number of� subsets labeled by � ��=1,2 , . . . ,��.
With the notation �� �� ,��, Eq. �35� then reads

f̂�r,�� = 

�

f̂��r,�� , �36�

where

f̂��r,�� =� d�F���,r,��ĝ���,�� . �37�

The operators associated with the integral kernels

PJ��r,r�,�� =� d�F���,r,��F�
*��,r�,�� �38�

form a complete set of orthogonal projectors. Obviously,
these projectors and the operators associated with �J�r ,r� ,��
and KJ�r ,r� ,�� as given by Eq. �27� are commuting quanti-
ties. It is not difficult to see that the variables

f̂��r,�� =� d3r�PJ��r,r�,�� · f̂�r�,��

=� d�F���,r,��ĝ���,�� , �39�

referred to as projective variables in the following, obey the
nonbosonic commutation relation

�f̂��r,��, f̂��
† �r�,���� = ������� − ���PJ��r,r�,�� , �40�

and the Hamiltonian �15� expressed in terms of the projective
variables reads as

Ĥ = 

�
�

0

�

d���� d3rf̂�
†�r,�� · f̂��r,�� . �41�

From Eqs. �40� and �41� it then follows that

�f̂��r,��,Ĥ� = ��� d3r�PJ��r,r�,�� · f̂��r�,��

= ��f̂��r,�� . �42�

Inserting Eq. �35� in Eq. �17�, we obtain

ĵ�N�r,�� = 

�

ĵ�N��r,�� , �43�

where the ĵ�N��r ,�� are given by

ĵ�N��r,�� = ���
	
	1/2� d3r�KJ��r,r�,�� · f̂��r�,�� , �44�

with

KJ��r,r�,�� =� d3sPJ��r,s,�� · KJ�s,r�,��

=� d3sKJ�r,s,�� · PJ��s,r�,�� . �45�

Recalling Eq. �40�, we can easily see that

�ĵ�N��r,��, ĵ�N��
† �r�,���� =

��

	
������� − ����J��r,r�,�� ,

�46�

where �J��r ,r� ,�� is defined according to Eq. �45� with �J in

place of KJ. Summation of Eq. �46� over � and �� leads back
to Eq. �10�, so that the two equations are equivalent.

At this stage, we observe that there is the option to base
the quantization scheme directly on Eqs. �41�, �43�, and �44�,
regarding the variables f̂��r ,�� and f̂�

†�r ,�� as the basic dy-
namical variables of the theory and assigning to them
bosonic commutation relations

�f̂��r,��, f̂��
† �r�,���� = ������� − ���IJ��r − r�� �47�

in place of Eq. �40�. Note that, in so doing, back reference

from the variables f̂��r ,�� to the original variables f̂�r ,�� is
not possible anymore. As can be seen from Eqs. �44� and

�45�, Eq. �46� is satisfied also when the f̂��r ,�� and f̂�
†�r ,��

are considered as bosonic variables, from which it follows
�via Eq. �43�� that Eq. �10� also still holds and, as before, this
implies that the correct electromagnetic-field commutation
relations hold. The second line of Eq. �42� remains of course
also true so that the correct time evolution is ensured as well.

Since the state space attributed to the bosonic variables

f̂��r ,�� and f̂�
†�r ,�� is, in general, different from the state

space attributed to the original variables f̂�r ,�� and f̂†�r ,��
�or, equivalently, attributed to ĝ��� ,�� and ĝ�

†�� ,���, the
allowable states must be restricted by ruling out certain co-
herent superpositions of states in the sense of a super-
selection rule. In Appendix C, we show that the condition
imposed on the states may be described by means of a set of

projectors P̂� such that the allowable states ��� can be char-
acterized by

P̂���� = ��� ∀ � , �48�

where the action of the projectors P̂� in state space is closely
related to the action of the projectors associated with the
kernels �38� in position space. As a result, if the total Hamil-

tonian Ĥtot composed of the Hamiltonian �41� and possible
interaction terms �in the case where additional, active

sources are present� commutes with all of the projectors P̂�,

�P̂�,Ĥtot� = 0 ∀ � , �49�

then allowable states remain allowable in the course of time,

and the option of treating the f̂��r ,�� and f̂�
†�r ,�� as bosonic

variables can be safely exercised. Clearly, all the observables

of interest should then also commute with the P̂� so that no
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transition matrix elements between states belonging to differ-
ent subspaces, i.e., between spaces attributed to different �
values, can ever come into play.

One can also consider decompositions of ĵ�N�r ,��, where

in place of the ĵ�N��r ,�� introduced above other quantities

Ĵ�N��r ,�� subject to the condition



�

Ĵ�N��r,�� = 

�

ĵ�N��r,�� �50�

are introduced, whose commutation relations may be quite
different from those of the ĵ�N��r ,��. Obviously, the total

noise current density ĵ�N�r ,�� as given by Eq. �43� and the
commutation relation �10� are not changed by such a trans-
formation, briefly referred to as gauge transformation in the
following. Moreover, since, with regard to Eq. �10�, only the

sum of the commutators �Ĵ�N��r ,�� , Ĵ�N��
† �r� ,���� over all �

and �� is relevant, every chosen set of �algebraically consis-

tent� commutators �Ĵ�N��r ,�� , Ĵ�N��
† �r� ,���� which leads to

Eq. �10� yields, in principle, a consistent quantization
scheme in its own right. A “substructure below” Eq. �10� can
hence be introduced with some arbitrariness, but since the
various available alternatives are not necessarily equivalent
to each other, a specific one should not be favored in the
absence of good �physical� motivation. In contrast, if the
observables of interest—including the Hamiltonian—can be
viewed as functionals of ĵ�N�r ,�� �rather than of the indi-

vidual Ĵ�N��r ,���, Eqs. �10� and �14� can be regarded, in
view of the fluctuation-dissipation theorem�s� �see, e.g., Ref.
�14��, as being unique, and hence as an invariable fundament
of the theory.

From the above, it may be reasonable to widen the notion
of projective variables as follows. If, for a chosen �physically
motivated� decomposition of the noise current density, it is

possible to �linearly� relate the Ĵ�N��r ,�� in Eq. �50� to �new�
variables f̂��r ,�� such that, upon considering the latter as
bosonic variables, the validity of the basic equations �10� and
�13� is ensured, then the specific quantization scheme so ob-
tained may be regarded as arising from the general quantiza-
tion scheme by excluding certain types of �superposition�
states from state space, and restricting the dynamics �as well

as the allowable observables� accordingly. The f̂��r ,�� may
then be seen as projective variables in a wider sense.

IV. DIFFERENT CLASSES OF MEDIA

We proceed to show that rather different classes of media
�usually studied separately� fit into the general quantization
scheme developed in Sec. II. The main task to be performed
is solving the eigenvalue problem �23�, which requires
knowledge of �J�r ,r� ,�� for the specific medium under con-
sideration. In two limiting cases, the exact solution to Eq.
�23� can be given straightforwardly, namely, in the case of an
inhomogeneous medium without spatial dispersion and in the
case of a homogeneous medium that shows spatial disper-
sion. Let us, therefore, first examine these two cases in detail
before considering more general situations.

A. Spatially nondispersive inhomogeneous media

The complete neglect of spatial dispersion means to re-

gard the medium response, i.e., QJ�r ,r� ,��, as being strictly
local. If this is assumed, we have

�J�r,r�,�� = �J�r,����r − r�� , �51�

where �J�r ,�� can be written in diagonal form as

�J�r,�� = 

i=1

3

�i�r,��ei�r,��ei
*�r,�� , �52�

with ei�r ,�� �i=1,2 ,3� being orthogonal unit vectors. Hence
the eigenvalues ��� ,�� and eigenfunctions F�� ,r ,�� of the
operator associated with �J�r ,r� ,�� read as ��� �i ,s��
�i�s ,�� and

Fi�s,r,�� = ei�s,����s − r� , �53�

respectively. Equation �27� then becomes

KJ�r,r�,�� = KJ�r,����r − r�� , �54�

where

KJ�r,�� = 

i=1

3

�i
1/2�r,��ei�r,��ei

*�r,�� , �55�

and Eq. �17� takes the form

ĵ�N�r,�� = ���
	
	1/2

KJ�r,�� · f̂�r,�� , �56�

which just yields the well-known quantization scheme for a
locally responding, possibly anisotropic dielectric material
�19,20�, upon identifying �J�r ,��=�0� Im �J�r ,��, with
�J�r ,�� being the �local� dielectric susceptibility tensor �cf.
Eq. �12��. The natural variables ĝi�r ,�� are here simply the

components of f̂�r ,�� along the principal axes of the me-
dium, which may in general vary with position and fre-
quency,

ĝi�r,�� = ei
*�r,�� · f̂�r,�� , �57�

f̂�r,�� = 

i=1

3

ei�r,��ĝi�r,�� . �58�

Identifying the index � introduced in Eq. �36� with i and
assuming that �i�r ,����i��r ,�� for i� i�, one can define,
according to Eq. �38�, the three projection kernels

PJi�r,r�,�� = ei�r,��ei
*�r�,����r − r�� �59�

which, according to Eq. �39�, give rise to three sets of pro-
jective variables,

f̂i�r,�� = ei�r,��ĝi�r,�� . �60�

As long as the projective variables are not coupled to each
other—which is obviously the case for the “free” system
governed by the Hamiltonian �42�—they can be regarded as
being of bosonic type. In this case, instead of using the origi-
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nal set of bosonic variables f̂�r ,�� and f̂†�r ,��, one can use

three sets of bosonic variables f̂i�r ,�� and f̂i
†�r ,�� associated

with the three principal axes of the dielectric medium at each
space point.

If two of the three eigenvalues �i�r ,�� coincide �uniaxial
medium�, the two corresponding projection kernels

PJi�r ,r� ,�� should be combined into one projector �project-
ing on the plane perpendicular to the distinguished axis of
the medium�, thereby reducing the number of sets of projec-
tive variables to two. Clearly, if the three eigenvalues
�i�r ,�� all coincide �isotropic medium�, the three projection

kernels PJi�r ,r� ,�� should be combined to give the unit ker-

nel IJ��r−r��, corresponding to the use of the original vari-
ables.

B. Spatially dispersive homogeneous media

In the limiting case of an �infinitely extended� homoge-

neous medium, QJ�r ,r� ,�� is translationally invariant, i.e., it
is a function of the difference r−r�, and so is then
�J�r ,r� ,��. We may therefore represent it as the spatial Fou-
rier transform

�J�r,r�,�� =
1

�2	�3 � d3k�J�k,��eik·�r−r��, �61�

where

�J�k,�� = 

i=1

3

�i�k,��ei�k,��ei
*�k,�� , �62�

with ei�k ,�� �i=1,2 ,3� being orthogonal unit vectors. Con-
sequently, the eigenvalues ��� ,�� and eigenfunctions
F�� ,r ,�� of the operator associated with �J�r ,r� ,�� are
��� �i ,k�� �i�k ,�� and

Fi�k,r,�� = �2	�−3/2eik·rei�k,�� , �63�

respectively, and Eq. �27� reads

KJ�r,r�,�� =
1

�2	�3 � d3kKJ�k,��eik·�r−r��, �64�

where

KJ�k,�� = 

i=1

3

�i
1/2�k,��ei�k,��ei

*�k,�� . �65�

The combination of Eqs. �17�, �64�, and �65� then yields

ĵ�N�r,�� = ���
	
	1/2 1

�2	�3/2

 

i=1

3 � d3keik·r�i
1/2�k,��ei�k,��ĝi�k,�� ,

�66�

where the natural variables ĝi�k ,�� are related to the spatial

Fourier components of f̂�r ,�� as

ĝi�k,�� =
1

�2	�3/2 � d3re−ik·rei
*�k,�� · f̂�r,�� . �67�

On the basis of the three unit vectors ei�k ,��, three �dif-
ferent� projection kernels can be introduced,

PJi�r,r�,�� =
1

�2	�3 � d3kei�k,��ei
*�k,��eik·�r−r��, �68�

provided that �i�k ,����i��k ,�� for i� i�.
Let us consider the particular case of isotropic media

without optical activity in more detail. In this situation, the
diagonal form of the tensor �J�k ,�� reads �see Ref. �7��

�J�k,�� = ���k,��
kk

k2 + ���k,���IJ−
kk

k2 	 , �69�

i.e., �1�k ,��=���k ,�� and �2�k ,��=�3�k ,��=���k ,��
����k ,��, which implies that KJ�k ,��, Eq. �65�, takes the
form

KJ�k,�� = ��
1/2�k,��

kk

k2 + ��
1/2�k,���IJ−

kk

k2 	 . �70�

Thus the well-known longitudinal and transverse tensorial

�-functions �J ��r−r�� and �J��r−r��, respectively, can be
taken as projection kernels,

PJ�����r,r�,�� = �J �����r − r�� , �71�

which may be used to introduce, according to Eq. �39�, the
projective variables

f̂�����r,�� =� d3s�J �����r − s� · f̂�s,�� . �72�

1. Unitarily equivalent formulation

As already pointed out in Sec. II, the integral kernel

KJ�r ,r� ,�� in Eq. �17� is not uniquely determined by Eq.

�18�, since any other kernel KJ��r ,r� ,�� of the form �28�
�together with Eq. �30�� is also an allowed kernel. To illus-
trate this for the isotropic medium under study, we first note
that Eq. �69� may be equivalently rewritten as

�J�k,�� = ���k,��IJ− k  ��k,��IJ k , �73�

where

��k,�� = ����k,�� − ���k,���/k2. �74�

Since �for real �� ���k ,�� and ���k ,�� are both real and
positive �in accordance with the requirement that �J�r ,r� ,��
be the integral kernel of a positive definite operator�, ��k ,��
is real but its sign is not determined by this requirement.
However, if ��k ,�� is required here and below to be positive
throughout, then

KJ��k,�� = ��
1/2�k,��IJ± �1/2�k,��k  IJ �75�

obeys the equation
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KJ��k,�� · KJ�+�k,�� = �J�k,�� . �76�

Moreover, it can be shown that KJ��k ,�� can be represented
in the form

KJ��k,�� = KJ�k,�� · VJ�k,�� , �77�

with

VJ�k,�� =
kk

k2 + ��
1/2�k,����

−1/2�k,���IJ−
kk

k2 	
± �1/2�k,����

−1/2�k,��k  IJ �78�

�VJ−1�k ,��=VJ+�k ,���. Hence KJ��k ,�� also yields, according

to Eq. �64�, a valid integral kernel KJ��r ,r� ,��,

KJ��r,r�,�� =
1

�2	�3 � d3kKJ��k,��eik·�r−r��, �79�

which is related to the integral kernel KJ�r ,r� ,�� according
to Eq. �28�, where

VJ�r,r�,�� =
1

�2	�3 � d3kVJ�k,��eik·�r−r��, �80�

with the associated operator being unitary. We thus see that

the two formulations of the theory based on KJ�r ,r� ,�� and

KJ��r ,r� ,��, respectively, are unitarily equivalent. Note that

KJ��k ,���KJ�+�k ,��, so that the operator associated with the

integral kernel KJ��r ,r� ,�� is non-Hermitian �as to be ex-
pected, see Appendix B�. Since the operators associated with

KJ��r ,r� ,�� �as well as VJ�r ,r� ,��� and PJ�����r ,r� ,�� com-
mute, the same projectors may be employed in the two for-
mulations of the theory to introduce projective variables ac-
cording to Eq. �72�.

2. Local limit: Magnetodielectric media

Now let us suppose that ���k ,�� and ��k ,�� in Eq. �73�
are sufficiently slowly varying functions of k, with well-
defined and unique long-wavelength limits limk→0 ���k ,��
=������0 and limk→0 ��k ,��=�����0, so that they may
be approximated by these limits under the integral in Eq.
�61� to obtain

�J�r,r�,�� = �����IJ��r − r�� − ���� �  �IJ��r − r���  �� �.

�81�

It should be pointed out that in the limiting case given by Eq.
�81� the positive definiteness of the operator associated with
�J�r ,r� ,�� already implies that ���� must be positive,
�����0; in the general case as given by Eq. �61� together
with Eqs. �73� and �74�, the positive definiteness of
�J�r ,r� ,�� does not automatically restrict ��k ,�� to positive
values.

In order to see to what type of medium this �J�r ,r� ,��
corresponds, we have to find from Eq. �81� the full conduc-

tivity tensor QJ�r ,r� ,��, which is uniquely possible since

Eqs. �2� and �3� are Hilbert transforms of each other �cf. Sec.
II�. The full conductivity tensor corresponding to Eq. �81� is
thus of the form

QJ�r,r�,�� = Q�1����IJ��r − r��

− Q�2���� �  �IJ��r − r���  �� �, �82�

where Q�1���� and Q�2���� are �Fourier-transformed� re-
sponse functions, both of which are determined by their re-
spective real parts ����� and ����. Inserting Eq. �82� into
Eq. �1� and comparing with

ĵ��r,�� = − i�0������ − 1�Ê� �r,��

+ �0 �  �1 − �����B̂� �r,��� + ĵ�N�r,�� �83�

�B̂� �r ,��= �i��−1�  Ê� �r ,���, which is the well-known de-
scription of a locally responding �homogeneous� magnetodi-
electric medium, we can make the identifications

Q�1���� = − i�0������ − 1� �84�

and

Q�2���� = − i�0�1 − �����/� , �85�

where ���� is the permittivity and ����=�−1��� the �para-
magnetic� permeability of the medium ��0=�0

−1�. For real �,
we thus obtain

����� = �0� Im ���� �86�

and

���� = − �0 Im ����/� . �87�

Note that, because of �����0, from Eq. �87� it follows that
Im �����0 for ��0, from which it can be shown that
���→0��1.

At first glance, one might believe �erroneously� that not
only paramagnetic ����→0��1� but also diamagnetic
����→0��1� features of a medium �or the combined effect
of both� can be consistently described by means of the mag-
netic permeability ���� which is included, as seen above, in
the basic linear-response constitutive relation �1�. However,
since diamagnetism is basically a nonlinear effect �as the
underlying microscopic Hamiltonian is quadratic in the mag-
netic induction field�, it is beyond the scope of linear re-
sponse theory. If it is desired to include diamagnetic media in
the framework of linear electrodynamics nevertheless, one
can regard the magnetic field on which the diamagnetic sus-
ceptibility depends as being �the mean value of� an exter-
nally controlled field independent of the dynamical variables.
Note that the Onsager reciprocity theorem needs to be stated
in its generalized form in this case, see Refs. �7,14�. For a
more satisfactory account of diamagnetic media, one should,
however, resort to a nonlinear response formalism, or to a
more microscopic theory.

An obvious solution to Eq. �18� with �J�r ,r� ,�� given by
Eq. �81� is provided by
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KJ��r,r�,�� = ��
1/2���IJ��r − r�� � i�1/2��� �  IJ��r − r�� ,

�88�

which corresponds to the kernel �79� �together with Eq. �75��
when, for an isotropic medium, ���k ,�� and ��k ,�� are ap-
proximated by ����� and ����, respectively. The kernel �79�
�together with Eq. �75�� fits well here since it depends in a
particularly simple way on those quantities that we have as-
sumed to approach well-defined limits in the derivation that
led to Eq. �81�, a property which can be attributed to the
responsible transformation �80� �together with Eq. �78��. In
contrast, the kernel obtained directly from Eq. �64� �together
with Eq. �70��, by first eliminating ���k ,�� by means of Eq.
�74� and then approximating ���k ,�������� and
��k ,�������, does not provide an alternative to Eq. �88�,
as it does not lead to Eq. �81� when inserted in Eq. �18�; it
corresponds to a different medium. Correspondingly, the ker-

nel VJ�r ,r� ,�� obtained by expressing Eq. �80� �with Eq.
�78�� in terms of ���k ,�� and ��k ,�� and then approximating
them by ����� and ����, respectively, fails to be unitary.

Substituting for KJ�r ,r� ,�� in Eq. �17� KJ��r ,r� ,�� as
given by Eq. �88� �together with Eqs. �86� and �87��, we may
explicitly express the noise current density in terms of the
bosonic dynamical variables to obtain

ĵ�N�r,�� = ���0

	
	1/2

��2 Im ����f̂�r,��

� i���0

	
	1/2

�  ��− Im ����f̂�r,��� . �89�

Since the operators associated with the projection kernels
�71� commute with the operators associated with Eqs. �88�
and �81�, one may introduce the projective variables

f̂�����r ,�� defined by Eq. �72�, which corresponds to a de-

composition of ĵ�N�r ,�� into longitudinal and transverse
parts,

ĵ�N�r,�� = ĵ�N��r,�� + ĵ�N��r,�� , �90�

where

ĵ�N��r,�� = ���0

	
	1/2

��2 Im ����f̂��r,�� , �91�

ĵ�N��r,�� = ���0

	
	1/2

��2 Im ����f̂��r,��

� i���0

	
	1/2

�  ��− Im ����f̂��r,��� .

�92�

Making use of Eq. �39� and identifying therein the projection

kernels PJ��r ,r� ,�� with �J �����r−r��, one may then proceed
as described in Sec. III and regard the projective variables

f̂��r ,�� and f̂��r ,�� as being two independent sets of
bosonic variables.

Let us briefly make contact with the quantization scheme
described in Refs. �19,21�, where ĵ�N�r ,�� is decomposed
according to

ĵ�N�r,�� = Ĵ�Ne�r,�� + Ĵ�Nm�r,�� , �93�

with

Ĵ�Ne�r,�� = ���0

	
	1/2

��2 Im ����f̂e�r,�� , �94�

Ĵ�Nm�r,�� = � i���0

	
	1/2

�  ��− Im ����f̂m�r,��� .

�95�

The connection between Eqs. �90�–�92� and Eqs. �93�–�95� is
given by a gauge transformation �cf. Sec. III�, which effec-
tively redistributes the first term of Eq. �92�. It is not difficult
to prove that the total noise current as given by Eq. �93�
satisfies the correct commutation relation �10� �with
�J�r ,r� ,�� from Eq. �81� together with Eqs. �86� and �87�� if

f̂e�r ,�� and f̂m�r ,�� are regarded as two independent sets of

bosonic variables. Since Ĵ�Ne�r ,�� and Ĵ�Nm�r ,�� can be lin-

early related to ĵ�N��r ,�� and ĵ�N��r ,�� and thus to ĵ�N�r ,��,
the variables f̂e�r ,�� and f̂m�r ,�� may be viewed as projec-
tive variables in the sense outlined at the end of Sec. III.
Since Eq. �93� �with Eqs. �94� and �95�� is a separation of the
noise current into a part attributed to a dielectric polarization
and a part attributed to a �paramagnetic� magnetization, the

quantization scheme based on Eqs. �93�–�95�, with f̂e�r ,��
and f̂m�r ,�� being bosonic variables, may be thought of as
following from the general quantization scheme in the case
where magnetoelectric crossing effects can be a priori ex-
cluded from consideration.

3. Local limit: Other kinds of media

The transition to the local limit is not a unique procedure
in general. Various kinds of locally responding �homoge-
neous� media, including nonisotropic ones, may therefore be
derived as limiting cases from Eq. �61�. To illustrate this, let
us represent �J�k ,�� as given in Eq. �62� in a different ortho-
normal basis, where the new expansion will be nondiagonal
in general,

�J�k,�� = 

i,j=1

3

�̃ij�k,��ẽi�k,��ẽ j
*�k,�� . �96�

The new basis vectors ẽi�k ,�� are related to the ones appear-
ing in Eq. �62� by a unitary transformation,

ẽi�k,�� = 

k=1

3

Uik�k,��ek�k,�� , �97�

Uik�k,�� = ẽi�k,�� · ek
*�k,�� . �98�

We may always choose the ẽi�k ,�� so that they are indepen-
dent of k, ẽi�k ,��� ẽi���. If this choice can be made such
that the new expansion coefficients,
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�̃ij�k,�� = 

k,l=1

3

Uik
* �k,���kl�k,��Ujl�k,�� , �99�

may be approximately replaced under the k-integral accord-
ing to

�̃ij�k,�� � �̃ij�k → 0,�� � �̃ij��� �100�

when Eq. �96� is inserted in Eq. �61�, then in this way the
type of locally responding �homogeneous� anisotropic me-
dium defined by Eq. �51� is recovered. �Equation �52� is then
obtained by diagonalizing �̃ij��� by means of yet another
�k-independent� unitary transformation.� Similarly, if the ap-
proximation �100� is generalized to include further terms of
an �assumed� expansion of �̃ij�k ,�� at k=0, then quasilocal
approximations of Eq. �61� are generated by inserting the
truncated expansion into Eq. �61� and integrating term by
term to yield a linear combination of various derivatives of
�-functions. In pursuing such approximation procedures—
whose validity is to be examined in each case and which
depends crucially on the choice of the transformations �97�
and �98� �i.e., on the choice of the new basis vectors�—it
must be kept in mind that any approximate form of
�J�r ,r� ,�� so derived has to conform to all the general re-

quirements on QJ�r ,r� ,��.
In this context, let us address so-called bianisotropic

media—the most general kind of locally responding linear
media. From the above, such a medium may be viewed as
corresponding to a quasilocal approximation of �J�r ,r� ,��
�and hence of QJ�r ,r� ,��� that incorporates derivatives of
�-functions up to second order. In fact, the constitutive rela-
tions, which in classical electrodynamics, for homogeneous
bianisotropic media, are typically given in a form such as
�see, e.g., Refs. �7,23��

P� �r,�� = �JPE��� · E� �r,�� + �JPB��� · B� �r,�� , �101�

M� �r,�� = �JME��� · E� �r,�� + �JMB��� · B� �r,�� , �102�

with P� �r ,�� and M� �r ,��, respectively, being the polariza-
tion and magnetization fields in the frequency domain, may
be equivalently given in the form of the first term of Eq. �1�,
where the appropriate conductivity tensor reads

QJ�r,r�,�� = − i��JPE�����r − r�� + ��JPB�����r − r���  �� �

+ �  ��JME�����r − r���

− �i��−1 �  ��JMB�����r − r���  �� �, �103�

and the polarization and magnetization current densities in
the frequency domain, −i�P� �r ,�� and �M� �r ,��, respec-
tively, are combined into j��r ,��. It is not difficult to prove

that the validity of the reciprocity property of QJ�r ,r� ,�� as
given in Eq. �103� is equivalent to the validity of the trans-

position relations �JPE���=�JPE
T ���, �JMB���=�JMB

T ���, and

�JME���=−�JPB
T ���.

If the last �magneticlike� term on the right-hand side of
Eq. �103� can be omitted, then one can entirely drop Eq.

�102� and change instead Eq. �101� so as to read

P� �r,�� = �JPE��� · E� �r,�� +
1

i�
�JPB��� · ��  E� �r,���

− �  ��JME��� · E� �r,���� . �104�

Introducing a third-rank tensor with Cartesian components
�antisymmetric in the first two indices�

�ijk��� = �i��−1��PBil���� jlk + �MElj����ilk� �105�

�� jlk, Levi-Civita permutation symbol; summation over indi-
ces occurring twice is understood�, we may rewrite Eq. �104�
as

P� i�r,�� = �PEijE� j�r,�� + �ijk����kE� j�r,�� , �106�

which exactly corresponds to the standard form commonly
used �see, e.g., Ref. �24��.

C. Spatially dispersive inhomogeneous media

As already mentioned, knowledge of the medium proper-
ties, i.e., of �J�r ,r� ,��, is required in order to solve the ei-
genvalue problem �23� and to explicitly perform the quanti-
zation of the medium-assisted electromagnetic field—a task
which, in general, cannot be accomplished in closed form.
Nevertheless, to provide some analytical insight into the
problem, let us consider media that combine the features of
the media considered in Secs. IV A and IV B in an approxi-
mate fashion.

1. Model

We assume that the medium permits one to clearly distin-
guish between the length scales associated with spatial dis-
persion and inhomogeneity, with the former scale being suf-
ficiently small as compared with the latter one. In this case,
the medium can be regarded as having locally the properties
of bulk material, and �J�r ,r� ,�� may be approximated as

�J�r,r�,�� =
1

�


L



i=1

3



k
�iLk���eik·�r−r��

  L�r� L�r��eiLk���eiLk
* ��� , �107�

from which the eigenfunctions of the associated operator are
seen to be

FiLk�r,�� = �−1/2 L�r�eik·reiLk��� . �108�

Here the medium is thought of as being divided into unit
cells of volume � which form a Bravais-type lattice, the
cutoff function  L�r� is unity if r is in the cell of lattice
vector L and zero otherwise, eiLk��� are, for chosen L, k,
and �, a triplet �i=1,2 ,3� of orthogonal unit vectors, and the
wave vector k runs over the reciprocal lattice. Note that, for
each cell L,

�JLk��� = 

i=1

3

�iLk���eiLk���eiLk
* ��� �109�

corresponds to the diagonal form in the �k ,�� domain of
�J�r ,r� ,�� for bulk material �cf. Eq. �62��.
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The main features of �J�r ,r� ,�� as given in Eq. �107� can
be summarized as follows. �i� �J�r ,r� ,�� is zero whenever r
and r� are not in the same cell, so that �1/3 determines the
length scale on which spatial dispersion is at most observed.
�ii� The dependence on L of �JLk��� �Eq. �109�� for an inho-
mogeneous medium introduces an L-dependence into Eq.
�107� which should be sufficiently weak, so that noticeable
violations of the translational invariance of �J�r ,r� ,�� may
occur only on a length scale that is large compared with �1/3.
Needless to say, the main features do not essentially change
if  L�r� is replaced with another—but qualitatively similar—
cutoff function.

Let us denote by L�r� the particular lattice vector whose
cell contains the point r, so that L�r� plays the role of
a coarse-grained position variable. With the notations
 L�r��r��� (L�r� ,r�) and �JL�r�k�����Jk(L�r� ,�), Eq.
�107� together with Eq. �109� can be rewritten as

�J�r,r�,�� =  „L�r��,r…�J„L�r��,r − r�,�… , �110�

with

�J„L�r��,r − r�,�… =
1

�


k
�Jk„L�r��,�…eik·�r−r��.

�111�

Note that for arbitrary �continuous� values s, the function
 �s ,r� can be regarded as being symmetric. Using Eq. �108�,
we find that Eq. �27� takes the form

KJ�r,r�,�� =
 „L�r��,r…

�


k

KJk„L�r��,�…eik·�r−r��,

�112�

where

KJk„L�r�,�… = 

i=1

3

�ik
1/2
„L�r�,�…eik„L�r�,�…eik

*
„L�r�,�… ,

�113�

��iL�r�k��� � �ik„L�r�,�…,eiL�r�k��� � eik„L�r�,�…� .

It can be shown that Eq. �110� �with Eq. �111�� indeed
contains �and, in a sense, interpolates� the two limiting cases
studied in Secs. IV A and IV B. For the proof, we observe
that in the case of negligible spatial dispersion, the cell size
can be shrunk to zero, �→0, so that the lattice vectors take
on continuous values, L�r�→r. As the lattice becomes finer
and finer, the reciprocal lattice becomes more and more
coarse, and, for r and r� unequal but in the same cell, all the
points of the reciprocal lattice with k�0 give rise to rapidly
oscillating terms in Eq. �111�. In the limit �→0, these terms
oscillate infinitely rapidly and average to zero �when apply-
ing the operator associated with Eq. �110� �with Eq. �111�� to
any reasonable function�, so that they may be set equal to
zero. Taking also into account that  (L�r�� ,r) /�→��r
−r�� in this limit, we see that Eq. �110� �with Eq. �111��

indeed approaches Eq. �51� for vanishing spatial dispersion
�note the correspondences �ik=0(L�r�=r ,�)=�i�r ,�� and
eik=0(L�r�=r ,�)=ei�r ,���.

On the other hand, in the limiting case of an infinitely
extended homogeneous medium, there is no L-dependence
of the medium properties so that we are free to increase the
cell size indefinitely, �→�. Consequently, we may let
 (L�r�� ,r)→1 in Eq. �110� and �Jk(L�r� ,�)→�J�k ,��,
�−1
k→ �2	�−3�d3k in Eq. �111�, which reveals that Eq.
�110� �with Eq. �111�� approaches Eq. �61� as expected.

2. Magnetodielectric media

To quantize the electromagnetic field in a inhomogeneous
magnetodielectric medium specified in terms of ��r ,�� and
��r ,��=�−1�r ,��, let us consider a medium that is both suf-
ficiently weakly inhomogeneous and sufficiently weakly spa-
tially dispersive, so that � in Eq. �111� can be chosen on a
scale intermediate between the scales of spatial dispersion
and inhomogeneity. We may then approximately let L�r� be
a continuous variable, L�r�→r in Eq. �110�, and yet, at the
same time, approximately treat the k-sum in Eq. �111� as an
integral, so that Eq. �110� �with Eq. �111�� approximates to
� (L�r�� ,r)→ �r� ,r��

�J�r,r�,�� =
 �r�,r�
�2	�3 � d3k�J�r�,k,��eik·�r−r��. �114�

For a medium that is locally of the type described by Eq.
�73�, we may set

�J�r,k,�� = ���r,k,��IJ− k  ��r,k,��IJ k , �115�

where

��r,k,�� = ����r,k,�� − ���r,k,���/k2 � 0. �116�

Assuming that in the k-integral in Eq. �114�, ���r ,k ,�� and
��r ,k ,�� may be approximated, respectively, by well-
defined �and unique� long-wavelength limits ���r ,��
=limk→0 ���r ,k ,�� and ��r ,��=limk→0 ��r ,k ,��, the cutoff
function  �r� ,r� has—due to the rapid oscillations of the
exponential for large �r−r��—no effect �with regard to an
application of the operator associated with �J�r ,r� ,�� from
Eq. �114�� and can be dropped, and we obtain, as a generali-
zation of Eq. �81�,

�J�r,r�,�� = ���r�,��IJ��r − r��

− �  ���r�,��IJ��r − r���  �� �. �117�

With the identifications

���r,�� = �0� Im ��r,�� , �118�

��r,�� = − �0 Im ��r,��/� �119�

�cf. Eqs. �86� and �87��, Eqs. �82� and �83� generalize to
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QJ�r,r�,�� = − i�0����r�,�� − 1�IJ��r − r��

−
1

i�
�  �0�1 − ��r�,���IJ��r − r���  �� �

�120�

and

ĵ��r,�� = − i�0����r,�� − 1�Ê� �r,��

+ �0 �  �1 − ��r,���B̂� �r,��� + j�N�r,�� ,

�121�

respectively.
Unfortunately, Eq. �88� does not generalize to

KJ��r,r�,�� = ��
1/2�r�,��IJ��r − r��

� i�1/2�r�,�� �  IJ��r − r�� �wrong� ,

�122�

as could have been suspected. Indeed, straightforward calcu-
lation shows that, for spatially varying permittivity and per-
meability, the kernel �122� does not solve Eq. �18� �with
�J�r ,r� ,�� as given in Eq. �117��, which implies that ĵ�N�r ,��
cannot be related to the variables f̂�r ,�� as in Eq. �89�, with
���� and ���� being simply replaced with their inhomoge-
neous counterparts ��r ,�� and ��r ,��, respectively. In order

to obtain an explicit expression for the kernel KJ�r ,r� ,��
required in Eq. �17�, one has instead to return to Eq. �18� and
solve it with �J�r ,r� ,�� from Eq. �117�—a problem that is,
however, very difficult to solve in general. Although this
does not at all limit the practical applicability of the theory

�since all one typically has to know about KJ�r ,r� ,�� is that
it satisfies its defining equation �18� for the chosen conduc-
tivity �120��, it may be useful to have at hand at least an
approximate form for weak inhomogeneity, such as �Appen-
dix D�

KJ�r,r�,�� = ��
1/2���IJ��r − r�� � i�1/2��� �  IJ��r − r��

+
1

2
����r,�� − ������MJ 0�r,r�,��

+
1

2
�  ���r,�� − ����� �  MJ 0�r,r�,��� ,

�123�

where

MJ 0�r,r�,�� = ��
−1/2���IJ��r − r��

± i�−1/2��� �  m0�r,r�,��IJ

+ ��
−1/2��� �  m0�r,r�,��IJ �� �,

�124�

with m0�r ,r� ,��=−�4	�r−r���−1e−�r−r��/����, ����
= ����� /������1/2�0. If the lack of exact knowledge of

KJ�r ,r� ,�� really happens to be an obstacle in an application,
one can alternatively resort to the approach on the basis of
Eqs. �93�–�95� by simply replacing therein ���� and ���� by
��r ,�� and ��r ,��, respectively.

V. GREEN TENSOR CONSTRUCTION FOR SPATIALLY
DISPERSIVE BODIES

Practical application of the quantization scheme requires
the solution of the classical problem of the determination of

the Green tensor GJ�r ,r� ,�� for a given conductivity tensor

QJ�r ,r� ,��. Typically, one has to deal with systems of bodies
each of which can be regarded as being homogeneous in its
respective interior region. The physical surfaces of the bod-
ies, including the boundary surfaces between adjacent bod-
ies, may be said to be the particular space regions where the
material properties differ significantly from the intrabody
�bulk-material� properties. Physical surfaces are therefore not
mathematical ones but more or less fuzzy boundary layers.
For not too small bodies, however, they usually contain only
a small fraction of the overall material, so that they may
often be approximately replaced with �sharp� mathematical
surfaces, with the idealization that the intrabody bulk-
material properties hold immediately beyond them.

A. Dielectric approximation

The application of the point of view just outlined to �sys-
tems of internally homogeneous� spatially dispersive bodies
is commonly referred to as the dielectric approximation, for
which it is obviously required that the characteristic length
scale of spatial dispersion is small in comparison with the
typical linear extensions of the bodies. Hence making use of
the same notation as employed in Eq. �110�, we assume the
conductivity tensor of a system of spatially dispersing bod-
ies, in the dielectric approximation, to be of the form

QJ�r,r�,�� =  „L�r��,r…QJ„L�r��,r − r�,�… , �125�

with the vector L labeling now the bodies in place of the
lattice cells in Sec. IV C 1; L�r�� singles out the particular
body that contains the position r�, and the quantities

QJ�L ,r−r� ,�� are the bulk-material conductivity tensors as-
cribed to the various bodies. �Regions outside all actual bod-
ies, if any, are formally viewed as bodies in this notation.�
Note that QJ�r ,r� ,�� as given by Eq. �125� satisfies the reci-
procity condition. Corrections to the dielectric approximation
in the form of surface currents or, equivalently, boundary
conditions might be required for systems such as needle-
shaped bodies, thin films, or the like, where the dielectric
approximation can be insufficient. However, as such correc-
tions cannot be convincingly justified without detailed
�model� assumptions about the specific nature of the physical
surfaces, we do not consider them in the following.

B. Integral equations and the surface impedance method

The dielectric approximation renders it possible to formu-
late integral equations from which the Green tensor may then
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be derived. Here we outline the surface impedance method
which, in connection with its application to the calculation of
Casimir forces, has recently given rise to controversial dis-
cussions �see, e.g., Refs. �25–28�� concerning the range of
validity and the approximations involved in this method.

To begin with, let us consider a spatially dispersive mate-

rial described by a conductivity tensor QJ�r ,r� ,�� �not yet
approximated by a form like Eq. �125��, and let V denote

some space region of interest. Further, let GJ aux�r ,r� ,�� be
the Green tensor for an auxiliary problem to be specified yet.
Then, if j��r ,�� is an arbitrarily chosen current density in the
frequency domain, given inside and/or outside V, and if
E� �r ,�� and B� �r ,��= �i��−1� E� �r ,��, respectively, are the
�classical, frequency-domain� electric and induction fields
associated with this current density, the identity

�
V

d3rE� �r,�� · �  !Jaux�r,r�,��

+ i�0��
V

d3rE� �r,�� · �GJ aux�r,r�,��

− �i�0��−1�
V

d3sQJ�r,s,�� · GJ aux�s,r�,���
= �

V

d3rj�V�r,�� · GJ aux�r,r�,��

+ �
�V

da�r��E� �r,��  en�r�� · !Jaux�r,r�,��

+ �0
−1�

�V

da�r��B� �r,��  en�r�� · GJ aux�r,r�,��

�126�

�being a Green-type formula� holds, as can be proven correct
by partial integration and employing the reciprocity property

of QJ�r ,s ,��. Here, da�r� and en�r� denote the absolute value
and the unit vector of the surface element at r on the surface
�V of V. Further,

j�V�r,�� = �i�0��−1��  �  E� �r,�� −
�2

c2 E� �r,��

− i�0��
V

d3r�QJ�r,r�,�� · E� �r�,��� �127�

and

!Jaux�r,r�,�� = �i�0��−1 �  GJ aux�r,r�,�� . �128�

Note that j�V�r ,�� does not agree with j��r ,��, in general, as
the r�-integral in Eq. �127� extends only over V.

Let us now assume that QJ�r ,r� ,�� can be treated in the
dielectric approximation according to Eq. �125�, at least for
the medium in V. In this case, j�V�r ,�� agrees with j��r ,��
inside V, and QJ�r ,s ,�� in Eq. �126� can be replaced with the

bulk-medium conductivity tensor QJ�LV ,r−s ,�� attributed to

the medium in V �LV is the vector labeling region V�. Hence

if GJ aux�r ,r� ,�� is required, at least for r�V, to obey the
equation

�  �  GJ aux�r,r�,�� −
�2

c2 GJ aux�r,r�,��

− i�0��
V

d3sQJ�LV,r − s,�� · GJ aux�s,r�,�� = IJ��r − r�� ,

�129�

then Eq. �126� simplifies to

�i�0��−1E� �r�,�� �LV,r��

= �i�0��−1E� �in��r�,��

+ �
�V

da�r��E� �r,��  en�r�� · !Jaux�r,r�,��

+ �0
−1�

�V

da�r��B� �r,��  en�r�� · GJ aux�r,r�,�� ,

�130�

where

E� �in��r,�� = i�0��
V

d3r�j��r�,�� · GJ aux�r�,r,��

= i�0��
V

d3r�GJ aux�r,r�,�� · j��r�,�� . �131�

Since the characteristic length of spatial dispersion is as-
sumed to be sufficiently small as compared with the linear
extensions of V, we may extend, with little error, the
s-integral in Eq. �129� to the whole space and, therefore, we

may identify GJ aux�r ,r� ,�� in Eq. �130� with the correspond-
ing bulk-medium Green tensor as given in Appendix E. Note
that Eq. �130� may be viewed as a statement of Huyghens’
principle �for r� inside V� and of the extinction theorem �for
r� outside V�, see Refs. �23,29�, which have been well-
known as a suitable starting point for field calculations on
the basis of integral equation methods, see, in particular,
Refs. �3–5� where the Wiener-Hopf technique has been used
to construct solutions for a particular functional form of

QJ�LV ,r−s ,��.
The surface impedance method �see, e.g., Ref. �30�� con-

sists of the assumption that a linear relation between the
tangential field components of E� �r ,�� and B� �r ,�� exists on
the surface �V,

en�r�  E� �r,�� = �0
−1�

�V

da�r���ZJ�r,r�,��  en�r���

· �B� �r�,��  en�r��� �132�

�r on �V�, where the tensor ZJ�r ,r� ,�� is the dyadic surface
impedance. Equivalently, one may consider the inverted
form
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�0
−1B� �r,��  en�r� = �

�V

da�r���E� �r�,��  en�r���

· YJ�r�,r,�� · IJn�r� , �133�

where IJn�r�= IJ−en�r�en�r� is a tangential projector, and

YJ�r ,r� ,�� may be referred to as the surface admittance.
Once the relation �132� �or Eq. �133�� has been adopted, one
may convert Eq. �130� �with r��V� into an integral equation
for B� �r ,�� �or E� �r ,��� inside V, which can then be solved in
terms of E� �in��r ,�� and the surface impedance, without
specifying the medium properties outside V.

At first glance, the method has some advantageous fea-
tures so that it has been enjoying a reputation in the litera-
ture. One of these features is that the necessity to know the
medium properties everywhere outside V is replaced, so to
speak, by the necessity to know the surface impedance for
�V, which is a great reduction at first glance. Another one is
that the application of continuity conditions may be side-
stepped to some extent. Both of these points are to be quali-
fied, however, and must be seen in the context of the follow-
ing remarks.

First, since the current density j��r ,�� outside V does not
contribute to Eq. �131�, the solution for E� �r ,�� can be
unique only if j��r ,�� is located completely inside V; solu-
tions to the homogeneous integral equation can then be ex-
cluded from consideration. The surface impedance method
applied to the volume V can thus yield, for a given surface

impedance, the Green tensor GJ�r ,r� ,�� only for both r and
r� located in V �which may be sufficient for many applica-
tions, e.g., in the calculation of dispersion forces�. Second,
Eqs. �132� and �133� implicitly demand that the tangential
components of the electric and the induction field uniquely
exist on the surface �V �i.e., they should be continuous
across the surface�, or else ambiguities were encountered.
Quasilocal approximations of the conductivity tensor should
hence be excluded if they contain contributions more singu-
lar than �-functions.

Provided that Eq. �132� �or Eq. �133�� holds, the method

requires knowledge of ZJ�r ,r� ,�� �or YJ�r ,r� ,���, which

plays the role of an external input. If ZJ�r ,r� ,�� �or

YJ�r ,r� ,��� is not known from the very beginning, one can
try to determine it a posteriori from the solution found, by
appropriately specifying the effect of the medium on the
electromagnetic field outside the space region under consid-
eration as well. We proceed with an example where this line
can be pursued explicitly, on the basis of the dielectric ap-
proximation.

C. Example: Nonmagnetic, planar systems

Let V denote the slablike region between two parallel
planes z=0 and z=d, and let j��r ,�� be located completely
inside V. In order to apply the surface impedance method to
the region V, we assume that the medium in V is nonmag-
netic and can be treated in the dielectric approximation. In-
troducing Fourier transforms according to �r��� ,z��

E� �r,�� =� d2qeiq·�E� �z,q,�� �134�

and taking into account the lateral translational invariance of
the system, we may write Eq. �133� in the Fourier domain as

�0
−1B� �z,q,��  ez = �2	�2�E� �d,q,��  ez� · YJ�d,z,− q,��

− �E� �0,q,��  ez� · YJ�0,z,− q,��� · IJz

�135�

�IJz= IJ−ezez�, where z takes on the two values z=0 and z=d
�the two terms enter with opposite signs because of the op-
posite surface normals on the two sides of �V�. Similarly, the
Fourier transformed version of Eq. �130� reads

E� �z�,q,�� �LV,z�� − E� �in��z�,q,��

= i�0��2	�2�E� �d,q,��  ez� · !Jaux�d,z�,− q,��

− �E� �0,q,��  ez� · !Jaux�0,z�,− q,��

+ �0
−1�B� �d,q,��  ez� · GJ aux�d,z�,− q,��

− �0
−1�B� �0,q,��  ez� · GJ aux�0,z�,− q,��� . �136�

Note that GJ aux�r ,r� ,�� and !Jaux�r ,r� ,�� are translationally
invariant because they refer to bulk material. By means of
Eq. �135�, Eq. �136� takes the form

E� �z�,q,�� �LV,z�� − E� �in��z�,q,��

= E� �d,q,�� · IJz · RJ�d,z�,q,��

− E� �0,q,�� · IJz · RJ�0,z�,q,�� , �137�

with ��=0, �=d�

RJ��,z�,q,�� = i�0��2	�2ez  �!J1��,z�,− q,��

+ �2	�2YJ��,d,− q,�� · IJz · GJ1�d,z�,− q,��

− �2	�2YJ��,0,− q,�� · IJz · GJ1�0,z�,− q,���
�138�

�note that ez ·RJ�� ,z� ,q ,��=0�.
From Eq. �137� it follows that �Appendix F�

E� �0,q,�� · IJz = �E� �in��0 + ,q,�� · CJ�

− E� �in��d − ,q,�� · DJ�� · �AJ · CJ� − BJ · DJ���,

�139�

E� �d,q,�� · IJz = �E� �in��0 + ,q,�� · AJ�

− E� �in��d − ,q,�� · BJ�� · �CJ · AJ� − DJ · BJ���,

�140�

where

AJ = AJ�q,�� = IJz · �IJ+ RJ�0,0 + ,q,��� · IJz, �141�

BJ = BJ�q,�� = IJz · RJ�0,d − ,q,�� · IJz, �142�

RAABE, SCHEEL, AND WELSCH PHYSICAL REVIEW A 75, 053813 �2007�

053813-14



CJ = CJ�q,�� = − IJz · RJ�d,0 + ,q,�� · IJz, �143�

DJ = DJ�q,�� = IJz · �IJ− RJ�d,d − ,q,��� · IJz, �144�

and the superscript � denotes a pseudoinversion operation

with respect to the IJz-space, as explained in Appendix F. The
solution to Eq. �137� can now be readily obtained by substi-
tuting Eqs. �139� and �140� back in the right-hand side of Eq.
�137�. Specifying in Eq. �131� the source of E� �in��r ,�� so as
to correspond to a point dipole situated in V, j��r ,��
= �i�0��−1p��r−rp�, from the corresponding position-space
solution E� �r ,�� �LV ,r�, one can then read off, according to

E� �r ,�� �LV ,r�=p ·GJ�rp ,r ,�� �LV ,r� �LV ,rp�, the �inter-
esting part of the� Green tensor expressed in terms of the
surface admittance, i.e., in terms of the quantities

YJ�z ,z� ,q ,�� �z=0,d; z�=0,d�.
In order to illustrate the calculation of the admittance, let

us assume that the �nonmagnetic� media to the left and right
of z=0 and z=d, respectively, are �in the sense of the dielec-
tric approximation� homogeneous half-spaces. Using the in-
dices 0, 1, and 2 to distinguish the left �z�0� half-space, the
volume V�0�z�d�, and the right half-space �z�d�, respec-
tively, and associating with each of the three regions the

corresponding bulk-medium Green tensor GJ j�r ,r� ,�� �Ap-

pendix E� and the associated auxiliary tensor !J j�r ,r� ,�� de-
fined according to Eq. �128�, one can derive the admittance
by applying the continuity conditions. Introducing the abbre-
viations

MJ �q,�� = − IJz · GJ1�0,d − ,q,�� · IJz, �145�

NJ�q,�� = − IJz · �GJ1�0,0 + ,q,�� + GJ0�0,0 − ,q,��� · IJz,

�146�

PJ�q,�� = IJz · �GJ1�d,d − ,q,�� + GJ2�0,0 + ,q,��� · IJz,

�147�

SJ�q,�� = IJz · GJ1�d,0 + ,q,�� · IJz, �148�

TJ�q,�� = IJz · !J1�0,d − ,q,�� · IJz, �149�

UJ�q,�� = IJz · �!J1�0,0 + ,q,�� + !J0�0,0 − ,q,��� · IJz,

�150�

VJ�q,�� = − IJz · �!J1�d,d − ,q,�� + !J2�0,0 + ,q,��� · IJz,

�151�

WJ �q,�� = − IJz · !J1�d,0 + ,q,�� · IJz, �152�

one eventually finds �Appendix G� the YJ�z ,z� ,q ,�� �z=0,d;
z�=0,d� to be �for notational convenience, the arguments q,
� are suppressed�

YJ�0,0� =
1

�2	�2 �UJ · SJ� − TJ · PJ�� · �MJ · PJ� − NJ · SJ���,

�153�

YJ�0,d� =
1

�2	�2 �UJ · NJ� − TJ · MJ �� · �PJ · MJ � − SJ · NJ���,

�154�

YJ�d,0� =
1

�2	�2 �VJ · PJ� − WJ · SJ�� · �MJ · PJ� − NJ · SJ���,

�155�

YJ�d,d� =
1

�2	�2 �VJ · MJ � − WJ · NJ�� · �PJ · MJ � − SJ · NJ���,

�156�

which are, quite naturally, far more complicated than the
simple Kliever-Fuchs expressions mentioned in Appendix E.

The surface impedance-based technique as outlined above
may be analogously applied to planar multilayer structures
composed of nonlocally responding media �given the dielec-
tric approximation�. A typical problem of methods such as
transfer matrix methods �see, e.g., Ref. �29�� or �closely re-
lated� techniques based on recursive calculation of general-
ized reflection and/or transmission coefficients �see, e.g.,
Refs. �23,31,32��, which are widely used for treating
multilayer structures, is that straightforward generalization
beyond the most frequently considered case of locally re-
sponding dielectric or magnetodielectric media is not easily
viable �see, however, Ref. �33� for an interesting extension�.
The advantage of surface impedance techniques may be
viewed, in this regard, as resulting from the fact that the
starting point is an integral-equation formulation of the
propagation problem, which applies to nonlocally responding
media in nearly the same way as to locally responding ones
�given the dielectric approximation�. By contrast, the gener-
alization of approaches directly based on Maxwell’s differ-
ential equations are complicated by the qualitative change of
the nature of these equations to integrodifferential equations
as soon as nonlocally responding media are brought into
play.

VI. SUMMARY AND CONCLUDING REMARKS

We have developed a general quantization scheme for the
macroscopic electromagnetic field in arbitrary linearly re-
sponding media, which offers a unified approach to QED in
linear media. Describing the medium response by a nonlocal
conductivity tensor, any of the possible electromagnetic fea-
tures of a linear medium in equilibrium is covered by the
scheme, in particular, spatial dispersion. Central quantities of
the scheme are the noise current that is intimately connected
with the absorption necessarily observed in any linear me-
dium in equilibrium, the bosonic dynamical variables asso-
ciated with the noise current, and the Green tensor of the
phenomenological Maxwell equations, in which the medium
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properties enter via the conductivity tensor. Inclusion in the
theory of additional atomic sources that interact with the
medium-assisted electromagnetic field may then be straight-
forwardly performed along standard lines, despite the fact
that the “free” field already incorporates the interaction with
some background material.

From a careful analysis of the dynamical variables and
�quasi-�local limiting forms of the nonlocal conductivity ten-
sor, we have shown how quantization schemes previously
developed for locally responding media can be recovered as
special applications of the general quantization scheme. In
particular, a locally responding magnetodielectric medium
can be viewed as a special quasilocal limiting case of an
isotropic, spatially dispersive medium without optical activ-
ity, where the �local� dielectric permittivity and magnetic
permeability are just two contributions to one and the same
quasilocal conductivity tensor. As a result, application of the
general quantization scheme shows that the electromagnetic
field in such a medium can be quantized by using a single set
of bosonic variables.

Generally, the use of a single set of bosonic variables
means that the noise current which enters the macroscopic
Maxwell equations is not divided into parts �associated, e.g.,
with a polarization and a magnetization� regarded as repre-
senting independent degrees of freedom, but is rather treated
as an entity. This may be particularly advantageous for future
studies of �quantum� electrodynamics in moving media, sim-
plifying the discussion of transformations to different frames
of reference. However, the theory also admits, by appropriate
projection, the use of several independent sets of bosonic
variables, which in fact corresponds to the neglect of certain
kinds of interactions in the sense of superselection rules.

Since exact solutions of Maxwell’s equations are not
available in closed form in general, even more so if spatial
dispersion is taken into account, one has to resort to approxi-
mation methods to obtain explicit expressions for the Green
tensor, the latter being one of the cornerstones of the theory.
To assist in such intentions we have considered in some de-
tail the dielectric approximation for the conductivity tensor,
which consists of approximating the conductivity tensor of a
system of spatially dispersive bodies by joining together
bulk-medium conductivity tensors �which are routinely
handled in reciprocal space�. Although the information rel-
evant to physical surface regions is lost in this way, the di-
electric approximation has been a key tool to render tractable
electromagnetic propagation problems in spatially dispersive
media. Accepting the dielectric approximation, the problem
of finding the Green tensor becomes then solvable via
integral-equation and surface-impedance techniques.

As already mentioned, diamagnetic media are not covered
by the quantization scheme developed in this paper—a
scheme that exhausts the possibilities offered by the linear-
response framework. Furthermore, it should be pointed out
that the scheme also does not automatically apply to linearly
amplifying media. Although both types of media do not re-
ally fit into the linear-response framework, they may be
forced into it, but not without reservations and alterations of
the whole scheme. Clearly, the concept of linear amplifica-
tion has a range of applicability very much smaller than that
of linear dissipation.

Concluding, this work provides the most general quanti-
zation scheme for the electromagnetic field in linearly re-
sponding, absorbing materials to date, from which previously
given schemes can be recovered as limiting cases. It will
serve as a foundation for investigations of surface plasmon
effects involving strong spatial dispersion, and as a starting
point for the investigation of moving media.

Note added in proof. Recently, a paper by Suttorp �35� has
appeared where a �Huttner-Barnett-like� model of the elec-
tromagnetic field linearly interacting with a spatially disper-
sive medium modeled in terms of harmonic oscillators is
given. The results obtained from this model are in line with
our theory, and may be regarded as providing additional sup-
port for it from a more microscopic point of view.
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APPENDIX A: DERIVATION OF EQ. (9)

The linear integrodifferential equation �8� can be repre-
sented as

� d3sHJ�r,s,�� · GJ�s,r�,�� = IJ��r − r�� , �A1�

where the integral kernel

HJ�r,r�,�� = �  �  IJ��r − r�� −
�2

c2 IJ��r − r��

− i�0�QJ�r,r�,�� �A2�

is reciprocal,

HJ�r,r�,�� = HJT�r�,r,�� , �A3�

since QJ�r ,r� ,�� is reciprocal. Hence the transposed equation
of Eq. �A1� takes the form

� d3sGJT�s,r,�� · HJ�s,r�,�� = IJ��r − r�� . �A4�

Multiplying from the right with GJ�r� ,s� ,��, integrating over
r�, and using Eq. �A1�, one can see that the Green tensor is
also reciprocal,

GJ�r,r�,�� = GJT�r�,r,�� . �A5�

Because of Eq. �A5�, the complex conjugate of Eq. �A4�
reads

� d3sGJ*�r,s,�� · HJ*�s,r�,�� = IJ��r − r�� . �A6�

Taking the dot product of Eq. �A1� from the left with

GJ*�s� ,r ,�� and integrating over r, taking the dot product of

Eq. �A6� from the right with GJ�r� ,s� ,�� and integrating over
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r�, and subtracting the two resulting equations, one derives

Im GJ�r,r�,�� = −� d3s� d3s�GJ�r,s,��

· �Im HJ�s,s�,��� · GJ*�s�,r�,�� . �A7�

From Eq. �A2� it is seen that

Im HJ�r,r�,�� = −
Im �2

c2 IJ��r − r�� − �0 Re��QJ�r,r�,��� .

�A8�

Insertion of Eq. �A8� into Eq. �A7� and restriction to real
frequencies leads, upon recalling Eq. �2�, to Eq. �9�.

APPENDIX B: NONUNIQUENESS OF THE KERNEL

KJ„r ,r� ,�…

The transition from KJ�r ,r� ,�� to KJ��r ,r� ,�� according
to Eq. �28� can be reinterpreted as a redefinition of the dy-

namical variables f̂�r ,�� and f̂†�r ,�� according to

f̂�r,�� =� d3r�VJ�r,r�,�� · f̂��r�,�� , �B1�

f̂†�r,�� =� d3r�VJ*�r,r�,�� · f̂�†�r�,�� . �B2�

Inserting Eq. �B1� into Eq. �17� yields

ĵ�N�r,�� = ���
	
	1/2� d3r�KJ��r,r�,�� · f̂��r�,�� , �B3�

where KJ��r ,r� ,�� is just given by Eq. �28�. With regard to
the transformations �B1� and �B2�, the significance of replac-

ing Eq. �29� with Eq. �30� is that the variables f̂��r ,�� and

f̂�†�r ,�� are uniquely expressible in terms of the f̂�r ,�� and

f̂†�r ,��, and so are on an equal footing with them—the uni-

tary operator associated with VJ�r ,r� ,�� uniquely maps a set
of bosonic variables onto a fully equivalent set of bosonic

variables. Hence VJ�r ,r� ,�� may be thought of as being in-
cluded in the chosen set of dynamical variables. In this
sense, it is sufficient to base the calculations in Sec. III on the
Hermitian operator associated with the integral kernel

KJ�r ,r� ,�� as defined by Eq. �27�.
It is worth noting that the operator associated with

KJ��r ,r� ,�� as defined by Eq. �28� is non-Hermitian when-

ever VJ�r ,r� ,�� is nontrivial. To see this, let us conversely

assume that the operator associated with KJ��r ,r� ,�� is Her-
mitian,

� d3sKJ�r,s,�� · VJ�s,r�,�� =� d3sVJ+�s,r,�� · KJ�s,r�,�� .

�B4�

Applying from the left the operator associated with VJ and

from the right the operator associated with VJ+ and recalling
Eq. �29�, one sees that

� d3sVJ�r,s,�� · KJ�s,r�,�� =� d3sKJ�r,s,�� · VJ+�r�,s,�� .

�B5�

Applying the operator associated with KJ from the left to Eq.
�B4� and from the right to Eq. �B5� and comparing the re-

sults, one finds that the operators associated with VJ and �J
commute �recall Eq. �18��, so that the operator associated

with VJ maps each �possibly degenerate� eigenspace of the
operator associated with �J onto itself. Specifically, this im-

plies that the operator associated with VJ commutes with the
spectral projectors of the operator associated with �J �and,
therefore, also with the projectors �38��. Since the spectral

projectors of the operators associated with �J and KJ are the

same �cf. Eqs. �26� and �27��, the operators associated with VJ

and KJ also commute; but then, since the operator associated

with KJ is invertible �being a positive operator�, Eq. �B4� �or

Eq. �B5�� shows that the operator associated with VJ is Her-
mitian, i.e.,

VJ�r,r�,�� = VJ+�r�,r,�� . �B6�

Since the operator associated with VJ is also unitary, in the
diagonal expansion

VJ�r,r�,�� =� d�v��,��F��,r,��F*��,r�,�� �B7�

one must have v�� ,��= ±1 for each �, which means that the

Hermitian operator associated with KJ��r ,r� ,�� can differ

from the operator associated with KJ�r ,r� ,�� only by the
trivial type of unitary transformation that merely replaces
some of the basis functions F�� ,r ,�� with −F�� ,r ,��. Con-
versely, this shows that any �in this sense� nontrivial

VJ�r ,r� ,�� necessarily yields a non-Hermitian KJ��r ,r� ,��.

APPENDIX C: REDUCED STATE SPACE AND
SUPERSELECTION RULE

Let us consider the state space spanned by the Fock states

associated with f̂�r ,�� and f̂†�r ,�� so that an arbitrary, nor-
malizable state �"� in this space can be represented in the
form
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�"� = �0��0�"� + 

k1=1

3 �
0

�

d�1� d3r1"k1
�r1,�1��1k1

�r1,�1��

+ 

k1,k2=1

3 �
0

�

d�1�
0

�

d�2� d3r1� d3r2

"k1k2
�r1,�1,r2,�2��1k1

�r1,�1�,1k2
�r2,�2�� + . . . ,

�C1�

where

f̂ k�r,���0� = 0, �C2�

f̂ k
†�r,���0� = �1k�r,��� , �C3�

f̂ kN

† �rN,�N� ¯ f̂ k1

† �r1,�1��0� = �1k1
�r1,�1�, . . . ,1kN

�rN,�N�� .

�C4�

The normalization of �"� can be obtained by using the for-
mula �which can be viewed as a special case of the Bloch-De
Dominicis theorem �14��

�0� f̂ kM
�rM,�M� ¯ f̂ k1

�r1,�1� f̂ k1�
† �r1�,�1�� ¯ f̂ kN�

† �rN� ,�N� ��0�

= �MN 

	�SN

�
l=1

N

�kl,k	�l�� ��rl − r	�l�� ����l − �	�l�� � �C5�

��0 �0�=1; SN is the group of permutations of N objects�.
In order to construct a reduced state space in which the

operators f̂��r ,�� and f̂�
†�r ,�� defined by Eq. �39� behave

like bosonic operators, let us first introduce states �0��, ac-
cording to

f̂�i�r,���0�� = 0, �C6�

f̂�i�r,���0��� = �0��� f̂�i�r,�� �� � ��� �C7�

���0 �0��=1�, such that

�0� = �
�=1

�

�0��. �C8�

Now let us introduce, for each �, an orthogonal projector P̂�

as the sum of orthogonal projectors P̂�
�N�,

P̂� = 

N=0

�

P̂�
�N�, �C9�

P̂�
�N�† = P̂�

�N�, �C10�

P̂�
�N�P̂�

�N�� = �NN�P̂�
�N� �C11�

and specify P̂�
�N� in such a way that, when applied to a quan-

tum state of the form �C1�, it picks out the �N+1�th term on
the right-hand side of Eq. �C1� and incorporates N position-
space projection kernels belonging to the chosen value of �,

P̂�
�0� = �0���0��, �C12�

P̂�
�N� =

1

N!
k1

�
0

�

d�1� d3r1

k2

�
0

�

d�2

� d3r2 ¯ 

kN

�
0

�

d�N� d3rNf̂�k1

† �r1,�1�

 f̂�k2

† �r2,�2� ¯ f̂�kN

† �rN,�N�P̂�
�0� f̂�kN

�rN,�N�

 f̂�kN−1
�rN−1,�N−1� ¯ f̂�k1

�r1,�1� �C13�

�N=1,2 , . . . �. It is not difficult to prove that Eqs. �C10� and
�C11� are fulfilled, where the latter equation fixes the nor-
malization factor 1 /N! in Eq. �C13� and that, in view of Eqs.
�C8� and �C11�, the commutation relation

�P̂�
�N�, P̂��

�N��� = 0 �C14�

holds.
We may now define a reduced state space that contains

only those �normalizable� vectors that have the separable
form

�"��red� = �
�=1

�

�"��, �C15�

P̂��"�� = �"��, �C16�

with each vector �"�� being, by construction, a superposition
of vectors

�N�� = 

k1

�
0

�

d�1� d3r1 ¯ 

kN

�
0

�

d�N� d3rN

 C�k1¯�kN
�r1,�1, . . . ,rN,�N�

 �1�k1
�r1,�1�, . . . ,1�kN

�rN,�N�� , �C17�

where, in analogy to Eq. �C4�,

�1�k1
�r1,�1�, . . . ,1�kN

�rN,�N��

= f̂�kN

† �rN,�N� ¯ f̂�k1

† �r1,�1��0��. �C18�

The important feature of these states is that the result of
performing the integrations in Eq. �C17� is not changed if the
wave function C�k1¯�kN

�r1 ,�1 , . . . ,rN ,�N� is replaced ac-
cording to

C�k1¯�kN
�r1,�1, . . . ,rN,�N�

�� d3r1� ¯� d3rN� �PJ��k1k1�
�r1,r1�,�1� ¯

�PJ��kNkN�
�rN,rN� ,�N�

C�k1�¯�kN�
�r1�,�1, . . . ,rN� ,�N� . �C19�

It is also not changed if C�k1¯�kN
�r1 ,�1 , . . . ,rN ,�N� is sym-

metrized with respect to the labels 1 , . . . ,N. Wave functions
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that can be reduced to the same standardized wave function
by these operations are thus fully equivalent representatives
of the same vector. Without loss of generality, one can thus
adopt the convention to employ only such standardized wave
functions.

The commutation relation �40� implies that

e� f̂�k�r,�� f̂��k�
† �r�,���e−� f̂�k�r,��

= f̂��k�
† �r�,��� + ������PJ��kk��r,r�,����� − ���

�C20�

with � being a parameter. As Eq. �C20� is a similarity trans-
formation, it generalizes to

e� f̂�k�r,��F� f̂��k�
† �r�,����e−� f̂�k�r,��

= F� f̂��k�
† �r�,��� + ������PJ��kk��r,r�,����� − ���� ,

�C21�

where F=F� f̂��k�
† �r� ,���� is any well-behaved functional of

f̂��k�
† �r� ,���. Comparison of the terms of first order in � on

both sides yields

† f̂�k�r,��,F� f̂��k�
† �r�,����‡

= � �

��
F� f̂��k�

† �r�,���

+ ������PJ��kk��r,r�,����� − �����
�=0

. �C22�

Let us consider the particular functional FN� f̂��k�
† �r� ,���� ap-

pearing in Eqs. �C17� and �C18�,

FN� f̂��k�
† �r�,���� = 


k1

�
0

�

d�1� d3r1 ¯ 

kN

�
0

�

d�N� d3rN

 C�k1. . .�kN
�r1,�1, . . . ,rN,�N�

 f̂�kN

† �rN,�N� ¯ f̂�k1

† �r1,�1� . �C23�

If the convention to use only standardized wave functions is
adopted, one may write

FN� f̂��k�
† �r�,��� + ������PJ��kk��r,r�,������ − ����

= FN� f̂��k�
† �r�,��� + ������kk���r − r����� − ���� ,

�C24�

which means that the right-hand side of Eq. �C22� may be
evaluated, for this functional, just as an ordinary functional
derivative, i.e.,

† f̂�k�r,��,FN� f̂��k�
† �r�,����‡ =

�FN� f̂��k�
† �r�,����

� f̂�k
† �r,��

;

�C25�

but since, due to the definition of the reduced state space,
only commutators of the type �C25� �for all N� are required,

and since Eq. �C25� can be obtained from Eq. �47� in the
same way that Eq. �C22� has been obtained from Eq. �40�,
Eq. �47� is generally valid for the reduced state space.

APPENDIX D: DERIVATION OF EQ. (123)

For notational convenience, let us write here the integral
equation �18� in the compact operator form

KK† = � , �D1�

with K and � being, respectively, the operators associated

�for chosen �� with the integral kernels KJ�r ,r� ,�� and
�J�r ,r� ,��. Accordingly, Eqs. �28� and �30� read K�=KV
and V†V=VV†=I, respectively �I is the unit operator�. As-
suming that the �Hermitian and positive� operator � takes the
form

� = �0 + ��1, �D2�

with � being a small, real parameter, we may try to find a
solution to Eq. �D1� by the perturbative ansatz

K� = K0� + �K1� + ¯ , �D3�

where K0� is a solution to Eq. �D1� for �=0. Substituting Eqs.
�D2� and �D3� into Eq. �D1�, we see that the first-order cor-
rection K1� obeys the equation

K0�K1�
† + K1�K0�

† = �1, �D4�

which determines the Hermitian part of K0�K1�
† �recall that �1

is Hermitian�, whereas the anti-Hermitian part is left unde-
termined. The solution to Eq. �D4� may therefore be written
as

K1� =
1

2
��1 + A�M0, �D5�

where M0= �K0�
†�−1, and A=−A† is an arbitrary anti-

Hermitian operator, which may be simply set to zero. Note
that the freedom to choose A corresponds to the freedom to
choose V. We hence obtain to first order in �−�0

K� = K0� +
1

2
�� − �0�M0. �D6�

If �0, K0�, and � are identified with the operators associated
with the kernels �81�, �88�, and �117� respectively, Eq. �D6�
is just the operator equivalent of Eq. �123�
�KJ��r ,r� ,��↔KJ�r ,r� ,���.

To calculate explicitly the integral kernel MJ 0�r ,r� ,�� as-
sociated with M0, we consider the Fourier representation

KJ0��r,r�,�� =
1

�2	�3 � d3kKJ0��k,��eik·�r−r�� �D7�

where, according to Eq. �75�,

KJ0��k,�� = ��
1/2����IJ± ����k  IJ� �D8�

[����= ����� /������1/2�0], which shows that the kernel

MJ 0�r ,r� ,�� can be given by the Fourier integral
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MJ 0�r,r�,�� = ��
−1/2��� � d3k

�2	�3 �IJ� ����k  IJ�−1eik·�r−r��,

�D9�

and it is not difficult to prove that

�IJ± ����k  IJ�−1 = IJ� ����
k  IJ

1 + ����2k2

+ ����2 k  IJ k

1 + ����2k2 . �D10�

Introducing the function

m0�r,r�,�� =
1

�2	�3 � d3k
eik·�r−r��

����−2 + k2

= − �4	�r − r���−1e−�r−r��/����, �D11�

we may rewrite Eq. �D9� �with Eq. �D10�� to obtain Eq.
�124�. Note that the �Yukawa-type� function m0�r ,r� ,�� sat-
isfies the equation

�− � + ����−2�m0�r,r�,�� = ��r − r�� �D12�

together with the boundary condition m0�r ,r� ,��→0 for
�r−r� � →�.

APPENDIX E: BULK-MEDIUM GREEN TENSOR AND
KLIEVER-FUCHS IMPEDANCE

For �translationally invariant� bulk material,

QJ�r,r�,�� =� d3k

�2	�3eik·�r−r��QJ�k,�� , �E1�

the solution to Eq. �8� has the form

GJ �0��r,r�,�� =� d3k

�2	�3eik·�r−r��GJ �0��k,�� , �E2�

where GJ �0��k ,�� is the solution to a simple 33 matrix
equation. In particular, for an isotropic medium without op-
tical activity,

QJ�k,�� = Q��k,��
kk

k2 + Q��k,���IJ−
kk

k2 	 , �E3�

one finds that

GJ �0��k,�� =
IJ− kk/k2

D��k,��
−

kk/k2

D��k,��
, �E4�

where

D��k,�� = k2 − �2/c2 − i�0�Q��k,�� , �E5�

D��k,�� = �2/c2 + i�0�Q��k,�� , �E6�

and

Q�����k,�� = − i�0��������k,�� − 1� �E7�

in “dielectric” notation. In the general case where

QJ�k,�� = Q��k,��
kk

k2 + �IJ−
kk

k2 	 · QJ��k,�� · �IJ−
kk

k2 	 ,

�E8�

D��k ,�� changes to D��k ,��, D��k ,�� changes to the tensor

DJ��k,�� = k2 − �2/c2 − i�0�QJ��k,�� , �E9�

and the first term on the right-hand side of Eq. �E4� has to be

replaced according to �IJk= IJ−kk /k2�

IJ− kk/k2

D��k,��
� IJk · �IJk · DJ��k,�� · IJk�−1 · IJk. �E10�

It may be convenient—particularly with regard to systems
that are translationally invariant only in a particular plane,
say the xy plane—to rewrite Eq. �E2� as �r= �� ,z�, k
= �q ,���

GJ �0��r,r�,�� =� d2qeiq·��−���GJ �0��z,z�,q,�� , �E11�

where

GJ �0��z,z�,q,�� =� d�

�2	�3ei��z−z��GJ �0��k,�� . �E12�

The analytical properties of the integrand in Eq. �E12� with

respect to � depend on the specific decay to zero of QJ�r
−r� ,�� for �r−r� � →�. For sufficiently rapid decay, Eq.
�E12� admits an evaluation by contour integration in the
complex � plane, which will be governed—focusing again
on isotropic media without optical activity—by the solutions
�=�#

�,��q ,�� of the two dispersion equations D�,��k ,��=0.
In contrast to the case of spatially nondispersive material,
these equations are transcendental with respect to � rather
than polynomial, so that nothing can be said about the num-
ber of their solutions in general. Specifically, if there are
more than two functions �#

��q ,�� �and/or one or more func-
tions �#

� �q ,���, the medium is said to support “additional”
�inhomogeneous plane� waves.

We close this appendix with the following �perhaps not
well-known� observation. Inserting Eq. �E4� in Eq. �E12� and
setting z−z�=0±, and making use of the decompositions

IJ− kk/k2 = es�q�es�q� + ep�k�ep�k� , �E13�

IJz = es�q�es�q� + qq/q2, �E14�

with es�q�=qez /q and ep�k�=kqez /kq being polar-
ization unit vectors, one can show that

IJz · GJ �0��0 ± ,0,q,�� · IJz = �i�0��−1�Zs�q,��es�q�es�q�

+ Zp�q,��qq/q2� , �E15�

where
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Zs�q,�� = i�0��
−�

� d�

�2	�3

ei�0±

D��k,��
, �E16�

Zp�q,�� = i�0��
−�

� d�

�2	�3

ei�0±

k2 � �2

D��k,��
−

q2

D��k,��� .

�E17�

With Eqs. �E5�–�E7�, �E16�, and �E17� are recognized �up to
a trivial factor� as the surface impedance expressions first
derived by Kliever and Fuchs �34� for a spatially dispersive
half-space by assuming specular electron reflection �see also
Ref. �26��.

APPENDIX F: DERIVATION OF EQS. (139) AND (140)

From inspection of Eq. �137� it is seen that only the tan-
gential components of the electric field, which are assumed
to be continuous at z�=0 and z�=d, contribute to the right-
hand side of this equation. We therefore evaluate Eq. �137� at

z�=0+ and z�=d− and take the tangential �IJz� component
thereof to obtain the linear equations �the arguments q and �
are kept fixed in this appendix and are suppressed for nota-
tional convenience�

E� �0 + � · IJz · �IJ+ RJ�0,0 + �� · IJz − E� �d − � · IJz · RJ�d,0 + � · IJz

= E� �in��0 + � · IJz �F1�

and

E� �0 + � · IJz · RJ�0,d − � · IJz + E� �d − � · IJz · �IJ− RJ�d,d − �� · IJz

= E� �in��d − � · IJz, �F2�

respectively, which are to be solved for the tangential com-

ponents E� �0+ � · IJz and E� �d− � · IJz. To represent the solution in
a compact form, we note that one may introduce for a gen-

eral AJ satisfying IJz ·AJ · IJz=AJ a pseudoinverse AJ# with respect

to the IJz-space by the conditions AJ ·AJ#= IJz=AJ# ·AJ and

IJz ·AJ# · IJz=AJ#. This pseudoinverse, which may also be de-

noted, informally, by IJz · �IJz ·AJ · IJz�−1 · IJz, is unique whenever it

exists, which is the case if and only if the eigenspace of AJ

corresponding to the eigenvalue zero contains no further lin-

early independent vectors in addition to ez �i.e., if IJz ·AJ · IJz is
invertible when considered as a mapping taking only the

smaller IJz-space into itself�. It is then straightforward to see
that the block-matrix formula

�AJ BJ

CJ DJ
	 ·�CJ� · �AJ · CJ� − BJ · DJ��� AJ� · �CJ · AJ� − DJ · BJ���

DJ� · �BJ · DJ� − AJ · CJ��� BJ� · �DJ · BJ� − CJ · AJ���
	

= �IJz 0

0 IJz

	 �F3�

is generally valid whenever the requisite pseudoinverses ex-
ist, so that the solution to Eqs. �F1� and �F2� can be written
in the form

E� �0 + � · IJz = �E� �in��0 + � · CJ� − E� �in��d − � · DJ�� · �AJ · CJ�

− BJ · DJ���, �F4�

E� �d − � · IJz = �E� �in��0 + � · AJ� − E� �in��d − � · BJ�� · �CJ · AJ�

− DJ · BJ��� �F5�

together with Eqs. �141�–�144�. Recalling again the continu-
ity of the tangential component of the electric field, we are
left with Eqs. �139� and �140�. It should be noted that the
above inversion procedure fails at particular values of the
�suppressed� arguments q and �, because of singularities.
However, as we are dealing with a lossy system, such
singularities—corresponding to guided waves—may appear
only when Im ��0 �for real values of q�.

APPENDIX G: DERIVATION OF EQS. (153)–(156)

Let us attribute to the three regions j=0 �z�0�, j=1
�0�z�d�, j=2 �z�d� bulk-medium conductivities

QJ j�r−r� ,��, which combine to the overall conductivity ten-
sor in the sense of Eq. �125� �j↔L�. For each of these re-
gions, we construct the translationally invariant bulk-

medium Green tensor GJ j�r ,r� ,�� and, according to Eq.

�128�, the associated auxiliary tensor !J j�r ,r� ,�� in terms of

their Fourier components GJ j�z ,z� ,q ,�� and !J j�z ,z� ,q ,��
�defined according to Eqs. �E11� and �E12��. The three re-
gions are thus described on an equal footing so that for the
field in each region, an equation similar to Eq. �136� holds.
Evaluating the tangential components of these three equa-
tions �which together determine the field in all of space� and
using the continuity conditions at z=0 and z=d, one obtains
two sets of equations for the tangential boundary values,

�E� �d�  ez� · !J1�d,d − � + ��0
−1B� �d�  ez� · GJ1�d,d − �

− �E� �0�  ez� · !J1�0,d − �

− ��0
−1B� �0�  ez� · GJ1�0,d − �� · IJz

= − �E� �d�  ez� · !J2�0,0 + �

+ ��0
−1B� �d�  ez� · GJ2�0,0 + �� · IJz �G1�

and

�E� �d�  ez� · !J1�d,0 + � + ��0
−1B� �d�  ez� · GJ1�d,0 + �

− �E� �0�  ez� · !J1�0,0 + �

− ��0
−1B� �0�  ez� · GJ1�0,0 + �� · IJz

= �E� �0�  ez� · !J0�0,0 − �

+ ��0
−1B� �0�  ez� · GJ0�0,0 − �� · IJz, �G2�
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where, for notational convenience, the arguments q and � of

E� and B� , and the arguments −q and � of GJ j and !J j have

been suppressed. Solving these linear relations for B� �0�
ez and B� �d�ez in terms of E� �0�ez and E� �d�ez, we

need only compare the result with Eq. �135� to verify Eqs.

�153�–�156�. This can be conveniently done by representing

Eqs. �G1� and �G2� in the form

�−1�B� �0�  ez

B� �d�  ez
	T

· �MJ NJ

PJ SJ
	 = �E� �0�  ez

E� �d�  ez
	T

· �TJ UJ

VJ WJ
	 ,

�G3�
where MJ , NJ, PJ, SJ, TJ, UJ , VJ, and WJ are given in Eqs.
�145�–�152�. Rewriting Eq. �135� �z=0,d� in an analogous
form and applying to Eq. �G3� the inversion formula �F3�,
one obtains

�− YJ�0,0� − YJ�0,d�

YJ�d,0� YJ�d,d�
	 =

1

�2	�2�TJ UJ

VJ WJ
	 · �PJ� · �MJ · PJ� − NJ · SJ��� MJ � · �PJ · MJ � − SJ · NJ���

SJ� · �NJ · SJ� − MJ · PJ��� NJ� · �SJ · NJ� − PJ · MJ ���
	 , �G4�

which immediately leads to Eqs. �153�–�156�.
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