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The electromagnetic wave momentum is derived for a Lorentz medium and applied to study the momentum
transfer to stationary, isotropic left-handed materials. The model includes material dispersion and losses, which
are necessary for a causal medium with negative index of refraction. The results provide a rigorous proof of the
force on free currents in a lossy medium and a validation of the theoretical separation of force based on the real
and imaginary parts of the permittivity and permeability. The resulting electromagnetic wave momentum
conservation theorem proves that the momentum flux of a monochromatic wave in an isotropic left-handed
material is opposite to the power flow direction. However, the momentum density in a lossy medium with a
negative index of refraction may be parallel or antiparallel to the power flow. The results are applied to predict
the reversal of radiation pressure on free currents in a material with a negative index of refraction. Furthermore,
conservation of momentum at a material boundary states that the tangential component of the wave momentum
is conserved. Thus there is no electromagnetic shear force at the boundary between isotropic media, regardless
of the sign of the refractive index.
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I. INTRODUCTION

Left-handed materials �LHMs� have received much atten-
tion since their realization in 2001 �1� due to interesting
physics such as negative refraction �2–4�, reversal of the
Čerenkov effect �5–8�, and the potential to create a perfect
lens �9�. However, the reversal of radiation pressure in
LHMs first predicted in 1968 by Veselago �10� has received
much less attention. Veselago’s results show that the time-
average momentum density of an electromagnetic wave

�Ḡ� =
1

2
Re���Ē � H̄* +

k̄

2
� ��

��
	Ē	2 +

��

��
	H̄	2
� �1�

is antiparallel to the average Poynting power �S̄�= 1
2Re�Ē

� H̄* in materials with simultaneously negative permeabil-
ity � and permittivity �, giving rise to light attraction instead

of light pressure �10�. In Eq. �1�, Ē and H̄ are the complex

electric field and magnetic field, respectively, k̄ is the wave
vector, � is the angular frequency, Re is the real part, and the
asterisk denotes complex conjugate. Researchers still have
not observed experimentally the predicted reversal of elec-
tromagnetic wave momentum. Experiments have revealed
optical momentum transfer to dielectric media in direct pro-
portion to the macroscopic index of refraction �11–14�, but
observations have not revealed dependence on the slope of
the dielectric function as in Eq. �1�. Furthermore, identifica-
tion of electromagnetic momentum in media continues to be
a controversial subject; various definitions and interpreta-
tions have been proposed �15–22�.

The recent application of electromagnetic momentum
conservation at the interface separating free-space and an
isotropic LHM led to the conclusion that the change in mo-
mentum of the electromagnetic wave due to refraction must

produce a force with a nonzero component directed parallel
to the boundary �23�. This sheering force is claimed to be
unique to LHMs, thus supporting the notion that the tangen-
tial component of the momentum is conserved at the bound-
ary separating two right-handed materials �RHMs� �24�.
However, the aforementioned sheering force results since the
momentum flux in LHMs was assumed to be in the same
direction as the power flow, which is in contrast to Vesela-
go’s prediction for the momentum density �10�. Thus elec-
tromagnetic wave momentum and radiation pressure in
LHMs remains topical.

In this paper, we rigourously treat the momentum transfer
to stationary, isotropic LHMs by applying the classical elec-
tromagnetic wave theory. It is argued that previous attempts
to describe the momentum of the electromagnetic wave in
LHMs failed to include material losses and/or dispersion,
which cannot be ignored in a causal system with a negative
index of refraction. We apply the concept of wave momen-
tum, which includes contributions from the material response
as proposed by the seminal work of Gordon �15�. The de-
rived expressions define the wave momentum density and
wave momentum flux similar to previous derivations for dis-
persive dielectrics �17,18�. The results presented here are
analogous to the wave energy density and wave energy flux
previously derived using the standard Lorentz model for the
polarization and magnetization �25�. The Lorentz force is
also applied directly to derive the wave momentum flux den-
sity in an LHM half-space resulting from oblique incidence
of a monochromatic wave. It is shown that the force tangen-
tial to the interface results solely from the momentum trans-
fer as the wave attenuates in the medium. Thus the tangential
component of wave momentum is conserved due to reflec-
tion and refraction at the interface of any isotropic medium,
and the tangential force on a hypothetical lossless medium is
zero regardless of the direction of phase propagation. In the
process, we provide a rigorous derivation for the cycle-
averaged force on free currents, which, along with the force
on bound currents and charges, gives the total force and de-
scribes the details of momentum transfer in lossy media*Electronic address: bkemp@mit.edu
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�26,27�. Furthermore, the force on free currents due to the
attenuation of the electromagnetic wave in a material with
negative index of refraction is opposite to the direction of
power flow.

II. ENERGY AND MOMENTUM IN UNBOUNDED MEDIA

In order to accurately describe wave propagation in an
LHM, it is necessary to include material dispersion and
losses. That is, the coupled electromagnetic field and mate-
rial response must be considered together in determining the
form of the energy and momentum of the electromagnetic
wave. The equations governing the energy and momentum of
an arbitrary subsystem generally take the form �28�

�̄ · S̄ +
�W

�t
= − � , �2a�

�̄ · T� +
�Ḡ

�t
= − f̄ , �2b�

where the energy flow S̄, energy density W̄, momentum flow

T� , and momentum density Ḡ interact with other subsystems

via � and f̄ . In this section, we derive the equations that
govern the energy and momentum of the wave from the clas-
sical electromagnetic theory and the equations of motion for
the dielectric and magnetic response of a Lorentz medium.

A. Energy and momentum of the electromagnetic fields

We begin with the Maxwell-Minkowski fields Ē�r̄ , t�,
H̄�r̄ , t�, D̄�r̄ , t�, and B̄�r̄ , t� in a source-free region �29�. The
electromagnetic fields and the material response fields are

separated by defining the polarization P̄�D̄−�0Ē and mag-

netization �0M̄� B̄−�0H̄ for a stationary medium, where
the dependence upon space and time is now implied in the
notation. The resulting Maxwell-Chu equations �28,29�

�̄ � H̄ − �0

�Ē
�t

=
�P̄
�t

� J̄e, �3a�

�̄ � Ē + �0

�H̄
�t

= − �0

�M̄
�t

� − J̄h, �3b�

�0�̄ · H̄ = − �̄ · �0M̄ � �h, �3c�

�0�̄ · Ē = − �̄ · P̄ � �e �3d�

give the electromagnetic fields Ē and H̄ in the presence of

the material represented by the source terms J̄e, J̄h, �e, and
�h. The energy and momentum quantities for the electromag-
netic subsystem can be derived without specifying models

for P̄ and M̄.
The energy equation is derived in the usual way by sub-

tracting Eq. �3a� dot multiplied by Ē from Eq. �3b� dot mul-

tiplied by H̄ and applying the vector identity �29� H̄ · ��̄
� Ē�− Ē · ��̄�H̄�= �̄ · �Ē�H̄�. The quantities corresponding
to the electromagnetic subsystem in Eq. �2a� are identified as
�28�

S̄eh = Ē � H̄ , �4a�

Weh =
�0

2
Ē · Ē +

�0

2
H̄ · H̄ , �4b�

�eh = J̄e · Ē + J̄h · H̄ , �4c�

where the subscript eh denotes quantities relating to the elec-
tromagnetic subsystem. Likewise, the equation describing
the transfer of momentum to and from the electromagnetic
subsystem is derived by adding the cross product of the vec-

tor equation �3a� and �0H̄, the cross product of the vector

equation �3b� and �0Ē, the product of the scalar equation �3c�
and H̄, and the product of the scalar equation �3d� and Ē.
After some manipulation of the resulting vector equation, the
momentum conservation equation for the electromagnetic
subsystem can be written in the form of Eq. �2b� with the
quantities given by �28�

T� eh =
1

2
��0Ē · Ē + �0H̄ · H̄�I� − �0ĒĒ − �0H̄H̄ , �5a�

Ḡeh = �0�0Ē � H̄ , �5b�

f̄ eh = �eĒ + �hH̄ + J̄e � �0H̄ − J̄h � �0Ē , �5c�

where I� is the 3�3 identity dyad and ĒĒ represents a dyadic
product. The quantities in Eqs. �4� and �5� represent the elec-
tromagnetic subsystem and may be regarded as the electro-
magnetic contributions to energy and momentum �28�. The

quantities Weh and S̄eh are identified as the energy density of
the electromagnetic fields and the Poynting power, respec-

tively. The momentum density Ḡeh is often referred to as the

Abraham momentum �30�, and the momentum flux T� eh takes
the form of the free-space Maxwell stress tensor �31,32�. It is
well-known that a material contribution to the energy density
accompanies the propagation of electromagnetic energy in
dielectrics �33–35�. In the section that follows, we derive the
corresponding material contribution to the wave momentum.

B. Energy and momentum contribution from dispersive
media

To model many experimental observations, it is necessary
to include the dispersive characteristics of the material in
describing the observed behavior of the electromagnetic
wave. The inclusion of losses requires that a specific model

for P̄ and M̄ be applied. The material response to the elec-
tromagnetic fields is described by the differential equations
for a Lorentz medium,
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� �2

�t2 + �e
�

�t
+ �e0

2 
P̄ = �0�ep
2 Ē , �6a�

� �2

�t2 + �m
�

�t
+ �m0

2 
M̄ = F�mp
2 H̄ , �6b�

where the parameters of the equations have their usual mean-
ings �25�. To derive the energy of the electromagnetic wave,

the material equations �6a� and �6b� are dot multiplied by J̄e

and J̄h, respectively. The resulting equations

J̄e · Ē =
1

2�0�ep
2

�

�t
� �P̄

�t
·
�P̄
�t

+ �e0
2 P̄ · P̄�

+
�e

�0�ep
2

�P̄
�t

·
�P̄
�t

, �7a�

J̄h · H̄ =
�0

2F�mp
2

�

�t
� �M̄

�t
·
�M̄
�t

+ �m0
2 M̄ · M̄�

+
�m�0

F�mp
2

�M̄
�t

·
�M̄
�t

, �7b�

are then added to the energy conservation equation of the
electromagnetic subsystem given by Eq. �2a� with the quan-
tities defined by Eq. �4�. The resulting energy conservation
equation for the electromagnetic wave is in the form of Eq.

�2a� with the energy flow S̄, energy density W, and energy
dissipation � given by �25�

S̄ = S̄eh = Ē � H̄ , �8a�

W = Weh +
1

2�0�ep
2 � �P̄

�t
·
�P̄
�t

+ �e0
2 P̄ · P̄�

+
�0

2F�mp
2 � �M̄

�t
·
�M̄
�t

+ �m0
2 M̄ · M̄� , �8b�

� =
�e

�0�ep
2

�P̄
�t

·
�P̄
�t

+
�m�0

F�mp
2

�M̄
�t

·
�M̄
�t

. �8c�

A few remarks are in order regarding the quantities in Eq.
�8�, which are written without subscript to indicate values
corresponding to the electromagnetic wave. First, the energy

flow S̄ is generally regarded as the Poynting power and re-
tains its free-space form even in the presence of a lossy,
dispersive material. Second, the energy density W contains
contributions from the potential energy and kinetic energy of
the electric and magnetic dipoles. Furthermore, the form of
Eq. �8b� has been regarded as significant since the energy
density remains positive in left-handed media �25�. Third, the
energy dissipation term � depends upon the damping factors
�e and �m in Eq. �6�. Thus �=0 in the limiting case of a
lossless material �i.e., the energy of the electromagnetic
wave is conserved�.

A similar mathematical derivation exists for the wave mo-
mentum. To determine the contribution of the material re-
sponse fields to the wave momentum, the material dispersion

equations �6� are dot multiplied by the dyads −�P̄ and

−�0�M̄, respectively. The resulting vector equations are
then added to the electromagnetic conservation equation
given by Eqs. �2b� and �5� to yield

�̄ · T� eh +
�Ḡeh

�t
+ f̄ eh + Ē · �̄P̄ + �0H̄ · M̄

− �P̄ · � �2P̄
�t2 + �e0

2 P̄
 1

�0�ep
2

− �0 � M̄ · � �2M̄
�t2 + �m0

2 M̄
 �0

F�mp
2

= �P̄ ·
�P̄
�t

�e

�0�ep
2 + �M̄ ·

�M̄
�t

�m�0

F�mp
2 . �9�

Application of identities from vector calculus allows us to
write

�P̄ · � �2P̄
�t2 + �e0

2 P̄
 1

�0�ep
2

=
�

�t
� 1

�0�ep
2 ��P̄ ·

�P̄
�t

�

− �̄ · � 1

2�0�ep
2 � �P̄

�t
·
�P̄
�t

− �e0
2 P̄ · P̄
� , �10a�

�M̄ · � �2M̄
�t2 + �m0

2 M̄
 �0

F�mp
2

=
�

�t
� �0

F�mp
2 ��M̄ ·

�M̄
�t


�
− �̄ · � �0

2F�mp
2 � �M̄

�t
·
�M̄
�t

− �m0
2 M̄ · M̄
� ,

�10b�

f̄ eh + Ē · �̄P̄ + �0H̄ · M̄

=
�

�t
�D̄ � B̄ − �0�0Ē � H̄�

+ �̄ · ��P̄ · Ē + �0M̄ · H̄�I� − P̄Ē − �0M̄H̄� .

�10c�

By combining Eq. �9� and �10�, the momentum conservation
equation for the electromagnetic wave can be written in the
form of Eq. �2b� with the momentum flow, momentum den-
sity, and force density
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T� =
1

2
�D̄ · Ē + B̄ · H̄�I� − D̄Ē − B̄H̄

+
1

2
��P̄ · Ē + �0M̄ · H̄� +

1

�0�ep
2 � �P̄

�t
·
�P̄
�t

− �e0
2 P̄ · P̄


+
�0

F�mp
2 � �M̄

�t
·
�M̄
�t

− �m0
2 M̄ · M̄
�I� , �11a�

Ḡ = D̄ � B̄ −
1

�0�ep
2 � P̄ ·

�P̄
�t

−
�0

F�mp
2 � M̄ ·

�M̄
�t

,

�11b�

f̄ = −
�e

�0�ep
2 � P̄ ·

�P̄
�t

−
�m�0

F�mp
2 � M̄ ·

�M̄
�t

. �11c�

The quantities in Eq. �11� define the quantities for the wave
momentum conservation equation analogous to the wave en-

ergy quantities given by Eq. �8�. The momentum density Ḡ

contains the Minkowski �36� momentum D̄� B̄ plus material

dispersion terms. Likewise, the momentum flow T� is the

Maxwell stress tensor 1
2 �D̄ · Ē+ B̄ ·H̄�I�−D̄Ē− B̄H̄ in nondis-

persive media �29,32� plus dispersive terms. We note that the

momentum dissipation term f̄ depends upon the damping

factors �e and �m in Eq. �6�. Thus f̄ =0 in the limiting case of
a lossless, unbounded material �i.e., the momentum of the
electromagnetic wave is conserved�.

C. Average energy and momentum of a monochromatic wave

For the remainder of the paper, we consider the propaga-
tion of time-harmonic electromagnetic waves and employ

complex notation such that the complex field Ē is related to

the time-domain field by Ē=Re�Ēe−i�t. To arrive at various
quantities of interest, the substitutions � /�t→−i� and �

→ ik̄ are made, which are valid for plane wave solutions to
the wave equation �29�. The constitutive parameters,

���� = �0�1 −
�ep

2

�2 − �e0
2 + i��e


 , �12a�

���� = �0�1 −
F�mp

2

�2 − �m0
2 + i��m


 , �12b�

are functions of the frequency � and consist of real and
imaginary parts denoted by �=�R+ i�I and �=�R+ i�I. Like-
wise, the time-average of the squared polarization and mag-
netization are

	P̄	2 =
�0

2�ep
4

��2 − �e0
2 �2 + �e

2�2 	Ē	2, �13a�

	M̄	2 =
F2�mp

4

��2 − �m0
2 �2 + �m

2 �2 	H̄	2. �13b�

Similarly, 	�P̄ /�t	2=�2	P̄	2 and 	�M̄ /�t	2=�2	M̄	2. These
quantities can now be applied to determine the time-average
values relating to energy and momentum conservation given
in the previous section.

The time average energy density found from Eq. �8b� is

�W� =
�0

2
�1 +

�ep
2 ��2 + �e0

2 �
��2 − �e0

2 �2 + �e
2�2�	Ē	2

+
�0

2
�1 +

F�mp
2 ��2 + �m0

2 �
��2 − �m0

2 �2 + �m
2 �2�	H̄	2. �14�

We note that in the lossless case, �e=0 and �m=0 implies
that both �I=0 and �I=0, and the energy density satisfies the
well-known relation �29,32–34�

�W� =
1

4

�����
��

	Ē	2 +
1

4

�����
��

	H̄	2. �15�

Eq. �15� is valid only for lossless media, and its application
to lossy media produces unphysical phenomena such as a
negative energy in LHM. In contrast, the average energy
density in Eq. �14� remains positive for all �. However, it is
the rate of change in energy that appears in the conservation
equation �2a�, which tends to zero upon cycle averaging.
That is, ��W /�t�=0, and the resulting conservation equation

− ��̄ · S̄� =
1

2
���I	Ē	2 + ��I	H̄	2� �16�

is generally regarded as the complex Poynting’s theorem,

where �S̄�= 1
2Re�Ē� H̄* is the time average Poynting power

�29�.
A similar analysis is applied to the wave momentum con-

servation equation. The average momentum density,

�Ḡ� =
1

2
Re�D̄ � B̄* + k̄

�0��ep
2

��2 − �e0
2 �2 + �e

2�2 	Ē	2

+ k̄
�0�F�mp

2

��2 − �m0
2 �2 + �m

2 �2 	H̄	2� , �17�

is obtained from Eq. �11b�. It is simple to show using Eq.
�12� that the average momentum given in Eq. �17� satisfies
Eq. �1� when the medium is lossless. Thus the expression for
the momentum given by Vesselago is valid only when ab-
sorption of electromagnetic energy can be ignored. The mo-
mentum flow reduces to

�T� � =
1

2
Re�1

2
�D̄ · Ē* + B̄ · H̄*�I� − D̄Ē* − B̄H̄*� �18�

since the dispersive terms in Eq. �11a� tend to zero upon
cycle averaging. The momentum flow in Eq. �18� is also
referred to as the Maxwell stress tensor in matter �29,32�.
Since the average rate of change in momentum density is

zero �37� �i.e., ��Ḡ /�t�=0�, the momentum conservation
theorem for a monochromatic wave reduces to
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− ��̄ · T� � =
1

2
Re���IĒ � B̄* − ��IH̄ � D̄* . �19�

The right-hand side of Eq. �19� is recognized as the force
density on free currents �27�, which will be discussed later in
this paper.

It is now possible to study the propagation of electromag-
netic energy and momentum in a dispersive LHM. Consider

an electromagnetic wave Ē= x̂Ex= x̂eikz propagating in an un-
bounded medium with complex index of refraction n+ i�
=kc /�=c���, where c is the speed of light in vacuum. The
magnetic field satisfies the relation ��Hy =��Ex. The analy-
sis is simplified by taking the ratio of the energy flow and
energy density. This ratio �Sz� / �W��ve is generally referred
to as the energy velocity of the wave �33,35�. The ẑ-directed
time-average Poynting power is simply �Sz�= 1

2Re�ExHy
*.

Similarly, a momentum velocity �Tzz� / �Gz��vm may also be
defined �17�. The average momentum flux is

�Tzz� =
1

4
Re��	Ex	2 + �	Hy	2 =

n

c
�Sz� . �20�

It is obvious from Eq. �20� that the momentum flow is anti-
parallel to the energy flow when the index of refraction is
negative. Furthermore, it has been previously argued that the
momentum density �Gz� is also antiparallel to �Sz� when both
n	0 and when absorption is negligible �10�. As an illustra-
tion, the energy velocity and momentum velocity have been
plotted along with the index of refraction for a lossless me-
dium in Fig. 1. Since there is no loss, ve and vm are both
equivalent to the group velocity �29�. In the negative index
region, both �W� and �Sz� are positive while �Gz� and �Tzz�
are negative. This latter point is evident by the fact that vm

0, which implies that �Gz� and �Tzz� have the same sign for
all �. A lossy medium is considered for a second illustration
as shown in Fig. 2. In this example, the energy velocity and
momentum velocity are quite different in the region where
n	0. The energy velocity remains positive since both �W�
and �Sz� are positive. However, the momentum velocity be-
comes negative for part of this region. While the sign of �Tzz�
follows exactly the sign of n via Eq. �20�, the momentum
density �Gz� may be positive or negative in a frequency band
with a negative index of refraction.

The results of this section prove that the momentum den-

sity �Ḡ� may be parallel or antiparallel to the power flow �S̄�
in a lossy LHM. This is in contrast to the results for a loss-
less LHM, where the momentum density is always antipar-
allel to the energy flow �10�. However, the momentum trans-
fer from a monochromatic wave is independent of the
momentum density. Instead, the momentum conservation
equation reduces to Eq. �19�. Thus it is expected that ob-
served forces due to a continuous wave depend upon the
average momentum flow, which, due to the direct depen-
dence upon n shown in Eq. �20�, is opposite the flow of
energy in an LHM. In the following section, this conserva-
tion equation for a monochromatic wave will be applied to
predict the reversal of radiation pressure in LHMs.

III. ELECTROMAGNETIC FORCE

The average force exerted by a monochromatic wave
upon matter is given by the Lorentz force density applied
directly to matter

� f̄� =
1

2
Re��0��̄ · Ē�Ē* + �0��̄ · H̄�H̄*

− i��� − �0�Ē � B̄* + i��� − �0�H̄ � D̄* , �21�

which has been shown to be consistent with the conservation
of free space momentum via numerous examples of lossless
�24,37� and lossy �27� media. Furthermore, the Lorentz force
density can be decomposed into the force on free currents
and the force on bound currents and charges �27�. The total

force density � f̄�= � f̄ b�+ � f̄ c� is separated based on the real
and imaginary contributions to the complex permittivity �
=�R+ i�I and �=�R+ i�i. According to Eq. �19�, the force
density

� f̄ c� =
1

2
Re���IĒ � B̄* − ��IH̄ � D̄* �22�

relates the force density on free currents to the momentum
transfer as the wave attenuates in the medium, and the force
density on bound charges and currents,
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FIG. 1. �a� Normalized energy velocity and momentum velocity
for an electromagnetic wave in a lossless medium. �b� The complex
index of refraction is given by n+ i�=c���, where � and � are
given in Eq. �12�. The triangles clearly show that n and Gz have the
same signs over the entire frequency range. The parameters of the
material are �e0=�m0��0, �ep

2 =F�mp
2 =1.5�0

2, and �e=�m=0.
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FIG. 2. �a� Normalized energy velocity and momentum velocity
for an electromagnetic wave in a lossy medium. �b� The complex
index of refraction is given by n+ i�=c���, where � and � are
given in Eq. �12�. The triangles clearly show the frequency range
where n and Gz have different signs �i.e., sgn�nGz�=−1�. The pa-
rameters of the material are �e0=�m0��0, �ep

2 =F�mp
2 =1.5�0

2, and
�e=�m=0.5�0.
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� f̄ b� =
1

2
Re��0��̄ · Ē�Ē* + �0��̄ · H̄�H̄*

− i���R − �0�Ē � B̄* + i���R − �0�H̄ � D̄* ,

�23�

gives the remaining momentum transfer to the host material.

Therefore the total forces �F̄�, �F̄c�, and �F̄b� resulting from
the total volume integration of the corresponding force den-
sities can be found equivalently, after application of the di-
vergence theorem, by appropriate integration of the Maxwell
stress tensor �27�. In what follows, we apply the force on free
currents and the force on bound currents and charges to de-
termine the electromagnetic momentum transfer to LHMs.

A. Radiation pressure on an LHM interface

The radiation pressure on an LHM interface was previ-
ously calculated by applying momentum conservation at the
boundary separating free space and the material �23�. How-
ever, the momentum transmitted into the LHM was assumed
to be parallel to the Poynting power. In contrast, we derive
the radiation pressure on the interface by applying the Lor-
entz force directly. That is, the force density �22� is applied
to derive the electromagnetic wave momentum transmitted
into a medium occupying the region z
0. The transverse
electric �TE� and transverse magnetic �TM� polarized waves

are treated identically by considering the fields Ē= êE0eik̄·r̄

and H̄= ĥH0eik̄·r̄ transmitted into the medium, where E0 and
H0 are the magnitudes of the electric field and magnetic field

at z=0+, and k̄=kŝ is the complex wave vector. The fields

satisfy the relations ��H̄= k̄� Ē and ��Ē=−k̄� H̄ and the
field solutions are omitted since the details of the reflection
and transmission phenomenon �RT� of an electromagnetic
wave incident onto an LHM interface have been extensively
treated by analytical methods �3,38–40�. Since �
= 	�	exp�i��� and �= 	�	exp�i��� are complex, the phase
propagation direction is determined by the sign of kR, which
is defined by k=kR+ ikI=��	�		�	 exp�i���+��� /2�. Insert-
ing the fields into Eq. �22� and using the relationship ŝ

= k̂ /k= �k̄ /k�* yields

� f̄ c� =
1

2
Re�k̄*��I	Ē	2 + �I	H̄	2� . �24�

By applying Poynting’s theorem �16�, the force density on
free currents �24� is written as

� f̄ c� = −
1

2

k̄R

�
Re��̄ · S̄ � − ŝ

1

2
Re��̄ · p̄ , �25�

where S̄= Ē� H̄* is the complex Poynting power and p̄

�nS̄ /c is the momentum flux density of the wave. Thus the
direction of the force on free currents depends upon the sign
of the index of refraction n=ckR /�.

Transmission of the momentum flux density p̄ ensures
that the tangential force due to RT at the boundary is zero.
To demonstrate this fact, we treat a TE polarized wave

Ē= ŷE0e−kzIzeikzRzeikxx transmitted into the material and inte-
grate the force density on free currents over the region z
� �0,��. The analysis is simplified by applying the diver-
gence theorem to Eq. �25�. Thus the total pressure on free
currents is p̄ evaluated at z=0+, where it is assumed that the
fields attenuate to zero as z→� due to losses. The tangential
component of the resulting force is

x̂ · �F̄c� =
�0

2
	Ei	2�1 − 	Rhs	2�cos i sin i, �26�

where 	Ei	2 is the intensity of the incident wave and i is the
incident angle. In deriving Eq. �26�, we have applied E0
=EiThs and the fundamental relationship between the half-
space reflection coefficient Rhs and transmission coefficient
Ths resulting from the boundary conditions �29�. The fact that
Eq. �26� gives the total tangential momentum transfer to the
half-space �20,27,41� leads to the conclusion that the tangen-

tial component of �F̄b� is identically zero. In fact, it is
straightforward to verify that this is true by integrating Eq.
�23� over z� �0,��. Thus the force on a half-space void of

free currents is normal to the surface. Just as �F̄c� gives the

momentum transfer to free carriers inside the medium, �F̄b�
can be interpreted as the momentum transfer due to RT at the
boundary since it can be computed by the application of the
Maxwell stress tensor along a surface that just encloses the
boundary �24,27�. This view of momentum conservation is
shown in Fig. 3 for the case of �=−�0 and �=−�0 previously
considered �23�. The momentum flux is seen to be in the
opposite direction of the Poynting power and the tangential
projection of the wave momentum is conserved at the inter-
face with an LHM resulting in zero tangential force.

B. Radiation pressure on a slab

A more physically realistic situation of an electromagnetic
wave incident from free space onto an absorbing slab is now
considered. The expression for the radiation pressure �24�

ε0, µ0 ε, µ

k̄R, < p̄ >

< S̄ >

k̄i, < p̄i >

< S̄i >

z = 0 ẑ

x̂

FIG. 3. Average power and momentum flux of a monochromatic
wave refracted at the boundary of free space ��0 ,�0� and a matched
LHM ��=−�0, �=−�0� occupying the region z
0. The incident

power �S̄i� and momentum �p̄� are parallel, while the transmitted

power �S̄� and momentum flux �p̄� are antiparallel.
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�F̄� =
�0

2
	Ei	2�1 + 	Rslab	2 − 	Tslab	2� , �27�

due to a plane wave of intensity 	Ei	2 incident normal to the
surface of a slab occupying the region 0	z	d satisfies the
conservation of free space electromagnetic momentum. The
reflection coefficient Rslab and transmission coefficient Tslab
have well-known closed form solutions �29�. Also, the total
force can be decomposed into the force on bound currents
and the force on free currents.

Figure 4�a� gives an example of momentum transfer to an
absorbing dielectric. In most situations, the observed force is
expected to be the total force �F�, which is always positive.
However, several experiments have been devised to confirm
the dependence of �Fc� upon upon n. Indeed, the photon drag
effect �11,13�, photon recoil in a dilute gas of atoms �14�,
and the deflection of mirrors immersed in dielectric fluids
�12,42� provide experimental evidence that the wave mo-
mentum is directly proportional to the index of refraction in
dielectrics. This is evident in Fig. 4�a� since the force on free
currents is greater than the total force on the slab when the
slab thickness is comparable to or greater than the penetra-
tion depth of the wave. By virtue of linear momentum con-
servation, a negative force on bound currents is required as
shown in Fig. 4�a�. This recoil force is unobserved in most
experiments. However, we believe that one of the earliest
observations of this force was made by Poynting and Barlow.
In an experiment to measure the recoil of light against its
source, Poynting and Barlow measured the deflection of
disks under steady illumination �43�. One of these experi-
ments involving light incident upon the absorbing side of a
disk produced an initial suction. It was explained that the
effect was due to heating of occluded gas from the silver film
on the unilluminated side of the disk causing back pressure
on the film. From the theory presented here, the heated gas
obtained a momentum greater than the incident radiation
pressure due to the absorption of electromagnetic energy in
the disk. However, Poynting and Barlow observed the recoil
force directly, which we explain as the force on bound cur-
rents �Fb�.

A similar situation may be envisioned for an LHM slab as
shown in Fig. 4�b�. As with the dielectric slab in Fig. 4�a�,

the total pressure is always positive. However, the momen-

tum transfer to free currents in LHMs is negative since � f̄ c� is
proportional to n. Therefore as the wave attenuates in an
LHM, the free currents are pulled toward the incident wave,
thus proving that radiation pressure in LHMs is negative. As
required by momentum conservation, the force on bound
currents is positive. Thus while the total force remains posi-
tive, the force on free currents is negative, and the force on
bound currents is positive for an absorbing LHM slab, which
is in contrast to the situation for a RHM slab.

IV. DISCUSSION

We have rigorously treated the momentum transfer to sta-
tionary, isotropic LHMs by applying the classical electro-
magnetic wave theory. Contrary to previous attempts to de-
scribe the momentum of the electromagnetic wave in LHMs,
we have included material dispersion and losses, which are
necessary for a causal medium with negative index of refrac-
tion. In this regard, the standard Lorentz model was em-
ployed for the polarization and magnetization, which is con-
sistent with a previous derivation of the electromagnetic
wave energy �25�. Thus the derived expressions for the mo-
mentum given by Eq. �11� is analogous to the energy of the
wave in Eq. �8�. We recognize that the results in Eqs. �8� and
�11� are open to some interpretation. It is known that while
the mathematical validity of Poynting’s theorem is unques-
tionable, its interpretation is subject to some criticism �31�.
For example, it is certainly possible in many cases to alge-
braically rearrange terms in Eq. �8� so that the energy flow
and energy density take different forms, while the prediction
of measurable quantities such as time-average Poynting
power and energy dissipation remain unaltered. Likewise, we
may assume that the momentum conservation theorem given
by Eq. �11� may also be subject to similar manipulations.
However, the measurable results predicted by the application
of the cycle-average theorems �16� and �19� are unambigu-
ous. Also, the results presented here depend upon the model
used for the material response in the presence of the electro-
magnetic fields. For example, the two time derivative Lor-
entz material model

� �2

�t2 + �m
�

�t
+ �m0

2 
M̄ = ��mp
2 ��

m + �mp��
m �

�t
+ ��

m �2

�t2
H̄
�28�

was previously employed to describe the magnetic response
of an LHM �44�. This model reduces to the standard Lorentz
model for ��

m=��
m=0. Another variation in which ��

m=��
m=0

was recently applied to derive an alternate form of the elec-
tromagnetic energy density in LHMs, and it was acknowl-
edged that this alternate form maps very closely to the result
derived from the standard Lorentz media model �45�. In this
regard, the various models produce equations for the electro-
magnetic wave energy that differ in form, but give similar
quantitative results in the negative index frequency ranges
where the models have overlapping validity. Thus it is ex-
pected that the results for momentum, like the energy, should
remain both qualitatively and quantitatively similar in fre-
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FIG. 4. Radiation pressure of a normally incident wave on an
absorbing slab as a function of thickness d. The radiation pressure is
decomposed into the force on free currents and the force on bound
currents for �a� dielectric slab ��=�0� with index of refraction n
+ i�=4+ i0.04 and �b� LHMs with �= �−1+0.01��0 and �= �−4
+ i0.04��0. The thickness is normalized to the wavelength inside the
material.
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quency bands where multiple models are valid. Furthermore,
we note that the results derived here for momentum and en-
ergy reduce to the known expressions for a single resonance
Lorentz dielectric �17,35�.

We have also shown that the average momentum density
vector of a monochromatic wave may be either parallel or
antiparallel to the average Poynting vector in a material with
negative index of refraction. However, the momentum con-
servation equation given by Eq. �19� depends only upon the
average momentum flow in Eq. �18�. Thus we expect that
any observation of momentum transfer in RHMs or LHMs
due to a monochromatic wave is independent of the details
of dispersion. Furthermore, these results provide a rigorous
derivation of the force on free currents and further validation
of the theoretical separation of force based on the real and
imaginary parts of the permittivity and permeability �27�.
The theory was applied to calculate the radiation pressure on
an infinite half-space and a lossy slab. For the hypothetical
problem of a lossless half-space �i.e., �I=�I=0�, the material
is pulled toward the incident wave when n
1 �24,46� and
pushed when n	1, which includes the negative index re-
gime. We also determined that a slab in vacuum is pushed by
a monochromatic wave regardless of the values for � and �.
This differs from the results previously reported for a finite
pulse �44�, where it was concluded that the pulse attracts a
slab when 0	� ,�	1. It is possible, however, to consider a
slab embedded in a left-handed vacuum �47�, where we make
the replacements �0→−�0 and �0→−�0 for the free space

background. In this case, the slab is pulled toward the inci-
dent wave consistent with the prediction of radiation attrac-
tion by Veselago �10�. Although the results are not shown,
we have also confirmed that the force of a plane wave ex-
erted upon a cylinder �48–52� and upon a sphere �27� is
qualitatively the same in that radiation pressure exists when
n
0 for the background and radiation attraction occurs
when n	0 for the background.

Finally, we may conclude that the theory presented here
attaches fundamental physical meaning to Snell’s law; the
reflected and transmitted wave vectors ensure conservation
of the momentum component which is parallel to the bound-
ary. Likewise, the magnitudes of the reflected and transmit-
ted waves ensure conservation of wave energy at the inter-
face. This assertion holds for LHMs and ensures that no
sheering force exists due to RT at the interface.
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