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Degree of polarization of type-II unpolarized light
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We address a quantitative determination of the degree of polarization of type-II unpolarized light via the

computation of the distance between the polarization distribution and the uniform distribution associated with
fully unpolarized light (i.e., type-I unpolarized light or natural light). We determine the maximum degree of
polarization for type-1I unpolarized light and the states reaching it. We show that the degree of polarization can
be arbitrarily large, approaching complete polarization for increasing mean photon numbers.
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I. INTRODUCTION

The intuitive idea of unpolarized light can be formalized
by postulating specific invariance properties under transfor-
mations. Two classes of unpolarized light have been defined,
types I and II, depending on the set of symmetries actually
satisfied [1-3].

Type-1I unpolarized light satisfies the following properties
[2].

(i) Rotational invariance with respect to the propagation
direction. These rotations can be implemented for example
via optical activity or Faraday effect.

(ii) Symmetry with respect to left- and right-handed cir-
cular polarization. This interchange can be achieved by the
action of half-wave plates.

Type-I unpolarized light (or natural light) corresponds to
the fulfillment, in addition to (i) and (ii), of a further property
[1]:

(iii) Invariance with respect to phase changes between
linearly polarized components. These phase changes can be
implemented by standard phase plates.

For both types I and II the Stokes parameters vanish, so
that they would be both unpolarized according to the classic
criterion, where the degree of polarization is measured in
terms of the length of the three-dimensional vector of Stokes
parameters. This definition is suitable for the thermal-chaotic
fields produced by most light sources, since in such a case
vanishing Stokes parameters are equivalent to natural light.
However, the Stokes parameters are insufficient to properly
assess the amount of polarization for other field states.

In recent years some measures of the degree of polariza-
tion have been proposed to solve this difficulty, in both the
quantum and classical domains [4—6]. It can be seen that the
entropic measures [4,5] are well behaved in the classical
limit and provide essentially equivalent results [5].

In this work we apply the approach in Ref. [5], which is
recalled in Sec. II, measuring the degree of polarization as
the distance between the polarization distribution and the
uniform distribution associated with type-I unpolarized light.
We also recall in Sec. II the definition and main properties of
type-1I unpolarized light. In Sec. III we examine the amount
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of polarization conveyed by type-II unpolarized light, show-
ing that it can be as close as desired to complete polarization
by increasing mean photon numbers. Finally, in Sec. IV we
determine the maximum degree of polarization for type-II
unpolarized light with a fixed number of photons and the
states reaching it.

II. PRELIMINARY MATERIAL

This section recalls the main concepts and definitions re-
quired for the analysis developed in Secs. III and IV.

A. Degree of polarization

Throughout we will assume a monochromatic field de-
scribed by two annihilation operators a, and a_ representing
the complex amplitude of circularly polarized modes. Polar-
ization properties are suitably described by the Stokes opera-
tors

¥

So= a1a+ +ala_, !

_ ¥
S,=a,a_+ala,,

T i

Sy=i(aia+—a1a_), S.=aja,—aa_. (2.1)

Their mean values are the Stokes parameters (S,) and (S).
Complete statistical information about polarization is pro-
vided by the probability distribution on the surface of the
Poincaré sphere. In the quantum domain this role can be
suitably played by the SU(2) Q function [5]

+1

n
41

(n,Qlp

o) =2 n,Q), (2.2)
n=0

where p is the density matrix for the two-mode field state,
n,Q) are the SU(2)-coherent states [7],

n 1/2 m n-m
6 0 )
n,Q)=> <n ) (cos —) (sin —) e \m,n —m),
m 2

m=0 2

(2.3)

and |m,n—m)=|m),|n—m)_ denote the product of photon
number states in the corresponding mode. The points on the
Poincaré sphere will be mostly represented as Q)=(6, ¢),
where 6 and ¢ are the polar and azimuthal angles, respec-
tively, with m=6=0, 27= ¢=0.

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.75.053806

ALFREDO LUIS

It is worth noting that in Eq. (2.2) the matrix elements of
p connecting subspaces of different total photon number n do
not contribute. This is consistent with the fact that in classi-
cal optics polarization and intensity are independent
concepts—i.e., the form of the ellipse described by the elec-
tric vector (polarization) and the size of the ellipse (inten-
sity). This does not exclude that for particular cases, such as
Gaussian field states, some definite relations between them
may arise [8] because of the small number of parameters
characterizing these states.

The degree of polarization of a given field state p can be
measured by the distance between its Q function and the
uniform distribution Q(Q)=1/(4) associated with type-I
unpolarized light [1]

2
D=47rfdQ[Q(Q)—iJ =417JdQQ2(Q)—1,
(2.4)

where dQ)=sin 6dfd ¢ is the differential of the solid angle. It
is worth noting that D is not bounded from above. If a nor-
malized measure were required, we may consider, for ex-
ample,

D 1
P= =1-—, (2.5)
D+1 47D
where
D= f dQ0*(Q) (2.6)

and 1/D is a measure of the effective area of the Poincaré
sphere occupied by Q(Q) [5,9]. This and similar definitions
have been already used as measures of localization, uncer-
tainty, and information in different contexts [9].

The maximum D for fixed n is reached by the SU(2)-
coherent states (2.3) with [5]

2
_ D _nm 27
4m(2n+1) 8w

where the approximation holds for n> 1. For example, for
the SU(2)-coherent state |n),|0)_ located at the north pole 6
=0, the polarization distribution is

n+1 0\
0(Q)= . (cos 5) )

(2.8)

When n>1 this distribution is sharply peaked around 6=0,
so that the following approximation holds:

a

Q~1<1 —>2n~1 ¢/4). (2.9
Q()_477 "3 —4WGXP(—H ), (29

which is consistent with the scaling of D in Eq. (2.7) for n
>1.

B. Type-1I unpolarized light

The Poincaré sphere provides a nice and useful picture of
the transformation properties involved in the idea of type-II

PHYSICAL REVIEW A 75, 053806 (2007)

unpolarized light. Taking into account that the poles repre-
sent circular polarization, the rotation around the axis of
propagation corresponds to the rotation on the sphere around
the axis passing through the poles, ¢— ¢+ ¢, for arbitrary
¢y, which are generated by S.. Therefore, condition (i) im-
plies that Q(2) does not depend on ¢, and, in particular
(8)=(S,)=0. In Hilbert space, condition (i) implies that
[S.,p]=0, so that the density matrix in the number basis
reads

© n

p=> > Pumlm,n—m)m,n —m| + (crossed terms),

n=0 m=0

(2.10)

where “crossed terms” refer to matrix elements between sub-
spaces of different total photon number n#n’, which ac-
cording to Egs. (2.2) and (2.3) do not contribute to Q(€).

On the other hand, the symmetry with respect to circular
polarization means invariance with respect to the transforma-
tion S, ——S.—i.e., — 7— 6—so that Q(2) does not contain
odd powers of cos 6, and, in particular, (S,)=0. In Hilbert
space, the condition (i) implies that p,,=p,,, in Eq.
(2.10).

The vanishing of the three Stokes parameters as a conse-
quence of (i) and (ii) qualifies these states as unpolarized
light according to the classic criterion.

III. DEGREE OF POLARIZATION OF TYPE-II
UNPOLARIZED LIGHT

In this section we measure the degree of polarization for
meaningful and practical examples of type-II unpolarized
light by the computation of D in Eq. (2.6).

A. Classically maximally correlated states

Let us consider the following states p, within a definite
subspace of fixed total number of photons n expressed in the
number basis as

1
pn= 5 (1,0)n,0]+10.1){0,n)), (3.1)

which are clearly of the form (2.10) with p, ,=p, ,_- These
states are incoherent superpositions of two SU(2)-coherent
states located at the poles of the Poincaré sphere with

2n 2n
o) = nS-:TI [(cos g) + (sin g) } (3.2)

leading to

1 (n+1)>2 n!? n
D=— 1+ =— (3.3)
87 2n+1 (2n)! 167
where the approximation holds for n> 1.

We can see that the degree of polarization can be actually
very large, with D —® and P— 1 when n— . Actually, Eq.
(3.3) is just half of the absolute maximum (2.7). This result is
consistent since Eq. (3.2) corresponds to two coherent states
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located at the poles, so that when n>1 they do not overlap
and occupy twice the area of a single coherent state. In Sec.
IV we show that Eq. (3.3) is the maximum D for type-II
unpolarized light with definite total photon number 7.

The states p, are difficult to generate, since they are es-
sentially number states. Nevertheless, there are feasible
states with equivalent polarization properties such as

Pa=>

<)
=n

)
=", — TPnt (crossed terms),
n=0 n!

(3.4)

where |a,0)=|a),|0)_ is the product of quadrature coherent
states a,|a.).=a.|a.), and i=|a|?. This state corresponds to
the random generation of right- and left-handed circularly
polarized light with equal probabilities.

The exact Q(Q)) corresponding to p, is

L S _—~2_‘9>
Q(Q)—Sﬂ_{(rzcos 2+1)exp< 7 sin 5

0 0
+<ﬁ sin2§+ 1>exp(—ﬁ0052 E)}, (3.5)

leading to

(3.6)

These expressions can be suitably approximated in the limit
n>1 as cos(6/2)=1 and sin(0/2) = 6/2 for the first term in
Eq. (3.5) and cos(0/2)=—(6—)/2 and sin(6/2) =1 for the
second, leading to

0(Q) = Si{exp(— 6%14) + exp[— (6 — m)*/4]},
ar
(3.7)

which is fully compatible with the 7> 1 limit of Eq. (3.6):

n

= Ton (3.8)

B. Phase-averaged equatorial-coherent states

Conditions (i) and (ii) are also satisfied by the phase-
averaged equatorial SU(2)-coherent states

_Ljdd, 0=" oW no=".4
pn_27T n, _2’ n, —29

which are the incoherent superposition of all the SU(2)-
coherent states
sphere #=m/2. In the number basis we have

. (39
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15[

3.10
AW (3.10)

which is clearly of the form (2.10) with p, ,=p, ... The
corresponding polarization distribution is

n 2 2m 2n—2m
Q(Q)=n+12<n> (cosg) (sing) .

472" S \m 2 2

(3.11)

We have not been able to derive an exact closed expres-
sion for D. A Gaussian approximation of Q({)) valid for n
>1 can be developed as follows. For n>1 the binomial
coefficient tends to be Gaussian,

n+l
(n ) = L exp{— 2(m—n/Z)Z] ,
n

m N2

(3.12)

and the m sum can be replaced by an integral =,,— [dm,
leading to

/_

o) = — sin” 0exp{ﬁ In (tan2 g)] (3.13)

4\

The distribution (3.11) is sharply located around the equator,
so we can further simplify Eq. (3.13) by approximating the
harmonic functions around 6=/2, leading finally to

r exp[ —(0- 17/2)2] ,

r

0(Q) = (3.14)

which allows us to compute the leading term of D as a func-

tion of n as
[ n
D= 3
327

As in the preceding example the states (3.9) are difficult
to generate. Their feasible counterparts are the products p,p_
of randomly phased mixtures of quadrature-coherent states,
which are the output of a laser well above threshold [10],

(3.15)

1 . .
pi=—— f e *\12) e N2, (3.16)
2

where |e/®\i1/ 2} are quadrature- coherent states in modes j
=+ with complex amplitudes a= e’d’\rn/ 2. The product p,p_
can be expressed as

©

pip_=e"> n—,pn, (3.17)
n=0 1°

where p,, are in Eq. (3.9). For large enough 7> 1 the Poisson

distribution in Eq. (3.17) tends to be sharply peaked around

n=n so that the approximations (3.14) and (3.15) will hold

for the state (3.17) replacing n by 7.

We can appreciate that also in this case we have increas-
ing degree of polarization D— o and P— 1 for increasing
photon numbers n— o, although at a less efficient rate than
the preceding example.
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C. Twin photon number states

Another known field state satisfying conditions (i) and (ii)
is the product of number states with an equal number of
photons in each mode, |n,n)=|n),|n)_. The polarization
properties of these states have been already considered in
Ref. [5], so we just reproduce here the results for the sake of
completeness. The exact polarization distribution and a suit-
able Gaussian approximation valid for n>1 are

2n+1(2n>sin2n0:2L L

=— —e
42%"\ n T VI

o)

(3.18)

leading to

2n+1)? (2n\*(4n\™! n
D=——"— =1/—=. (3.19)
dn(4n+ D\ n ) \2n 87
The feasible practical counterpart of this state is the two-
mode squeezed vacuum state

1 * ﬁ n/2

V1 + =0

&)= (3.20)

where 7 represents the mean number of photons, leading to

o) 1_2( ﬁ_)”2n+1<2n>sin2n .
1+n

14,5 4m2%\ n

(3.21)

which can be suitably approximated for 7>1 by replacing
the n sum by an integral and using the approximation in Eq.
(3.18), so that

\/% 1
O)=— 3.22
o) 471+ (- m2)*P"? (322
and
3 =
D= —\n. 2
64\n (3.23)

The conclusion is that this example also reproduces the
preceding patterns since D—o and P—1 for n, 1— .

IV. MAXIMUM DEGREE OF POLARIZATION FOR
TYPE-II UNPOLARIZED LIGHT

In this section we determine the maximum D allowed for
type-II unpolarized light for fixed total photon number n.
The general form (2.10) for fixed n implies that

[n/2]
() =2 7ynQun(), (4.1)
m=0
where [n/2] denotes the greatest integer less than or equal to
nl2, ppm=2p,, for m#n/2, with p, ,p=p, .n, and

~ 1
Qpm(€)) = E[Qn,m(Q) + Qyn-m( D], (4.2)

where
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n+1
Q,m(Q) = (., 6, plm.n — m)|?
4ar
n+l(n o\ . 6\
= cos = sin — . (4.3)
47 \m 2 2
Therefore

[n/2]
D= 2 Pumbrm f dQ0, (D)0, (Q). (4.4)

m,m' =0

Using the Cauchy-Swartz inequality we get

[n/2]

D= 2 ﬁn,mﬁn,m’ \/f dQérZL,m(Q) f dQ,Qi,mI(Q,)~

m,m’=0

(4.5)

The right-hand side of this equation is bounded from above
by the maximum of [ dﬂéim(ﬂ) when m is varied, where

~ _(n+—1)2<n>2[<2n)_] n!z}
f 400, =0 o\ om) Tt |

(4.6)

We have checked numerically this expression for all values
of n up to n=10°, finding that, with the only exception of
n=2,4, it takes the maximum when m=0, which corre-
sponds to the maximally correlated states (3.1), so that

_ (n+1)? [ n'z]
S8an+ )| o |

4.7)
For n=2,4 the maximum occurs for m=n/2.

V. CONCLUSIONS

We have shown that type-II unpolarized light can attain an
arbitrarily large degree of polarization when this is measured
as the distance between the polarization distribution and the
uniform distribution associated with fully unpolarized light
(type I). This is in sharp contradiction with its name and with
the vanishing of the classic degree of polarization.

The key point for this result is to measure the amount of
polarization in terms of statistical evaluations of polarization
beyond the first moments of the Stokes operators (Stokes
parameters). The classic approach is appropriate for the
thermal-chaotic light produced by most classical light
sources since the first moments determine the whole distri-
bution, but becomes incomplete when applied to other field
states, especially in the quantum domain.

We have applied this approach to somewhat sophisticated
quantum states in Egs. (3.1), (3.9), and (3.20), as well as to
the standard classical-like states in Egs. (3.4) and (3.17),
which are incoherent superpositions of quadrature-coherent
states. Thus it seems that there is no definite relation between
the degree of polarization of type-II unpolarized states and
their potential quantum properties. As a matter of fact,
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type-1I unpolarized light has been also examined from the
perspective of classical optics [3].

It is worth pointing out that the states (3.4) and (3.17) are
classical according to most measures of quantum behavior,
including those based on the positivity of s-ordered quadra-
ture distributions [11,12]. However, the distinction between
quantum and classical light can be rather subtle, in particular
because of the existence of phase-space representations of
quantum states different from s-ordered quadrature distribu-
tions [13]. Concerning polarization, we have shown in Ref.

PHYSICAL REVIEW A 75, 053806 (2007)

[14] that quadrature-coherent states may display nonclassical
polarization properties.
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