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The presence of loss limits the precision of an approach to phase measurement using maximally entangled
states, also referred to as NOON states. A calculation using a simple beam-splitter model of loss shows that, for
all nonzero values L of the loss, phase measurement precision degrades with increasing number N of entangled
photons for N sufficiently large. For L above a critical value of approximately 0.785, phase measurement
precision degrades with increasing N for all values of N. For L near zero, phase measurement precision
improves with increasing N down to a limiting precision of approximately 1.018L radians, attained at N
approximately equal to 2.218/L, and degrades as N increases beyond this value. Phase measurement precision
with multiple measurements and a fixed total number of photons NT is also examined. For L above a critical
value of approximately 0.586, the ratio of phase measurement precision attainable with NOON states to that
attainable by conventional methods using unentangled coherent states degrades with increasing N, the number
of entangled photons employed in a single measurement, for all values of N. For L near zero this ratio is
optimized by using approximately N=1.279/L entangled photons in each measurement, yielding a precision of
approximately 1.340�L /NT radians.
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I. NOON STATES AND THE HEISENBERG LIMIT

The use of entangled states has been proposed �1–15� as a
means of performing phase measurements with a precision
��min at the Heisenberg limit. In this limit, ��min scales as

��min � 1/N , �1�

with increasing photon number N, rather than at the standard
quantum limit

��min � 1/�N . �2�

Entangled-state enhancements to related tasks such as fre-
quency measurement and lithography have also been pro-
posed �16–36�. Experiments implementing phase measure-
ments and related tasks using entangled states have been
performed for the cases of N=2 �37–50�, N=3 �51�, and N
=4 �52�.

Maximally entangled states, also referred to as NOON
states �53�, are states of the form

�N � 0�a,b =
1
�2

��N,0�a,b + �0,N�a,b� , �3�

where

�m,n�a,b = �m�a�n�b, �4�

and where �m�a is a Fock state with m quanta in mode a,

�m�a =
1

�m!
�âa

†�m�0�a, �5�

with âa
† and �0�a the usual creation operator and vacuum state

for mode a. In interferometry, for example, modes a and b
are different paths around the interferometer. The argument

that NOON states allow phase measurement at the Heisen-
berg limit is as follows.

A phase shift of � in mode b changes the state �3� to

�N � 0;��a,b =
1
�2

��N,0�a,b + exp�iN���0,N�a,b� . �6�

The phase � can be determined by measuring the operator
�54,55,51�

ÂN = �0,N�a,b a,b	N,0� + �N,0�a,b a,b	0,N� . �7�

In the state �6�, the expectation value of the operator �7� is

	ÂN�� = a,b	N � 0;��ÂN�N � 0;��a,b = cos�N�� , �8�

and its variance is

Var�ÂN = a,b	N � 0;��ÂN
2 �N � 0;��a,b

− �a,b	N � 0;��ÂN�N � 0;��a,b�2 = sin2�N�� .

�9�

The signal-to-noise ratio �SNR� for detecting a change ��
about a phase value �0 is �56�

SNR = �	ÂN��0+�� − 	ÂN��0
�2/Var�0

ÂN. �10�

Using Eqs. �8� and �9� in Eq. �10�,

SNR = N2����2 �11�

for small phase changes,

���� � 2� . �12�

Defining the minimum detectable phase change ��min to be
that phase change corresponding to an SNR of unity �57�,
Eq. �11� gives

��min = 1/N . �13�
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Phase measurement by this method is thus seen to be at
the Heisenberg limit �1�, with a precision that can be in-
creased arbitrarily by increasing N.

II. NOON-STATE PHASE MEASUREMENT IN THE
PRESENCE OF LOSS

In any real system some photons will inevitably be lost
prior to detection, a feature not represented in the model of
phase measurement described above. Loss can be repre-
sented by including in the model fictitious beam splitters �58�
through which photons in the state �6� pass before being
subjected to the measurement �7�. Having in mind potential
application to laser radar with coherent detection �59�, where
one beam impinges directly on a detector while the other first
suffers loss due to spreading during reflection from a distant
target, we include a single such fictitious beam splitter, in
mode b.

Denote by âb the mode operator at the input port to the
fictitious beam splitter, by âb� the mode operator at the out-
put port of the beam splitter through which photons proceed
to the detector, and by âV the mode operator at the other
input port �vacuum port� of the beam splitter �see Fig. 1�.
These operators are related by �60�

âb� = tâb + râV, �14�

with t and r the respective transmission and reflection coef-
ficients. The loss L which is thus represented is of magnitude

L = 1 − � , �15�

where

� = �t�2. �16�

The detection operator �7� becomes

ÂN� = �0,N�a,b� a,b�
	N,0� + �N,0�a,b� a,b�

	0,N� . �17�

The a mode is unaffected by the presence of the beam split-
ter, and

�0�b = �0�b�, �18�

since the beam splitter does not introduce additional photons
into the system. Using Eq. �4�, �5�, �14�, �17�, and �18�,

ÂN� =
1

�N
��t*âb

† + r*âV
†�N��0,0�a,b a,b	N,0��

+ ��N,0�a,b a,b	0,0���tâb + râV�N� . �19�

The state space is now enlarged to include the fictitious beam
splitter vacuum port mode V, so the state vector must include
a factor of the vacuum state for that mode:

�N � 0;��a,b,V = �N � 0;��a,b�0�V. �20�

Using Eqs. �6�, �16�, �19�, and �20�, and defining

�t = arg t , �21�

we obtain

	ÂN� �� = a,b,V	N � 0;��ÂN� �N � 0;��a,b,V = �N/2 cos�N�� + �t��
�22�

and

Var�ÂN� = a,b,V	N � 0;���ÂN� �2�N � 0;��a,b,V

− �a,b,V	N � 0;��ÂN� �N � 0;��a,b,V�2

=
1

2
�1 + �N� − �N cos2

„N�� + �t�… . �23�

The signal-to-noise ratio for detecting a small change of
phase �� in the presence of loss is, using Eqs. �22� and �23�,

SNR� = �	ÂN� ��0+�� − 	ÂN� ��0
�2/Var�0

ÂN�

=
N2 sin2

„N��0 + �t�…����2

1
2 ��−N + 1� − cos2

„N��0 + �t�…
. �24�

The minimum detectable phase change in the presence of
loss, that value of �� for which SNR� in Eq. �24� is unity, is
therefore

��min� =
� 1

2 ��−N + 1� − cos2
„N��0 + �t�…�1/2

N�sin„N��0 + �t�…�
. �25�

In the absence of loss, i.e., for �=1, Eq. �25� agrees with Eq.
�13�. For fixed ��1 and N, Eq. �25� is minimized for values
of �0+�t such that

N��0 + �t� = �n + 1/2��, n = 0, ± 1, ± 2, . . . . �26�

Since we wish to model pure loss we will take the transmis-
sion coefficient of the fictitious beam splitter to be real, so

�t = 0. �27�

Imposing Eq. �27� and assuming that �0 satisfies Eq. �26�,
Eq. �25� becomes

��min� =
���−N + 1�/2

N
. �28�

This result agrees with that obtained previously by Chen et
al. �61� using a master-equation model of continuous loss

(a) (b)

FIG. 1. Input modes to phase measurement. �a� Without loss. �b�
With loss in one mode, modeled by beam splitter �BS�.
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and entanglement.1 For any nonzero amount of loss, i.e., for
��1, we see from Eq. �28� that

lim
N→�

��min� = � . �29�

III. SMALL-LOSS AND LARGE-LOSS CASES

The behavior of ��min� for varying N and �, as given
exactly in Eq. �28�, is of particular interest in two limiting
cases: very large amounts of loss, L	1, ��1, and very
small amounts of loss, L�1, �	1. The large-loss limit is
relevant for laser radar, while the limit of small loss, on the
other hand, is relevant for precision laboratory experiments
and technological applications.

Consider first the case of large loss. From Eq. �28�,

d��min�

dN
= −

1

N2 ���−N + 1�/2�1/2 −
�−N log �

4N
���−N + 1�/2�−1/2,

�30�

so

lim
�→0

d��min�

dN
=

− log � �N/2

4�2N
, �31�

which for ��1 is strictly positive for all N. So increasing N
can only harm the precision of phase measurement in this
limit, and there is no N for which the detector can provide
useful results satisfying Eq. �12�. See Fig. 2�a�.

In the limit of small loss, as exemplified in Fig. 2�b�, we
can estimate the smallest possible ��min� , and the value of N
at which it is obtained, as follows. From Eq. �28�,

d

dN
log ��min� = −

1

N
−

log �

2��N + 1�
, �32�

so

Nmin��� =
− 2��Nmin��� + 1�

log �
, �33�

where Nmin��� is that N which minimizes ��min� for a given
�. We look for Nmin��� of the form

lim
L→0

Nmin��� =



L
. �34�

Using Eq. �34� in Eq. �33�, we obtain




L
= lim

L→0

− 2��1 − L�
/L + 1�
− L

, �35�

or


 = 2�e−
 + 1� , �36�

which may be solved numerically to obtain


 
 2.218. �37�

Using �34� in Eq. �28�

� lim
L→0

��min� �N=Nmin��� = �L , �38�

where

� = lim
L→0

1



�1

2
��1 − L�−
/L + 1��1/2

=
1



�1

2
�e
 + 1��1/2


 1.018

�39�

using Eq. �37�. For L as large as 0.01 the expressions �34�
and �38� give values within a percent of the exact values
obtained from Eq. �28�.

To find the critical value of loss L=Lc above which ��min�
must be a nondecreasing function of N, we first examine the
cases N=1 and N=2. For ��min� to be smaller at N=2 than at
N=1, we find from Eq. �28� that we must have

� � �c, �40�

where

�c =
�7 − 2

3

 0.215. �41�

From this it follows that, if ��c, then ��min� will not be
smaller than its value at N=2 for any value of N. For if ��min�
were to be smaller for some N�2 than for N=2, it would be
necessary for

d��min�

dN
� 0 �42�

to hold for some value of N�2. Using Eq. �30�, this means
that for some N�2,

log � �
− 2

N
��N + 1� . �43�

But ��c, so Eq. �43� implies

1The model of �61� corresponds to that of the present paper when
the parameters �̄t, �1t, and �2t of the former are set to values of 0,
0, and −log �, respectively.

(a) (b)

FIG. 2. ��min� �curved lines� as a function of N. �a� L=0.99. �b�
L=10−6. Straight lines are the function 1/�2�N, where �=1−L.
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log � �
− 2

N
��c

N + 1� �44�

and

log �c �
− 2

N
��c

N + 1� . �45�

So,

N �
− 2��c

N + 1�
log �c

, �46�

implying

N �
− 2��c + 1�

log �c
�47�

since �c�1 and N�2. Using Eqs. �47� and �41�, we obtain

N 	 1.582, �48�

contradicting the requirement N�2. So ��min� will be a non-
decreasing function of N whenever

L � Lc, �49�

where

Lc = 1 − �c 
 0.785. �50�

IV. COMPARISON WITH UNENTANGLED PHASE
MEASUREMENT; MULTIPLE MEASUREMENTS

For phase estimation with unentangled coherent light and
homodyne or heterodyne detection �58�, we would expect a
precision of � /��N in the presence of loss, where � is inde-
pendent of N and of order unity. No matter how large the
loss, this precision can always be improved by increasing N,
and thus can always surpass the precision attainable with
NOON states and a detector implementing the operator �7�.
�It is conceivable that detectors implementing other measure-
ment operators, with nonvanishing matrix elements between
states other than just linear combinations of �N ,0�a,b and
�0,N�a,b, might be less sensitive to loss while still surpassing
the standard quantum limit �2�, but we have not investigated
this issue here.� If in a particular application with small loss
there is a limit to how large N can be, and if this limit is not
much larger than that given by Eqs. �34� and �37�, then the
use of NOON states with Eq. �7� can lead to precision better
than that attainable with standard techniques. See Fig. 2�b�.

The analysis up to this point has been based on phase
measurements using individual quantum states with N pho-
tons. If the measurements are repeated M times, using M
independent quantum states, the minimum detectable phase
change will decrease by an additional factor of 1 /�M. For
measurement with unentangled coherent-state photons, the
precision will be

��un = �/��NM = �/��NT, �51�

where

NT = NM �52�

is the average total number of photons available. That is, for
phase measurements with unentangled coherent light we ob-
tain the same precision whether we make many measure-
ments with fewer photons per measurement or fewer mea-
surements with more photons per measurement.

For NOON-state photons, the precision after M N-photon
measurements is

��NOON = ��min� /�M =��−N + 1

2NNT
�53�

using Eqs. �28� and �52�, or

��NOON = RNOON/��NT, �54�

where RNOON is, aside from the constant factor �, the ratio of
NOON phase measurement precision to unentangled phase
precision �51� with equal L and NT,

RNOON =����−N + 1�
2N

. �55�

Graphs of RNOON as a function of N are presented in Fig. 3
for L=0.99 and L=10−6.

For fixed NT, ��un is constant, and ��NOON is minimized
by minimizing RNOON as a function of the number N of pho-
tons per NOON state. Denote the minimizing value of N by

Ñmin���. For large loss, L	1, we find from Eq. �55� that

lim
�→0

dRNOON

dN
=

− log ��−��N−1�/2�

8�2N
�56�

which is strictly positive for all N. �See, e.g., Fig. 3�a�.� So

lim
L→1

Ñmin��� = 1, �57�

which with Eq. �53� yields

� lim
L→1

��NOON�N=Ñmin��� = 1/�2�NT. �58�

The phase measurement precision obtainable with NOON
states is thus, in the large-loss limit, the same as that obtain-
able with unentangled coherent states, Eq. �51�, up to a con-
stant factor.

In the complete absence of loss, i.e., for �=1, RNOON
=1/�N and is minimized by making N as large as possible,

(a) (b)

FIG. 3. RNOON as a function of N. �a� L=0.99. �b� L=10−6.
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�Ñmin����L=0 = NT. �59�

That is, for L=0, the greatest precision using the NOON-
state measurement scheme �7� and a fixed total number of
photons NT is obtained by making a single measurement with
all NT photons. Using Eq. �59� and �=1 in Eq. �53�,

���NOON�N=Nmin���,L=0 = 1/NT. �60�

Using �=1 in Eq. �51�,

���un�L=0 = �/�NT. �61�

Comparing Eqs. �60� and �61� we see that, in the absence of
loss, the improvement in phase measurement precision ob-
tained by using NOON states is of order �NT, as expected.

For small loss, �	1, an analysis along the lines of Sec.
III gives

lim
L→0

Ñmin��� =

̃

L
, �62�

where 
̃ is the solution to


̃ = e−
̃ + 1, �63�

which is found numerically to be


̃ 
 1.279. �64�

The corresponding minimum value of ��NOON is

� lim
L→0

��NOON�N=Ñmin��� = �̃�L/NT, �65�

where

�̃ =�e
̃ + 1

2
̃

 1.340. �66�

Comparing Eq. �65� with Eq. �51�, we see that, when L�0,
NOON states give an improvement in phase measurement
precision of order �L.

�In the limit of zero loss, Eq. �62� indicates that RNOON

has a local minimum at Ñmin�1�=�, corresponding according
to Eq. �65� to ��NOON=0. But, of course, N cannot be made
larger than NT, corresponding to the results �59� and �60� in
the lossless case.�

An analysis along the lines of Sec. III shows that RNOON,
and therefore ��NOON for fixed NT, is an increasing function

of N for all L� L̃c, where

L̃c = 2 − �2 
 0.586. �67�

It is not surprising that L̃c is lower than Lc since, in the
multiple-measurement case, increasing N, even when it de-
creases the single-measurement precision ��min� , increases
the factor 1 /�M =�N /NT which enters into ��NOON, Eq.
�53�.
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