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We present a detailed theoretical description of the generation of stationary light pulses by standing-wave
electromagnetically induced transparency in media comprised of stationary atoms such as ultracold gasses and
solids. We show that, contrary to thermal gas media, the achievable storage times are limited only by the
ground state dephasing rate of the atoms, making such media ideally suited for nonlinear optical interactions
between stored pulses. Furthermore, we find significant quantitative and qualitative differences between the
two types of media, which are important for quantum-information processing schemes involving stationary
light pulses.
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I. INTRODUCTION

The coherent transfer of quantum states between light and
atoms has been the subject of much research, both experi-
mentally and theoretically, motivated by potential applica-
tions in quantum computing, quantum cryptography, and
teleportation. While the transfer of quantum states from light
to a single atom can in principle be achieved by cavity QED
techniques �1�, the required strong-coupling regime is ex-
perimentally very difficult to reach. To overcome this diffi-
culty the use of atomic ensembles, rather than single atoms,
has been proposed �2–5� and implemented for storage of
classical light pulses �6,7�, and recently storage of nonclas-
sical pulses has been demonstrated �8,9�. One such light stor-
age scheme is based on electromagnetically induced trans-
parency �EIT� �10� in ensembles of �-type atoms �3�. While
the storage and retrieval of light pulses with this scheme has
been demonstrated utilizing many different types of atomic
ensembles, including Bose-Einstein condensates �6� and
thermal gasses �7�, as well as solid-state media �11,12�, the
nontrivial manipulation of, and interaction between, stored
pulses is hampered by the inherent tradeoff between storage
time and field amplitude. A step towards overcoming this
problem was taken with the suggestion of using standing-
wave fields to create a periodic modulation of either the dis-
persive �13� or the absorptive �14� properties of the medium,
inducing a photonic band gap �15� and creating a stationary
light pulse. Schemes to implement a controlled phase gate
using these techniques have been proposed using either the
dispersive �16� or the absorptive �17� grating technique, but
both are still hampered by a tradeoff between storage time
and field amplitude. For the latter case, only thermal gas
media have been considered, and a detailed theoretical treat-
ment of this case is given in �18�. This theory, however, does
not apply to media comprised of stationary atoms such as
ultracold gasses or solid-state media �19�. In this article we
present a detailed theoretical treatment of the creation of sta-
tionary light pulses by the absorptive grating technique for
media comprised of stationary atoms. We find that the loss of
excitations inherent to the thermal gas case is absent for sta-
tionary atoms, making such media ideally suited for the kind
of nonlinear optical interactions envisaged in �17�. Further-

more, we find interesting quantitative and qualitative differ-
ences between the thermal gas and ultracold gas cases when
quasi-standing-wave coupling fields are considered. These
differences are important for the proposed controlled phase
gate scheme �17� in stationary atom media.

In Sec. II we present a detailed account of our theory of
stationary light pulses in media comprised of stationary at-
oms and compare the results to the thermal gas case. The
theory is complemented in Sec. III by a calculation of non-
adiabatic corrections. A summary of our results is provided
in Sec. IV. The Appendix contains a brief review of the
theory of stationary light pulses in thermal gas media �18�,
reformulated in terms of polariton fields, used for compari-
son with the stationary atom case.

II. STANDING-WAVE POLARITONS IN ENSEMBLES
OF STATIONARY ATOMS

We consider an ensemble of N nonmoving � atoms inter-
acting with probe and coupling lasers propagating parallel to
the z axis. The two lower states �b� and �c� of the atoms �see
Fig. 1� are assumed to be nearly degenerate, such that the
magnitude of the wave vectors of the probe and coupling
lasers can be considered identical �kp�kc=k�.

The Hamiltonian for the N atom problem is

a

b

c

E±
p

Ω±
c

FIG. 1. The three-level � atom. The quantized probe field
couples the ground state �b� to the excited state �a�, while the clas-
sical coupling field couples the metastable state �c� to �a�.
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Ĥ = ĤF + �
j=1

N

�ĤA
j + ĤL

j + ĤV
j � , �1�

where ĤF and ĤA describe the free electromagnetic field and

the atoms, ĤL describes the interaction of the atoms with the

probe and coupling fields, and ĤV describes the interaction
with the vacuum field modes. The individual terms are given
by

ĤF = �
m

��mâm
† âm, �2a�

ĤA
j = ��cb�̂cc

j + ��ab�̂aa
j , �2b�

ĤL
j = − �Êp + Êc� · �dba�̂ba

j + dca�̂ca
j + H.a.� , �2c�

ĤV
j = − ÊV · �dba�̂ba

j + dca�̂ca
j + H.a.� . �2d�

We introduce slowly varying field operators for the electro-
magnetic field. Since we are allowing for standing-wave
fields, we write the field operator as a superposition of two
traveling wave fields propagating in opposite directions,

Êp,c�z,t� =	��p,c

2�0V
ep,cEp,c�z,t�e−i�p,ct + H.c., �3�

where the operators Ep,c are given by

Ep,c�z,t� = Ep,c
+ �z,t�eikz + Ep,c

− �z,t�e−ikz. �4�

The field operators Ep,c
± are the slowly varying field operators

for the forward and backward propagating components of the
probe and coupling fields with carrier frequencies �p,c, and
ep,c are the respective polarization vectors.

We define continuum atomic operators �̂�� by summing
over the individual atoms in a small volume V, and introduce
slowly varying atomic operators ��� defined by

�̂ba = �bae−i�pt, �5a�

�̂ca = �cae−i�ct, �5b�

�̂bc = �bce
−i��p−�c�t. �5c�

Notice that the operators defined by Eq. �5� are slowly vary-
ing in time, but not in space.

The Heisenberg-Langevin equations for these operators in
the rotating-wave approximation are

�̇aa = − i�gpEp
†�ba + �c

*�ca − H.a.� − 	�aa + Faa, �6a�

�̇bb = i�gpEp
†�ba − H.a.� + 	b�aa + Fbb, �6b�

�̇cc = i��c
*�ca − H.a.� + 	c�aa + Fcc, �6c�

�̇ba = i�gpEp��bb − �aa� + �c�bc� − 
ba�ba + Fba, �6d�

�̇ca = i��c��cc − �aa� + gpEp�bc
† � − 
ca�ca + Fca, �6e�

�̇bc = i��c
*�ba − gpEp�ca

† � − 
bc�bc + Fbc, �6f�

where 	=	b+	c is the decay rate of the excited state �a� into
the two lower states. The complex decay rates 
�� are given
by


ba = 	ba − i�p, �7�


ca = 	ca − i�c, �8�


bc = 	bc − i� , �9�

where 	�� are the dephasing rates of the respective coher-
ences, �p,c are the one-photon detunings of the probe and
coupling lasers, respectively, and � is the two-photon detun-
ing. We have also assumed that the coupling field can be
treated as a classical field with Rabi frequency �c given by

�c�z,t� = �c
+�z,t�eikz + �c

−�z,t�e−ikz. �10�

In the following we shall disregard the noise operators F��

since we will be considering the adiabatic limit.

A. Weak probe approximation

In order to solve the propagation problem, we assume that
the probe field is weak compared to the coupling field and
that the probe photon density is small compared to the
atomic density. In this case the Heisenberg-Langevin equa-
tions can be solved perturbatively. To first order in the probe
field amplitude, the relevant Heisenberg-Langevin equations
are

�ba =
1

i�c
*

bc +

�

�t
��bc, �11a�

�bc = −
gpEp

�c
−

i

�c


ba +

�

�t
��ba. �11b�

Combining Eqs. �11� we can obtain a differential equation
for �bc,

�bc = −
gpEp

�c
−

1

�c


ba +

�

�t
�� 1

�c
*

bc +

�

�t
��bc .

�12�

B. Adiabatic limit

In order to solve Eq. �12�, we consider the adiabatic limit
in which the fields vary slowly in time. Introducing a char-
acteristic time scale T of the slowly varying operators, we
expand �bc in powers of �	baT�−1. To zero order we find

�bc = −
gpEp

�c
. �13�

Inserting this expression into Eq. �11a�, we find an expres-
sion for �ba valid in the adiabatic limit

�ba = −
1

i�c
*

bc +

�

�t
�
gpEp

�c
� . �14�

By inserting the field decomposition �4� into the adiabatic
expression for �ba �14� we obtain
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�ba =

− gp

bc +
�

�t
�

i��1 + 2�+��−�cos�2kz + ���

Ep

+eikz + Ep
−e−ikz

�
� ,

�15�

where we have also introduced the time-dependent total Rabi

frequency ��t�=	��c
+�2+ ��c

−�2 and the ratios ±=
�c

±

� , which
are assumed to be constant. The phase angle � is defined by
the relation

+−* = �+��−�ei�. �16�

C. Polariton field

We now introduce a dark-state polariton �DSP� field
analogous to the DSP field defined in �3�,

Ep
±�z,t� = cos ��t��±�z,t� , �17�

where the angle � is given by the total coupling laser Rabi
frequency through

tan ��t� =
gp

	Nr

��t�
. �18�

By inserting the definition �17� of the DSP field into Eq. �15�
we obtain

	Nr�ba =

− 

bc +
�

�t
�

i��1 + 2�+��−�cos�2kz + ���

� �sin ���+eikz + �−e−ikz�� . �19�

To derive wave equations for the components of the DSP
field, we need to expand the optical coherence �ba in spatial
Fourier components. We do this by inserting the Fourier se-
ries

1

1 + y cos x
=

a0

2
+ �

n=1

�

an cos�nx� , �20�

where y=2 �+ � �−� and x=2kz+�, into Eq. �19�. Note that
y�1, which guarantees the existence of the Fourier series
except in the case of a standing-wave coupling field �y=1�.
Fortunately, we can treat this case successfully by consider-
ing the limit y→1 at the end of our calculation.

Inserting the Fourier series into Eq. �19� we find

	Nr�ba =
i

�

a0

2
+ �

n=1

�
an

2
�ein�2kz+�� + e−in�2kz+����

� 

bc +
�

�t
��sin ���+eikz + �−e−ikz�� . �21�

From Eq. �21� we see that �ba can be written as

�ba = �
n=−�

�

�ba
�2n+1�ei�2n+1�kz. �22�

To derive a set of wave equations for the polariton field
components, we need to calculate the components �ba

+1 and

�ba
−1 of the expansion �22� which we label �ba

± for brevity.
These components are given by

	Nr�ba
+ =

i

2�


bc +

�

�t
��sin ��a0�+ + a1ei��−�� ,

�23a�

	Nr�ba
− =

i

2�


bc +

�

�t
��sin ��a0�− + a1e−i��+�� .

�23b�

We see that we only need to calculate the first two Fourier
coefficients a0 and a1 of the expansion �21�. These are given
by

a0 =
1

�
�

−�

� dx

1 + y cos x
=

2
	1 − y2

, �24a�

a1 =
1

�
�

−�

� cos xdx

1 + y cos x
= 2

	1 − y2 − 1

y	1 − y2
. �24b�

Inserting the adiabatic expression �23� for �ba
± into the

wave equations for the probe field components


 �

�t
+ c

�

�z
�Ep

+�z,t� = igpNr�ba
+ �z,t� , �25a�


 �

�t
− c

�

�z
�Ep

−�z,t� = igpNr�ba
− �z,t� , �25b�

we obtain a set of coupled wave equations for the DSP field
components,

��+

�t
+ c cos2 ��

��+

�z
= − sin2 ���
bc�

+ + sei�

bc +
�

�t
��−

− s�̇
cos �

sin �
�y�+ − ei��−� , �26a�

��−

�t
− c cos2 ��

��−

�z
= − sin2 ���
bc�

−

+ se−i�

bc +
�

�t
��+

− s�̇
cos �

sin �
�y�− − e−i��+� ,

�26b�

where we have introduced a new angle �� defined by

tan �� =	a0

2

gp
	Nr

�
=	a0

2
tan � , �27�

as well as the constant

s =
a1

a0
=

	1 − y2 − 1

y
. �28�

Since we are considering the adiabatic limit in which the
coupling field Rabi frequency changes slowly in time, we
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shall neglect the last term on the right-hand side of Eq. �26�
in the following.

D. Low-group-velocity limit

In the experimentally relevant low-group-velocity limit
cos2 ��1, the wave equations �26� take the simpler form



bc +
�

�t
��+ + �+�2vg

��+

�z
= +−*vg

��−

�z
, �29a�



bc +
�

�t
��− − �+�2vg

��−

�z
= − +*−vg

��+

�z
, �29b�

in the case where �+ � � �−�. In the opposite case, �+ �
� �−�, the wave equations are



bc +
�

�t
��+ + �−�2vg

��+

�z
= +−*vg

��−

�z
, �30a�



bc +
�

�t
��− − �−�2vg

��−

�z
= − +*−vg

��+

�z
. �30b�

We have introduced the group velocity vg=c cos2 � in Eqs.
�29� and �30�, and have also made use of the fact that in the
low-group-velocity limit, cos2 ���	1−y2 cos2 �.

E. Initial conditions

We shall consider the same kind of experiment as in �14�
in which a probe pulse, propagating under the influence of a
copropagating traveling-wave coupling field, is stored in the
medium and subsequently retrieved by a standing-wave cou-
pling field with �+ � � �−�.

Assuming that the standing-wave coupling field is
switched on at t=0, we need to find the initial conditions for
the two components of the DSP field �±�z ,0�. The initial
condition for the Raman coherence is

	Nr�bc�z,0� = − ��z,0� , �31�

where ��z ,0� is a known function of z determined by the
DSP field prior to switching on the standing-wave coupling
field. Using Eq. �13� and the definition of the DSP field in the
standing wave case �17�, along with the initial condition
�31�, we obtain

��z,0��+eikz + −e−ikz� = �+�z,0�eikz + �−�z,0�e−ikz.

�32�

From this expression we see that the initial conditions for the
components of the DSP field �±�z ,0� are

�+�z,0� = +��z,0�, �−�z,0� = −��z,0� . �33�

With the initial conditions �33�, we find the solution

�+�z,t� =
+

2
�
1 +

�

�+�2���z − �r�t�,0�

+ 
1 −
�

�+�2���z + �r�t�,0�e−
bct, �34a�

�−�z,t� =
−

2
���z − �r�t�,0� + ��z + �r�t�,0��e−
bct,

�34b�

where �=	�+�2��+�2− �−�2� and r�t�=�0
t c cos2 ��t��dt�.

F. Probe retrieval by a standing-wave coupling field

To determine the solution for a standing-wave coupling
field, we let ±→ 1

	2
in the solution �34�. In this limit we find

the solution

�+�z,t� =
1
	2

��z,0�e−
bct, �35a�

�−�z,t� =
1
	2

��z,0�e−
bct. �35b�

As an example, we take the initial condition for the DSP
field to be ��z ,0�=�0 exp�−�z /Lp�2�, where Lp is the char-
acteristic length of the stored probe pulse. The polariton am-
plitude �0 is related to the initial probe field amplitude E0 by
�0=E0 /cos �0, where �0 is determined by the Rabi fre-
quency of the traveling-wave coupling field prior to storage.

The components of the retrieved probe field found from
Eq. �17� are

Ep
+�z,t� =

1
	2

cos ��t�
cos �0

E0 exp�− �z/Lp�2�e−
bct, �36a�

Ep
−�z,t� =

1
	2

cos ��t�
cos �0

E0 exp�− �z/Lp�2�e−
bct. �36b�

In Fig. 2 we compare the retrieval of an initially stored probe
pulse by a standing-wave coupling field in the thermal gas
and ultracold gas cases. The time dependence of the angle �
is assumed to be given by cos2 ��t�=cos2 �0 tanh�t /Ts� for t
�0, where Ts is the characteristic switching time. For sim-
plicity, we have assumed zero Raman dephasing �
bc=0� and
taken the characteristic length of the stored probe pulse to be

(a) Stationary atoms (b) Thermal gas

FIG. 2. �Color online� Retrieval of a stored probe pulse with a
standing-wave coupling field. The probe field energy density, in

units of
��p

V �E0�2, is plotted for a medium comprised of stationary
atoms �a� and thermal atoms �b� as a function of z in units of the
pulse length Lp, and t in units of the switching time Ts. The absorp-
tion length of the media is taken to be la=0.1�Lp.
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Lp=vg,0Ts, where vg,0=c cos2 �0. The probe field photon den-
sity averaged over many wavelengths �Ep

+�2+ �Ep
−�2, in units of

the photon density prior to storage �E0�2, is plotted as a func-
tion of z in units of Lp and t in units of Ts. In both the
stationary atom case and the thermal gas case we see that the
stored probe pulse is revived into a stationary probe field, but
we note that in the stationary atom case, the diffusive broad-
ening of the probe field, evident in the thermal gas case, is
absent.

The solution for thermal gas media is based on the theory
in �18�, which is reviewed briefly in the Appendix. The me-
dium is characterized by the absorption length in the absence
of EIT la=0.1�Lp, which roughly corresponds to the condi-
tions in �14�.

G. Probe retrieval by a quasi-standing-wave coupling field

We shall now study the situation in which the probe field
is retrieved by a quasi-standing-wave coupling field. In Ref.
�18�, it was shown that in the thermal gas case a quasi-
standing-wave coupling field leads to a drift of the revived
probe pulse in the direction of the stronger of the two cou-
pling field components, see also Eq. �A3� in the appendix.

In the ultracold gas case considered here, we find from the
solution �34� that the revived probe pulse instead splits into
two parts. A stronger part which propagates in the direction
of the stronger of the coupling field components, and a
weaker part which propagates in the opposite direction.

Figure 3 shows the solution �34� with the same initial
conditions as in Fig. 2, but with +=	0.55 and −=	0.45.
Figure 4 compares the retrieval of a stored probe pulse by a
quasi-standing-wave coupling field in thermal and ultracold
gas media. The splitting of the revived probe pulse is clearly
evident in the cold gas case, indicating a qualitative differ-
ence between the thermal gas and the ultracold gas cases.
The cause of this difference is the coupling to the high
spatial-frequency components of the Raman coherence �̂bc in
the ultracold gas case. This splitting of the probe pulse is
very important when considering various schemes for inter-
acting pulses. In the phase-gate proposal of André et al. �17�,
a small imbalance in the two components of the coupling
field is used to propagate a quasistationary light pulse across
a stored excitation in a thermal gas medium. As is evident

from Fig. 4 this scheme would not work in media comprised
of stationary atoms, since a large part of the revived probe
field would then propagate in the wrong direction.

H. Calculation of the Raman coherence

To calculate the Raman coherence of the atoms, we use
the zero-order expression �13� for �bc

	Nr�bc = −
gp

	NrEp

�c
. �37�

By inserting the decompositions of the probe and coupling
fields, as well as the definition �17� of the DSP field, we
obtain

	Nz�bc = − sin �
�+�z,t�eikz + �−�z,t�e−ikz

+eikz + −e−ikz . �38�

Inserting the solution �34� into this expression, we find by a
binomial expansion

	Nz�bc = −
1

2
sin ����z − �r,0� + ��z + �r,0�

+
�

�+�2
���z − �r,0� − ��z + �r,0��

��
n=0

� 
−
−

+�n

e−2inkze−
bct. �39�

From this expression we see that the Raman coherence can
be written as

�bc�z,t� = �
n=−�

�

�bc
�2n��z,t�e2inkz, �40�

where the dc component is

(a) Ψ+(z, t) (b) Ψ−(z, t)

FIG. 3. �Color online� Retrieval of a stored probe pulse with a
quasi-standing-wave coupling field �+=	0.55, −=	0.45�. �a� and
�b� show the polariton amplitudes �± in units of �0 as a function of
z and t, in units of Lp and Ts, respectively.

(a) Cold gas (b) Thermal gas

FIG. 4. �Color online� Retrieval of a stored probe pulse with a
quasi-standing-wave coupling field. The probe field energy density,

in units of
��p

V �E0�2, is shown for both the ultracold gas case �a� and
for the thermal gas case �b� as a function of z and t, in units of Lp

and Ts, respectively. Parameters are the same as in Fig. 3.
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	Nr�bc
�0� = −

1

2
sin ��
1 +

�

�+�2���z − �r�t�,0�

+ 
1 −
�

�+�2���z + �r�t�,0�e−
bct. �41�

For the rapidly varying components of the Raman coherence
we find

	Nr�bc
�−2n� = −

1

2
sin �

�

�+�2
���z − �r�t�,0� − ��z + �r�t�,0��

�
−
−

+�n

e−
bct �42�

and

	Nr�bc
�2n� = 0, �43�

where, in both cases, n�0.
In the case of a perfect standing-wave coupling field, only

the dc component of the Raman coherence is present which
is given by

	Nz�bc
�0��z,t� = − sin ��t���z,0�e−
bct. �44�

In the quasi-standing-wave case, the rapidly varying compo-
nents of the Raman coherence �bc

�2n� with negative values of n
attain a small but nonvanishing value, becoming progres-
sively smaller with decreasing n. The rapidly varying com-
ponents of the Raman coherence with positive values of n all
vanish. An asymmetry in the Raman coherence is to be ex-
pected, since neither the coupling field nor the revived probe
field is symmetric in z.

III. NONADIABATIC CORRECTIONS

In �20� it was shown that the finite length of the probe
pulse leads to a broadening of the pulse envelope due to
dispersion. In this section we shall investigate the same ef-
fect in the standing-wave case and show that the dispersive
broadening vanishes in the case of a pure standing-wave cou-
pling field.

Our starting point is the differential equation �12� for the
Raman coherence �bc. To first order in �	baT�−1 we find

�bc = −
gpEp

�c
+


ba

��c�2
�

�t

gpEp

�c
� , �45�

where we have assumed 
bc=0 to simplify the calculations.
Inserting this expression into Eq. �11a� and introducing the
DSP fields defined in Eq. �17�, we obtain

	Nr�ba =
− sin �

i��1 + 2�+��−�cos�2kz + ���
�

�t
��+eikz + �−e−ikz�

+

ba

gp
2Nr

sin � tan2 �

i��1 + 2�+��−�cos�2kz + ���2

�2

�t2

���+eikz + �−e−ikz� , �46�

where we have assumed that the coupling laser Rabi fre-

quency changes slowly enough to set �̇=0 in the equations.

As in Sec. II we need to find the Fourier components �ba
± .

To do this we apply the Fourier series �20� and we introduce

1

�1 + y cos x�2 =
d0

2
+ �

n=1

�

dn cos�nx� , �47�

where, as before, y=2 �+ � �−� and x=2kz+�. Inserting the
Fourier series into Eq. �46�, we obtain

	Nr�ba
+ =

sin �

2i�

−

�

�t
�a0�+ + a1ei��−�

+

ba

gp
2Nr

tan2 �
�2

�t2 �d0�+ + d1ei��−�� , �48a�

	Nr�ba
− =

sin �

2i�

−

�

�t
�a0�− + a1e−i��+�

+

ba

gp
2Nr

tan2 �
�2

�t2 �d0�− + d1e−i��+�� .

�48b�

The Fourier coefficients a0,1 have already been calculated
and are given by Eq. �24�, while the Fourier coefficients d0,1
are given by

d0 =
1

�
�

−�

� dx

�1 + y cos x�2 =
2

�1 − y2�3/2 , �49a�

d1 =
1

�
�

−�

� cos xdx

�1 + y cos x�2 = −
2y

�1 − y2�3/2 . �49b�

We now insert the expressions �48� into Eq. �25� to obtain a
set of coupled wave equations for the DSP fields

��+

�t
+ c cos2 ��

��+

�z
= − sin2 ���sei���−

�t
−


ba

gp
2Nr

�tan2 �
�2

�t2 �s��+ + s�ei��−� ,

�50a�

��−

�t
− c cos2 ��

��−

�z
= − sin2 ���se−i���+

�t
−


ba

gp
2Nr

�tan2 �
�2

�t2 �s��− + s�e−i��+� ,

�50b�

where we have introduced the constants

s =
a1

a0
, s� =

d0

a0
, s� =

d1

a0
. �51�

Once again we consider the low-group-velocity limit
cos2 ��1. With this approximation the wave equations sim-
plify to
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��+

�t
+ c cos2 ��

��+

�z
= − sei���−

�t
+


ba

gp
2Nr

�tan2 �
�2

�t2 �s��+ + s�ei��−� ,

�52a�

��−

�t
− c cos2 ��

��−

�z
= − se−i���+

�t
+


ba

gp
2Nr

�tan2 �
�2

�t2 �s��− + s�e−i��+� .

�52b�

To the same order of approximation, we can replace the sec-
ond time derivatives of the DSP fields with the second time
derivative of the zero-order solution. Differentiating both
sides of Eq. �52� with respect to t, and discarding derivatives
of order greater than two, we obtain

�2�+

�t2 + c cos2 ��
�

�z

��+

�t
= − sei��2�−

�t2 , �53a�

�2�−

�t2 − c cos2 ��
�

�z

��−

�t
= − se−i��2�+

�t2 , �53b�

where we once again assume that the coupling laser Rabi
frequency changes slowly. Using Eq. �52� we can solve for
the second time derivatives of the DSP field. We find

�2�±

�t2 =
1 − y2

1 − s2 �c cos2 ��2�2�±

�z2 , �54�

where we exploited the fact that in the low-group-velocity
limit cos2 ���	1−y2 cos2 �. Inserting Eq. �54� into Eq. �52�,
and assuming that �+ � � �−�, the coupled-wave equations
take the form

��+

�t
+ �+�2vg

��+

�z

= +−*vg
��−

�z
+

�+�2lavg

	1 − y2

�2

�z2 ��+�2�+ − +−*�−� ,

�55a�

��−

�t
− �+�2vg

��−

�z

= − +*−vg
��+

�z
+

�+�2lavg

	1 − y2

�2

�z2 ��+�2�− − +*−�+� .

�55b�

To solve the coupled-wave equations �55� we proceed by
Fourier transforming with respect to z, such that �±�z , t�
→�̃±�q , t�, and find the solution

�̃+�q,t� =
1

2d
��b�̃−�q,0� − ��+�2 − d��̃+�q,0��exp„iq�+r�t�…

+ ���+�2 + d��̃+�q,0� − b�̃−�q,0��exp„iq�−r�t�…� ,

�56a�

�̃−�q,t� =
1

2d
��− b*�̃+�q,0� + ��+�2 + d��̃−�q,0��

�exp„iq�+r�t�… + �b*�̃+�q,0�

− ��+�2 − d��̃−�q,0��exp„iq�−r�t�…� , �56b�

where

b = +−*�1 − iq��, �± = i�+�2�q ± d , �57�

and

� =
�+�2la

	1 − y2
, �58�

d = 	�+�2��+�2 − �−�2� − �+�2�−�2�2q2. �59�

Inserting the initial conditions �33� for the DSP field and
considering the limit ±→ 1

	2
, corresponding to a pure

standing-wave coupling field, the solution becomes

�+�z,t� =
1
	2

��z,0� , �60a�

�−�z,t� =
1
	2

��z,0� . �60b�

From this solution it is clear that the broadening of the pulse
envelope due to dispersion is absent in the case of a pure
standing-wave coupling field. The effect is present in the
case of a quasi-standing-wave coupling field. If we consider
the limiting case of a traveling-wave coupling field �−

→0�, we find the same dispersion term in the wave equation
�55� that is given in �20�.

IV. SUMMARY

In this article we have presented a detailed theoretical
treatment of stationary light pulses in media comprised of
stationary atoms, such as ultracold gasses and solid-state me-
dia. We found that contrary to the thermal gas case, the
achievable trapping time is limited only by the Raman
dephasing rate of the atoms and such media are thus ideally
suited for the kind of nonlinear optical interactions envisaged
in �16,17�. It was also shown that the behavior of the probe
pulse when employing quasi-stationary-coupling fields is
significantly different for moving and nonmoving atoms.
This fact must be taken into account when considering
schemes for interacting pulses. Although, to the best of our
knowledge, no experiment with stationary light pulses in ul-
tracold media has yet been reported, several experiments on
normal EIT and light storage have been performed with ul-
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tracold gasses �6� and solid-state media �11,12�. These ex-
periments have also demonstrated the possibility of using
beam geometries other than copropagating probe and cou-
pling lasers. We therefore expect that the experimental dem-
onstration of stationary light pulses in such media is within
present day capability.
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APPENDIX: STANDING WAVE POLARITONS
IN THERMAL GASSES

As shown in Sec. II the behavior of the stationary light
pulses depends critically on whether the EIT medium is com-
prised of stationary or moving atoms. In this section we
present a brief review of the theory for the thermal gas case
presented in �18�. It is argued that the motion of the atoms in
a thermal gas causes a rapid dephasing of the spatially rap-
idly varying components of the Raman coherence and it is
therefore assumed that only the n=0 component in the ex-
pansion �40� is nonvanishing. Consequently, the only nonva-
nishing components of the optical coherence in the expan-
sion �22� is the n=−1 and n=0 terms. With this
approximation, the relevant Heisenberg-Langevin equations
for the slowly varying operators are

�̇ba
+ = igpEp

+ + i�c
+�bc − 
ba�ba

+ , �A1a�

�̇ba
− = igpEp

− + i�c
−�bc − 
ba�ba

− , �A1b�

�̇bc = i��c
+*�ba

+ + �c
−*�ba

− � − 
bc�bc. �A1c�

As shown in �18� these equations can be solved approxi-
mately by adiabatically eliminating the optical coherences
�ba

± and making an adiabatic expansion of Eq. �A1c�. The
resulting expressions for the components of the optical co-
herence �ba

± is then inserted into the wave equations �25�.
Contrary to �18�, which deals directly with the probe field
operators Ep

±, we introduce the polariton field defined by Eq.
�17� which enables us to treat time-dependent coupling fields
in a consistent manner. To facilitate the solution of the re-
sulting wave equations, sum and difference normal modes
defined by

�S = +*�+ + −*�−, �A2a�

�D = −�+ − +�−, �A2b�

are introduced. In the case of an optically thick medium, the
difference mode can be adiabatically eliminated, resulting in
a diffusion equation for the sum normal mode

��S

�t
+ ��+�2 − �−�2�c cos2 �

��S

�z

= 4�+�2�−�2lac cos2 �
�2�S

�z2 − 
bc sin2 ��S, �A3�

where we have assumed zero probe field detuning ��p=0�.
The difference normal mode is given by

�D = − 2+−la
��S

�z
. �A4�

The solution of Eq. �A3�, subject to the initial conditions
�33�, is the basis for the comparison between thermal gas
media and stationary atom media presented in Sec. II.
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