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A toroidal trap combined with external time-dependent electric field can be used for implementing different
dynamical regimes of matter waves. In particular, we show that dynamical and stochastic acceleration, local-
ization, and implementation of the Kapitza pendulum can be originated by means of proper choice of the
external force.
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I. INTRODUCTION

Exploring different geometries of potentials trapping cold
condensed atoms is of both fundamental and practical impor-
tance. Toroidal traps play a special role allowing for “infi-
nite” atomic trajectories and for realization of quasi-one-
dimensional �quasi-1D� regimes. These advantages are
relevant for designing highly precise sensors based on matter
wave interferometry �1,2� as well as for accurate study of
such phenomena as superfluid currents, stability of sound
waves, solitons, and vortices in Bose-Einstein condensates
�BECs� �3,4�. Traps with circular geometry are also believed
to be conceptually important for implementation of the main
ideas of the accelerator physics at ultralow temperatures �2�,
and, in particular, for acceleration of ultracold atoms �5�. In
this last context, existence of well localized wave packets
and thus attenuation of the dispersion, the latter being the
intrinsic property of a quantum systems, is of primary impor-
tance. In the first experimental studies �2� it was shown that
the dispersive spreading out �1� can be compensated by using
betatron resonances in a storage ring. An alternative way of
contrabalancing dispersion is also well known—it is nonlin-
earity, leading in quasi-1D regime to existence of bright and
dark matter solitons �see, e.g. �6,7� and �8–10�, respectively�.
This issue has already been explored �11� from the point of
view of acceleration of matter waves in a toroidal trap with
help of a modulated optical lattice, which is known to be an
efficient tool for acceleration of matter waves �12�.

In this paper we propose two alternative ways of acceler-
ating matter wave solitons—either by time varying or by
stochastic external electric field. These new ways of soliton
acceleration are especially relevant in view of radiative
losses �13� and distortions �12� of solitons moving in optical
lattices �the effects acquiring significance for long trajecto-
ries�. At the same time, it turns out that the toroidal geometry
of a trap confining a BEC allows one to realize a number of
other dynamical regimes, like dynamical localization of soli-
tons and solitonic implementation of the celebrated Kapitza
pendulum. Theoretical description of all mentioned phenom-
ena can be observed by using this framework, based on per-
turbation theory for solitons. This is done in the present pa-
per. More specifically, in Sec. II we formulate the model and

the main physical constraints determining its validity. In
Secs. III and IV we describe how by applying external time-
dependent electric field matter solitons can be accelerated in
the usual sense and in the sense of the time increase of the
velocity variance �the stochastic acceleration�, respectively.
In Sec. V we describe localized states of the matter in circu-
lar trap subject to external field, and in Sec. VI we show that
a matter soliton affected by rapidly varying force represents
an example of the Kapitza pendulum �14�. Summary and
discussion of the results are given in the Conclusion.

II. SCALING AND THE EVOLUTION EQUATION

We assume that a BEC is loaded in a circular trap, which
in cylindrical coordinates r= �� ,� ,z� is described by V
=Vc���+m�z

2z2 /2, where �z is the frequency of the magnetic
trap in the z direction, Vc��� is the potential in the radial
direction, forming the trap circular in the �x ,y� plane, and m
is the mass of an atom. We also suppose that the BEC is
subject to external electric field with amplitude E0, which
produces an additional potential Vext=−��E0

2 /4, where �� is
the polarizability of the atoms �see, e.g. �15��. If the ampli-
tude E0 or direction of the field vary along some direction,
say, along the x-axis, smoothly on the scale of the trap radius
R, the potential energy Vext can be expanded in the Taylor
series; after neglecting the nonessential constant, it can be
rewritten in the form Vext=−�x, where �
= ��� /4�� �E0�2 /�x�x=0 and consideration is restricted only to
the first term of the expansion. In order to realize one-
dimensional geometry we require torus radius to be much
larger than the core radius rc, which allows us to define a
small parameter �=rc /R�1. In order to introduce quantita-
tive characteristics, we consider the normalized ground state
� of the eigenvalue problem

−
�2

2m

1

�

d

d�
�

d

d�
� + Vc���� = �r�, �

0

	

�2� d� = 1 �1�

and define R1=�0
	�2�2d�, R2= ��0

	�2d� /��−1/2, and 

= ��0

	�4� d��−1/2. In the case at hand, 
�	Rrc��1/2R, and
thus, 
�R1�R2�R.

In the present paper we are interested in the dynamics of
matter waves in which spatial extension is much less than the
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trap perimeter, allowing us to treat them similarly to the mat-
ter solitons in an infinite one-dimensional trap. This, in par-
ticular is the case where the spatial size of the BEC excita-
tions along the trap are of order of 
, which is the well
defined parameter and thus convenient for formulating the
constraints of the theory. Indeed, now we can estimate the
kinetic energy of the longitudinal excitations as �

=�2 / �2m
2� and require it to be much less than the kinetic
energy of the transverse excitations, �r��2 / �2mrc

2� �for the
sake of simplicity, here, we assume that the size of the trap in
z direction is of order of the core radius, az=	� /m�z�rc�.
Adding the requirement for the energy of the two-body in-
teractions, which is estimated as �g �n �where g=4��2as /m,
as is the scattering length, n�N /V is a mean density, N is
the total number of atoms and V is the effective volume
occupied by the atoms and estimated as V��
rcaz�, to be of
order of �
 and to be much less than �r �or more precisely,
requiring �g �n /�r���, we can neglect in the leading order
the transitions between the transverse energy levels �9,10�,
and employ the multiple scale expansion �6,10� for descrip-
tion of the quasi-one-dimensional evolution of the BEC. We
also notice that subject to the assumptions introduced, one
has the estimate N��3/2R / �8 �as � �.

In order to get an insight on practical numbers, let us
consider 7Li atoms �as=−2 nm� in a trap with R=100 �m,
rc=5 �m, and az=10 �m. Then �=0.05, the characteristic
size of solitonic excitations is 
�22 �m and the number of
particles is estimated as N�140. We emphasize that these
estimates indicate only an order of the parameters. Thus, for
example, a condensate of 102–103 lithium atoms satisfy the
conditions of the theory.

We will be interested in managing soliton dynamics by
means of weak �i.e., not destroying solitons� electromagnetic
field varying in time. Respectively, we consider � time-
dependent and characterized by the estimate �
��2 / �mR1
2�. Then, starting with the Gross-Pitaevskii
equation, in which the external potential in cylindrical coor-
dinates has the form Vext=−�� cos����−�R1 cos���, and
using the multiple-scale expansion, one ensures that the BEC
macroscopic wave function in the leading order allows fac-
torization

 = �−1/4az
−1/2e−i��r+�z�t/2e−z2/2az

2
��r���t,�� , �2�

where �r=2�r /� and ��t ,�� solves the nonlinear
Schrödinger equation, which we write in terms of A
=	�g �m /	2��2az�, �=R2� /
, and �=�t /m
2

i
�A

��
= −

1

2

�2A

��2 − cos����f���A + ��A�2A , �3�

Here �=sgn as, f����mR1
2��t� /�2, and �=
 /R2�	�. We
choose the scaling in such a way that all terms in Eq. �3� are
of the unity order, and in particular A=O�1�. This can be
done, taking into account the normalization

�
0

L

�A�2d� = 2	2�
�as�N
�az

, �4�

L=2� /�, which follows from the normalization condition
for the order parameter ���2d3r=N, and considering N
�az / �as�, which is of order of 103, in a typical experimental
setting. Equation �3� is subject to periodic boundary condi-
tions A�� ,��=A��+L ,��.

III. ACCELERATION OF BRIGHT MATTER SOLITONS
BY TIME-DEPENDENT EXTERNAL FORCE

First we consider the acceleration, �, which can be
achieved due to the potential Ve properly dependent on time.
An order of magnitude of � can be estimated by taking into
account that Eq. �3� makes sense provided that all terms are
of the unity order. In the physical units this gives �
��2 / �m2
3�. Then, recalling the above example of the
lithium condensate we estimate ��7 mm/s2, which is of
order of the acceleration announced in �11�. This, however,
does not provide the best estimate in our case because it is
based on the 1D model, while lowering dimensionality im-
poses constraints on the atomic density and, consequently, on
the amplitude of the applied force.

To describe the physics of the phenomenon we consider a
BEC with a negative scattering length ��=−1�. Then a
“bright soliton” solution of Eq. �3� at f����0 �or, more pre-
cisely, a periodic solution mimicking a bright soliton in an
infinite 1D system� which moves with a constant velocity vn,
can be written down as follows �8�:

As = e−i���k�+vn
2/2��+ivn���k�dn���k��� − vn��,k� . �5�

Here dn�x ,k� is the Jacobi elliptic function �16�, k is the
elliptic modulus parametrizing the solution. The frequency
and the amplitude are given by ��k�= �k2 /2−1��2�k� and
��k�=2K�k� /L �K�k� is the complete elliptic integral of the
first kind�. The velocity of the soliton is quantized vn
=2�n /L with n being the integer.

To ensure that the solution As satisfies the scaling rela-
tions imposed above, we notice that the size of the soliton
can be estimated as � /K�k� and its smallness implies that k
is close to unity. In that case we obtain the estimates

1 − k2 � 16 exp�− 2�/	��

and

dn���k��� − vn��,k� � 1/cosh���k��� − vn��� .

In the limit k→1, quantization of the velocity does not
play a significant role. This was verified numerically. For
example, L=10 deviation of the initial velocity from the
quantized one produces appreciable effect on dynamics dur-
ing intervals ��100 only if k�0.99.

When external force is applied, f����0, the velocity is no
longer preserved, which manifests itself in evolution of the

momentum P= �1/2i��0
L�A�Ā−AĀ�� �here Ā stands for com-

plex conjugation of A� according to the law:
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dP

d�
= − f����

0

L

cos����
� �A�2

��
d� . �6�

The external field, however, does not affect the norm: N
=�0

L �A�2 d�=const. It follows from Eq. �5� that in the adia-
batic approximation the solution of the perturbed equation
�3� can be searched in the form

A = e−i���k�+V���2/2��+iV����� dn„��� − X����,k… , �7�

where V���=dX��� /d� is the time-dependent velocity of the
soliton and X��� is the coordinate of the soliton center. Sub-
stituting Eq. �7� in Eq. �6� and taking into account the parity
of the functions in the integrand as well as the fact that all of
them are periodic with the same period L, we obtain the
equation for the soliton coordinate

d2X

d�2 = − �C�k�f���sin��X� . �8�

Here

C�k� =
K�k�

2�E�k��0

2�

cos���dn2K�k�
�

�,k�d� �9�

and it is taken into account that N=2�E�k�, where E�k� is
the complete elliptic integral of the second kind.

Depending on the choice of the function f���, Eq. �8�
describes different dynamical regimes. Now we are inter-
ested in acceleration which occurs during the rotational
movement of the soliton in the trap �i.e., X is a growing
function�. We illustrate this acceleration using an example of
the simplest steplike dependence f���. To this end we assume
that initially the soliton is centered at X�0�=0 and require
f��� to be a constant f0 for time intervals such that the soliton
coordinates X���� Ip and to be zero for X���� Ip where the
intervals Ip are given by Ip=��p+ 1

2
�L , �p+1�L� with p

=0,1 , . . . . Then, as it is clear, the acceleration of the soliton,
which is given by the right-hand side of Eq. �8�, is positive
for all times. The above requirement introduces natural split-
ting of the temporal axis in the set of intervals Tl
= ��l ,�l+1� �l=0,1 , . . . �, with �0=0, such that f���=0 for �
�T2p and f���= f0 for ��T2p+1 �here X��l�= lL /2�. Thus our
task is to find �l. This can be done by taking into account that
during each of the “odd” intervals T2p+1, Eq. �8� describes
conservative nonlinear oscillator, the solution for which is
well-known. During “even” intervals T2p, the motion is free
�with a constant velocity� which means that the time T2p

necessary for the soliton to cross an interval �pL , �p+ 1
2

�L� is

T2p = �2p+1 − �2p = L/�2v2p� , �10�

where v2p is the velocity in the point pL. During the time
interval T2p+1, the soliton has to cross the interval Ip. From
this condition we obtain

T2p+1 = �2p+2 − �2p+1 =
	2K�	2E0/�H2p+1 + E0��

�	H2p+1 + E0

, �11�

where H2p+1=v2p+1
2 /2+E0 is the energy of the soliton in the

point �p+1/2�L, E0=C�k�f0, and v2p+1=v2p is the soliton

velocity in the same point. At the end of the interval T2p+1
the soliton velocity is given by v2�p+1�=	2�H2p+1+E0�. Thus,
one computes that after p rotations, the soliton acquires the
velocity v2�p+1�, which can be obtained from the recurrent
relation v2�p+1�=	v2p

2 +4C�k�f0.
In Figs. 1�a� and 1�b� we compare the solution obtained

from the perturbation theory Eq. �8�, with numerical simula-
tion of Eq. �3� for f0=0.3. Nevertheless, during the numeri-
cal simulation we used the values for T2p and T2p+1 �Eqs.
�10� and �11��, obtained for the case of adiabatic approxima-
tion. It follows from the results presented that the dashed and
solid lines perfectly match until ��50.0. At larger times ap-
preciable discrepancy appears. It occurs due to failure of the
adiabatic approximation and can be removed by introducing
temporal corrections to T2p and T2p+1. This naturally leads to
an optimization problem, which requires numerical approach
and goes beyond the scope of the present work. Finally we
notice, that for the above example of 7Li condensate the
obtained acceleration is 0.36 mm/s2.

Comparison of �a� and �b� in Fig. 1 shows that for k�1,
quantization of the velocity is not important, which is also
confirmed by the evolution of the solitonic forms depicted in
Figs. 1�c�–1�e�.

IV. STOCHASTIC ACCELERATION OF MATTER
SOLITONS

Now we concentrate on another dynamical regime—on
the stochastic acceleration—where increase of the velocity
of a matter soliton in a toroidal trap is achieved by applying
a fluctuating external field. To this end, holding all condi-
tions of the applicability of the model �3�, we consider the
case of a stochastic force f���, which is a delta-correlated
Gaussian process with characteristics �f����=0 and
�f���f�����=D���−��� �the angular brackets stand for the
stochastic averaging and D is the dispersion�. Now the dy-
namics can be described in terms of the distribution function

P�V,�,�� = ���� − �������V − V����� , �12�

where ������X is the angular coordinate of the soliton,
���� and V��� with explicit time dependence stand for the

FIG. 1. �Color online� The soliton velocity vs time ��a� and �b��
for the parameters k=0.99999, L=10.0, f0=0.3, n=0.43 ��a�, the
nonquantized velocity�, n=1.0 ��b�, the quantized velocity�, and the
forms of the soliton ��c�, �d�, and �e�� in the instants of time indi-
cated in �a�. In �a� and �b� solid and dashed lines represent the
velocity numerically computed from Eqs. �3� and �8�, respectively.
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soliton coordinates obtained from the dynamical equations,
while � and V are considered as independent variables. The
distribution function solves the Fokker-Planck equation,
which is obtained by the standard procedure �see e.g., �17��

�P
��

= − V
�P
��

+ D̃ sin2���
�2P
�V2 . �13�

Here D̃=�4C2�k�D is the diffusion coefficient. Due to the
circular geometry of the trap, Eq. �13� is considered on the
interval −����� with the periodic boundary conditions
P�V ,�−� ,��=P�V ,�+� ,��, with respect to �, and zero
boundary conditions with respect to V :P→0 as V→ ±	.
The normalization condition for the probability density reads
�−	

	 dV �−�
� d� P=1.

Multiplying Eq. �13� by V and �, and integrating over V
and �, one readily obtains that the average velocity and an-
gular position of the soliton are constants, which for the sake
of simplicity will be considered zeros, i.e., �V�=0 and ���
=0. Next, multiplying Eq. �13� by V2, �2, and V�, and per-
forming the integration, one obtains the equations of the sec-
ond momenta. They are not closed and can be written down
as follows

d

d�
�V2� = 2D̃�sin2�� , �14�

d

d�
��2� = 2�V�� , �15�

d

d�
�V�� = − 2��

−	

	

P��,V,��V2 dV + �V2� . �16�

Equation �14� means that the average square velocity is
growing with time, i.e., the soliton undergoes the stochastic
acceleration. The law of the growth of the velocity invari-
ance deviates form the linear, as it would happen for the
Brownian diffusion in the momentum space, which happens
because the diffusion coefficient in the Fokker-Planck equa-
tion �13� is not a constant, but depends on the angular vari-
able. However, due to the diffusion one can expect that the
phase distribution will tend to be homogeneous, i.e., that P
→1/ �2�� as �→	. In this formal limit one obtains that

�V��→0, �sin2��→1/2, and hence �V2�→ D̃�. In other
words, the system �14�–�16�, describes a random walk,
which in the limit of large time, approaches the Brownian
diffusion in the velocity space. In that limit the stochastic
acceleration, which can be defined as �̃=d	�V2� /d�, would
tend to zero according to the law �̃��−1/2.

In order to check the above predictions and reveal other
features of the stochastic dynamics of a soliton in a ring trap,
we solved Eq. �13� numerically, subject to the initial condi-
tion P�V ,� ,0�= �������V��. The results is summarized in
Fig. 2. In Fig. 2�a� one observes the predicted monotonic
growth of the mean velocity with time, which is slightly
different from the linear law. In Fig. 2�b� one can see that the
stochastic acceleration �̃ is a monotonically decreasing func-
tion, which at sufficiently large times tends to zero. In par-

ticular, at ��15, decreasing of the acceleration with time can
be well approximated by the predicted law �̃��−1/2, shown
by dashed curves in Fig. 2�b� �it was verified that �sin2��
�1/2, which is in agreement with the analytical predic-
tions�. Also, Fig. 2�b� shows that the stochastic acceleration
is larger for larger D. The physical explanation of this last
fact is simple: The acceleration is generated by the stochastic
force, whose intensity is determined by the dispersion D.

V. LOCALIZATION OF MATTER INDUCED BY THE
EXTERNAL FIELD

Let us now turn to localized states of matter in a toroidal
trap and concentrate on the states generated by the constant
external electric field, i.e., by f���� f0. Respectively, we
look for stationary solutions of Eq. �3� in the form A
=e−i��A��� and obtain for A��� the equation

−
1

2

d2A
d�2 − f0 cos����A + ��A�2A = �A , �17�

which is subject to periodic boundary conditions A�� ,��
=A��+L ,��.

Several lowest branches of the numerically obtained solu-
tions of Eq. �17� are shown in Fig. 3. The lowest branch
approaches zero at the frequency �0�−0.143 �it is interest-
ing to mention that this frequency coincides with the lowest

FIG. 2. �Color online� �a� The mean square velocity and �b� the
stochastic acceleration �̃ of the soliton vs time for different values
of the dispersion, obtained by numerical integration of Eq. �13� with
parameters L=10.0 and k=0.99999. In �b� dashed lines depict the
approximation of numerical data by the law �̃��−1/2. All axes in �a�
and �b� are represented in logarithmic scale.

FIG. 3. �Color online� The number of bosons N �for the example
of lithium condensate described in the text� vs �a� frequency � and
�b� shapes of the localized modes at �=−0.4 for the case where L
=10.0, f0=0.3, and �=−1.
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gap edge of the spectrum of the Mathieu equation �17� con-
sidered on the whole axis�, where the amplitude of the non-
linear periodic mode is small and it transforms into the linear
periodic Bloch mode at the lowest gap edge. Such behavior
of the branch is similar to that of the strongly localized
modes in a BEC in the optical lattice �18�. The lowest mode
A is localized in the vicinity of �=0 �Fig. 3�b��, i.e., around
the minimum of the effective potential, and that is why such
a mode is stable and can exist even in the linear case, where
the two-body interactions are negligible �here it is important
that we are dealing with periodic boundary conditions�. The
modes of the upper branches—B and D �their typical ex-
amples are shown in Fig. 3�b�� —bifurcate at �*�−0.345.
They are localized at �= ±�, i.e., near the points where the
potential has maxima. As is clear, this is a pure nonlinear
effect and occurs due to delicate balance between the attrac-
tive interactions and repulsive forces of the external poten-
tial. Such balance can easily be destroyed even by an infini-
tesimal perturbation, which allows us to expect instability of
the modes. The mode C represents two local maxima of the
atomic distributions at �=0,�. Similar to the modes B and
D, one can expect it to be unstable, which can be explained
by the existence of local atomic maxima at the maxima of
the potential. By direct numerical solution of Eq. �3� �more
specifically, by perturbing the mode profiles by the factor 1
+0.1 cos�21�� and computing the dynamics until �=1000�
we have verified that, indeed, only the mode A on Fig. 3 is
dynamically stable, while the modes B, C, and D are
unstable.

VI. MATTER SOLITON AS A KAPITZA PENDULUM

As the final example of nontrivial dynamics of a matter
soliton in a toroidal trap we consider dynamical localization
induced by a rapidly oscillating force f���= f0��+cos�����.
In this case the solitonic motion mimics the famous Kapitza
pendulum, which acquires an additional stable point due to
rapid oscillation of the pivot �14�. Assuming that the physical
conditions of the validity of the quasi-1D approximation �3�
hold and that the frequency � is large enough, i.e.,
�2��2C�k�f0, one can perform the standard analysis �see,
e.g. �14��, i.e., look for a solution of Eq. �3� in a form X���
+���� where � is small, �� � � �X�, and rapidly varying, and
provide averaging over rapid oscillations. One then arrives at
equation d2X /d�2=−�U /�X with the effective potential

U = − C�k�f0�� cos��X� + �2C�k�
f0

8�2 cos�2�X�� .

�18�

If condition �2C�k�f0 / �2�2���1 is met, the effective
potential U possesses two stable points: X=0 ��=0� and X
=L /2 ��=��. Thus, it opens the possibility for the new type
of soliton moving around the new stable point. Two typical
trajectories of the soliton, obtained by numerical integration
of Eq. �3�, are presented in Fig. 4. One of the trajectories
displays oscillations around the new equilibrium point, while

the other one shows the large oscillations around the equilib-
rium point �=2� started with the same initial data, but in
the case where �=�, is no longer in equilibrium. The am-
plitude of large oscillations decay with time because of en-
ergy losses of the soliton in the nonconservative system.

VII. CONCLUSIONS

In the present paper we have shown that dynamics of a
matter soliton in a toroidal trap, reproducing one-
dimensional geometry, can be efficiently governed by time
varying external electric field. In particular, such regimes
like dynamical acceleration, stochastic acceleration, localiza-
tion and implementation of the Kapitza pendulum can be
realized by proper choices of the time dependence of the
external force.

Experimental detection of the acceleration can be imple-
mented either by direct imaging of the atomic cloud, which
is well localized in space and has well specified trajectory, or
by measurement of the atomic distribution in the momentum
space displaying shift of the maximum towards higher ki-
netic energies. Alternatively, one can study the evolution of
the atomic cloud releasing from the trap �by switching the
trap off� after some period of accelerating motion. The re-
spective dynamics will be a spreading out cloud whose cen-
ter of mass is moving with the acquired velocity.

The obtained results were based on the one-dimensional
model, although deduced using the multiple-scale method
and thus mathematically controllable. This means that a
number of problems are still left unsolved. One problem is
the limitation on the soliton velocity, and thus acceleration,
introduced by lowering the space dimension, which appears
when the solitonic kinetic energy becomes comparable with
the transverse kinetic energy. Another limitation on the soli-
ton acceleration emerges from velocity quantization when
the radius of the ring trap is not large enough. We also left
for further studies the diversity of localized stationary atomic
distributions supported by the external filed, indicating only
the lowest modes. We thus believe that the richness of the
phenomena which can be observed by simple combination of
the trap geometry and varying external field will stimulate
new experimental and theoretical studies.

FIG. 4. �Color online� The angular coordinate of the soliton
center vs time for the soliton motion affected by the rapidly oscil-
lating external force, obtained numerically from Eq. �3� with pa-
rameters L=10.0, n=0.01, �=−1, f0=0.15, �=2.0, and k
=0.99999.
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