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We analyze the Mott-insulator phases of dipolar bosonic gases placed in neighboring but unconnected
one-dimensional �1D� traps. Whereas for short-range interactions the 1D systems are independent, the non-
local dipole-dipole interaction induces a direct Mott-insulator to pair-superfluid transition which significantly
modifies the boundaries of the lowest Mott-insulator phases. The lowest boundary of the lowest Mott regions
becomes progressively constant as a function of the hopping rate, eventually inverting its slope, leading to a
reentrant configuration which is retained in two dimensions. We discuss the consequences of this effect on the
spatial Mott-insulator plateaux in experiments with additional harmonic confinement, showing that counterin-
tuitively the plateaux may become wider for increasing hopping. Our results are also applicable to nondipolar
boson-boson mixtures.
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I. INTRODUCTION

Strongly correlated atomic gases have recently attracted
rapidly growing attention, mainly motivated by impressive
developments on the manipulation of atoms in optical lat-
tices. When loaded in these lattices, ultracold atoms experi-
ence a periodic potential that resembles that of electrons in
solids, opening fascinating links between the physics of cold
atoms and solid-state physics. In particular, cold bosons re-
stricted to the lowest lattice band can be described by the
Bose-Hubbard model �1�, which presents two different
phases at zero temperature �2�, namely a superfluid phase,
and a gapped incompressible insulator phase known as Mott-
insulator �MI�, characterized by a commensurate occupation
per lattice site. The superfluid to MI transition in cold bosons
in optical lattices was recently observed in a remarkable ex-
periment �3�, in which the gapped nature of the MI excitation
spectrum was clearly demonstrated. The realization of the
MI was indeed possible due to an additional harmonic po-
tential overimposed to the lattice that guaranteed locally the
�otherwise practically impossible� commensurability condi-
tion necessary for the MI. Such inhomogeneous potential
leads to the formation of spatial MI and superfluid shells
�1,4�, which have been observed very recently �5,6�.

Among the various research lines related with optical lat-
tices, the physics of mixtures has attracted a considerable
attention. Bose-Fermi mixtures may lead to a wealth of
phases of fermion composites �7�, and may allow for the
generation and engineering of disorder �8–11�. Bose-Bose
mixtures have also attracted a major interest �12–16�. In par-
ticular, it has been shown �13� that the interspecies interac-
tion may lead to the formation of a pair superfluid �PSF�, i.e.,
a superfluid of boson-boson �or hole-hole� composites,
which occurs in addition to MI phases for both components,
as well as uncorrelated superfluid phases in each one of the
components �2SF�.

Dipolar gases also attract currently a major interest, mo-
tivated by recent experiments on atoms with large magnetic
moment �17�, polar molecules �18�, and Rydberg atoms �19�.
In these gases the long-range and anisotropic dipole-dipole
interactions become significant or even dominant when com-

pared to the short-range isotropic interactions �20�. The
dipole-dipole interactions can play an important role in the
physics of lattice bosons, leading to additional phases, as
checkerboard or supersolid, which may be easily controllable
by manipulating the atomic confinement �21�. In addition,
contrary to short-range interacting gases for which discon-
nected sites �i.e., without hopping between them� are fully
independent, the long-range character of the dipole-dipole
interactions induces a coupling even for unconnected sites.
The latter leads to fundamentally new physics, as e.g., a con-
densate of filaments �22�, quantum phase transitions in bi-
layer systems of polar molecules �23�, or inelastic interlayer
scattering for dipolar solitons �24�.

In this paper, we show that the nonlocal dipole-dipole
interaction induces a direct MI-to-PSF transition for neigh-
boring unconnected one-dimensional �1D� dipolar gases,
which significantly modifies the boundaries of the lowest 1D
MI phases. The same effect is also expected under appropri-
ate conditions for nondipolar boson-boson mixtures. Re-
markably, the lowest boundary of the first MI lobes eventu-
ally inverts its slope as a function of the hopping rate,
leading to a reentrant scenario, which is maintained in two
dimensions �2D�. We show that this effect has direct conse-
quences on the spatial extension of the MI plateaux for the
case of an overimposed harmonic confinement. Counterintu-
itively, we show that the plateaux extension may become
constant or even wider for increasing hopping.

The structure of the paper is as follows. In Sec. II we
describe the physical system under consideration, and the
model and numerical techniques employed. In Sec. III we
present our numerical and analytical results concerning the
phase boundaries of nonlocally coupled one-dimensional
bosons. Section IV is devoted to the analysis of the conse-
quences of the direct MI-to-PSF transition in the spatial ex-
tension of the Mott regions in the presence of an additional
harmonic confinement. Finally, in Sec. V we summarize our
conclusions.

II. MODEL

In the following, we consider dipolar bosons placed at
two neighboring, but disconnected, 1D traps �wires�, which

PHYSICAL REVIEW A 75, 053613 �2007�

1050-2947/2007/75�5�/053613�5� ©2007 The American Physical Society053613-1

http://dx.doi.org/10.1103/PhysRevA.75.053613


can be created using micromagnetic confinement �25� or suf-
ficiently strong 2D optical lattices. In the latter case, the re-
quired two-site configuration may be generated by superlat-
tice techniques or by selectively emptying 1D sites
neighboring the desired pair. Along the 1D systems we as-
sume an additional lattice equal for both 1D traps, which
leads to the ladder configuration shown in Fig. 1. In this
paper, we are mostly concerned about interlayer effects, and
hence we consider a configuration for which only the �attrac-
tive� dipole-dipole interaction between sites at the same rung
plays a significant role. This is the case, when the dipoles are
oriented forming an angle � with the axis of the wires, such
that cos2 �=1/3. Under such conditions, the dipole-dipole
interaction between neighbors at the same wire vanishes,
whereas the dipole-dipole interaction between sites in the
same rung is attractive. There is in principle an additional
nonzero diagonal dipole-dipole interaction between sites in
neighboring rungs belonging to different wires. These terms
can be made negligible by considering the spacing between
rungs, ��1 times larger than the separation between the two
wires. In that case the spurious diagonal interaction is a fac-
tor �1+2�2�� / �1+�2�5/2 ��0.03 for �=3� smaller than that
between sites in the same rung. Of course, for other dipole
and lattice configurations, the dipole-dipole interaction be-
tween sites belonging to the same wire cannot be neglected,
and interesting physics can be expected �26� and will be
studied elsewhere.

Under the previous conditions the system is described by
a Bose-Hubbard Hamiltonian �BHH� of the form

Ĥ = − J �
�=1,2

�
�i,j	


b̂i
���†b̂j

��� + H.c.� − � �
�=1,2

n̂i
���

+
U0

2 �
�=1,2

�
i

n̂i
����n̂i

��� − 1� − �U���
i

n̂i
�1�n̂i

�2�, �1�

where b̂i
���, b̂i

���†, and n̂i
��� are, respectively, the annihilation,

creation, and number operators for the site i at the wire �. J
describes the hopping between neighboring sites i and j in
each wire, U0 the on-site interactions �a combination of
short-range and dipolar contributions �21��, and we consider
the same chemical potential � in both wires. Atoms in sites
at the same rung interact attractively by the dipole-dipole
interaction, which is characterized by a coupling −�U��.

In the following we analyze the effects of the coupling U�
in the physics of the MI phases for the 1D wires. Note that
the Hamiltonian �1� is formally equivalent to the case of two

bosonic species in a 1D array, with equal chemical potential
� for both, equal hopping J, equal on-site intraspecies inter-
actions U0, and an interspecies interaction −�U��. Hence, our
results can be equally applied to boson-boson mixtures under
these constraints. Indeed, as we show below, the PSF phase
introduced in the context of Boson-Boson mixtures �13� is
crucial for the understanding of the physics discussed below.

In our analysis of the ground states of Ĥ, we have em-
ployed matrix-product-state techniques, following closely
the method of Ref. �27�. The matrix-product-state represents
an optimal Ansatz �28� for problems as that of this paper.
Adapted to the two-wire problem, with L sites per wire, this
Ansatz for the many-body wave function is

��	 = �

ni

���=0�

nmax

A
�1�
�n1

�1�,n1
�2��

¯ A
�L�
�nL

�1�,nL
�2���
ni

����	 , �2�

where we consider a maximal number of atoms nmax per site,

and A
�j�
�nj

�1�
,nj

�2�� are D�D matrices, associated to the case of

nj
�1� and nj

�2� atoms at the site j of both wires. The states
�
ni

����	�n1
���

¯nL
���	 denote a particular product state of

Fock states. In the following we focus on the regime of low
average occupation per site around the first MI lobe, and
hence in our calculations it proves enough nmax=2. In addi-
tion, we have checked in our calculations that relatively low
matrix dimensions D=6 describe properly the problem under
consideration �29�. The matrix-product-state Ansatz enor-
mously simplifies the original problem �which scales expo-
nentially with L�, since it has a complexity given by �nmax

+1�D2L. Using a similar approach as that of Ref. �27�, we
developed a numerical algorithm that allows us to recur-

sively adapt the variational parameters A
�s�
�ns

�1�
ns

�2�� until reach-

ing the ground state. This method resembles in many ways
that of finite-size density-matrix-renormalization-group tech-
niques �30�.

III. RESULTS

Figure 2 shows the results of our simulations for the sur-
roundings of the lowest MI lobe �with �ni

1,2	=1� for
�U� � /U0=0 �a�, 1 /4 �b�, 1 /2 �c�, and 3/4 �d�. Note that in
order to avoid collapse in a single site, �U� � �U0. For the
case of U�=0, the usual Mott lobes are recovered �31�. How-
ever, the dependence of the lobe boundaries in the �-J phase
space changes significantly when �U�� grows. Note, in par-
ticular, that the lowest boundary becomes progressively flat-
ter when �U�� approaches U0 /2. Indeed our analytical calcu-
lations �see below� show that for �U� � �U0 /2 the slope of
the lowest boundary of the MI lobe inverts its sign. This
behavior is however difficult to observe in our numerical
calculations due to the very narrow region between the MI
lobe and the region of zero occupation. In the following we
discuss in more detail the physics behind the distortion of the
MI lobes, and the implications of this distortion on the spa-
tial extension of the MI lobes in axially trapped gases.

The boundaries of the MI lobes are provided by the en-
ergy gap between the MI state and the lowest excited state

J
U0

−|U’|

J

FIG. 1. �Color online� Scheme of the system considered in this
paper. Hopping �J� is possible between sites at the same wire. On-
site interactions are described by the coupling constant U0. Interac-
tion between atoms at opposite sites of a rung of the ladder interact
attractively via a coupling constant −�U��.
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conserving the particle number. In an usual �single-
component� Bose-Hubbard Hamiltonian �2� this lowest exci-
tation is provided by particle-hole excitations. The MI
boundaries can then be calculated by a strong-coupling ex-
pansion �SCE� �32�, estimating the energy of a state with an
extra particle and a state with an extra hole. This is indeed
the case of U�=0, where the lowest excitations are given by
uncorrelated particle-hole excitations in both wires. The situ-
ation changes for �U� � �0, since for sufficiently low tunnel-
ing, there is a direct transition between MI and PSF phases,
i.e., superfluid phases of composites �or composite holes�
�13�. In that case the first excitation of the MI lobe is given
by the correlated creation of pairs of particles �or holes� at
opposite sites of the two wires, explaining the qualitative
change in the shape of the lobe boundaries. In particular, a
second-order SCE in J / �U�� �33�, provides the following de-
pendence for sufficiently low tunneling for the lowest bound-
ary of the MI lobe with n0 particles per site,

�

U0
= n0 − 1 +

�U��
U0

�1

2
− n0� − 4� J

U0
�2�n0�n0 + 1�

−
�n0

2 − 1�/2
2 − �U��/U0

−
n0

2U0

�U��
� . �3�

From �3� it becomes clear that for any U��0 the gap bound-
aries are quadratic �and not linear� in J for sufficiently low J.
Interestingly, the lowest boundary of the first MI region �n0

=1� inverts its slope at J=0 for �U���U0 /2, in agreement
with our numerical results. One may also observe that an
inversion of the slope of the lowest boundary is expected
also for n0=2 at �U� � /U0�0.85, but it is not expected for
n0�2.

Although a detailed 2D analysis is beyond the scope of
this paper, and will be the subject of further investigations,
we stress here that the SCE for 2D lattices at unconnected
layers �or equivalently to two-component bosonic gases in
2D lattices� shows that the lowest boundary of the first MI
lobe follows at low J the relation �3� but substituting
2�J /U0�2 by z�J /U0�2, where z is the coordination number.
Hence, the change in the sign of the slope occurs exactly as
for 1D, and thus a reentrant scenario is also expected in 2D.

In our numerical simulations, we revealed the presence

of the pairing phases by monitoring �PSF= ��b̂�1�b̂�2�	
− �b̂�1�	�b̂�2�	� �34�. A typical dependence of �PSF and �b	
= �b�1,2�	 in our simulations is depicted in Fig. 3 for a fixed
chemical potential. The MI region is characterized as that in
which both �PSF= �b	=0. We denote the PSF region as that
in which �PSF�0 but �b	=0. Finally the 2SF region is that
in which �b	�0. Note that there is a finite coexistence region
in which both �PSF�0 and �b	�0. Repeating the calcula-
tions for different chemical potentials we obtain the results
depicted in Fig. 2. Note that, as we mentioned above, a direct
MI-PSF transition can be observed in Fig. 2 at low J /U0,
which results in a clear distortion of the MI boundaries when
compared to the U�=0 case.
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FIG. 2. �Color online� MI lobes as a function of J /U0 and � /U0,
for �U� � /U0=0 �a�, 0.25 �b�, 0.5 �c�, and 0.75 �d�. The calculations
where made for L=12 and D=5. The error bars indicate the change
in the order parameters, ��� �PSF and ��� �b	, from �10−4 to
�10−2.
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IV. SPATIAL MOTT-INSULATOR REGIONS

The qualitative change in the shape of the MI lobe has
important consequences on the spatial extension of the MI
and superfluid regions in the presence of an overimposed
harmonic confinement. In order to analyze this point, we
consider a harmonic trap along the wires, such that a term
	�i,�i2n̂i

��� is added to the Bose-Hubbard Hamiltonian. This
term induces a local chemical potential �i=�0−	i2, where
�0 is the local chemical potential at the trap center. Hence, �i
scans values ���0. If for a given tunneling rate, the system
with �0 is inside the first MI lobe, it is hence expected the

appearance of a MI shell at the trap center, characterized by
a plateau in the average population per site ��n	=1�, sur-
rounded by a second superfluid shell �with �n	�1� �1,4�. For
U�=0, for a fixed chemical potential, it is intuitively ex-
pected that the MI plateau shrinks when J /U0 increases, until
eventually it disappears. Indeed, this is the case, since the
lowest boundary of the MI lobe increases with J, hence de-
creasing the spatial MI region �Fig. 4�a��. However, when
�U�� grows, the change in the slope of the lowest boundary of
the first MI lobe leads to a significant modification of the
spatial extension of the MI plateau. In particular, as shown in
Fig. 4, the basically J-independent lowest MI boundary for
�U� � =U0 /2 leads to a J-independent MI plateau �Fig. 4�c��.
Moreover, for �U� � �U0 /2, the reentrant character of the MI
lobe leads to the anti-intuitive observation, that for enhanced
mobility �J larger� the MI plateaux become even broader
�Fig. 4�d��.

V. CONCLUSIONS

In this paper we have analyzed the physics of dipolar
gases in unconnected neighboring 1D systems. Whereas
without dipolar interactions the 1D systems are independent,
the nonlocal dipole-induced interlayer interaction leads to a
direct MI to PSF transition, significantly distorting the MI
lobes along the wires. In particular, the lowest boundary of
the first MI lobes becomes progressively flatter as a function
of the hopping, inverting eventually its slope, leading to a
reentrant configuration �that remains in 2D�. We have shown
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that such an effect leads to a nontrivial behavior of the MI
plateaux in experiments with an axial harmonic confinement
�5,6�. In particular, the MI plateaux may �for low hopping�
become insensitive to the hopping, or even counterintuitively
grow for larger tunneling. Finally, we would like to stress
that our results also apply to two-component Bose gases,
predicting exciting phenomenology in on-going experiments
in bosonic mixtures in lattices.
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