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We examine single-frequency optical schemes for species-selective trapping of ultracold alkali-metal atoms.
Independently addressing the elements of a binary mixture enables the creation of an optical lattice for one
atomic species with little or no effect on the other. We analyze a “tune-in” scheme, using near-resonant
detuning to create a strong potential for one specific element. A “tune-out” scheme is also developed, in which
the trapping wavelength is chosen to lie between two strong transitions of an alkali-metal atom such that the
induced dipole moment is zero for that species but is nonzero for any other. We compare these schemes by
examining the trap depths and heating rates associated with both. We find that the tune-in scheme is preferable
for Li-Na, Li-K, and K-Na mixtures, while the tune-out scheme is preferable for Li-Cs, K-Rb, Rb-Cs, K-Cs,
and 39K-40K mixtures. Several applications of species-selective optical lattices are explored, including the
creation of a lattice for a single species in the presence of a phononlike background, the tuning of relative
effective mass, and the isothermal increase of phase-space density.
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I. INTRODUCTION

As the field of ultracold atom research enters its adoles-
cence, experiments are increasingly including more than one
element or isotope. Dual-species experiments offer possibili-
ties for creating heteronuclear polar molecules �1�, sympa-
thetic cooling �2–5�, and investigating Bose-Fermi mixtures
�3–6�, which may provide opportunities for studying boson-
mediated superfluid states �7,8�. More recently, experiments
involving up to three atomic species have been implemented
for sympathetic cooling of two fermionic species �9,10�.

Dually degenerate experiments have so far used external
trapping potentials common to both atomic species. A
species-specific trapping potential would add a degree of
freedom to improve sympathetic cooling �11�, tune the effec-
tive mass, or create a lattice for one species in the presence
of a background reservoir. Though careful selection of inter-
nal atomic states can provide differential magnetic trapping,
optical far-off-resonant traps �FORTs� and magnetostatic
traps are not species specific.

Species-selective adiabatic potentials have been proposed
�12� and demonstrated �13� in the case of 87Rb-40K, where
the Landé factors �gF� are distinct. A radio-frequency trans-
verse field can be resonant with only one of the two species,
selectively deforming its dressed potential. Onofrio and co-
workers �11,14� propose using two overlapping FORTs at
frequency detunings far above and below the dominant
ground-state transitions of both species in a two-species mix-
ture. The confinement of each species can be chosen inde-
pendently by individually adjusting the intensity of the two
beams used to create the trap. Unfortunately, neither of these
schemes readily lends itself to a uniform lattice potential
for atoms: the radio-frequency scheme fails because it is
limited to one-dimensional periodic potentials and the two-
frequency balancing because lattice periodicity depends on
wavelength �15�.

In this paper we discuss the generation and application of
species-specific optical lattice potentials. Our motivation is
the strong analogy between atoms in optical lattices and elec-

trons in crystalline solids. Cold bosons in lattice potentials
can be used to explore strongly interacting many-body phys-
ics, such as the superfluid-insulator transition �16,17�. At suf-
ficiently low temperatures, cold fermions in lattices �18,19�
might be able to address open questions about the ground
state of the Hubbard model �20�. Unlike crystal lattices, op-
tical lattices do not support the lattice vibrations responsible
for many physical phenomena. However, phonon mediation
between neutral atomic fermions could arise in the presence
of a condensed bosonic species capable of sustaining
phononlike excitations �7,8,21,22�. Although Bose-Fermi
mixtures were recently loaded into optical lattices �23,24�,
the lattices confined bosons as well as fermions. A lattice-
induced increase in the effective mass of the bosons reduces
the speed of sound in the condensate, and thus the mediating
effects of the phonons. If the fermions were confined in a
lattice without effect on the bosonic cloud, this mediation
would be less inhibited �25�.

We discuss two approaches to species-specific optical po-
tentials, both of which involve only a single frequency of
laser light. The first approach is to tune the laser wavelength
close to the atomic resonance of one species, making its
induced dipole moment much stronger than that of any other
atomic species present. We refer to this strategy as the “tune-
in” �TI� scheme. A second approach exists for elements, such
as alkali metals, with an excited-state fine-structure splitting:
between the resonances of the doublet, a wavelength can be
chosen such that the induced dipole moment is strictly zero.
We refer to this strategy as the “tune-out” �TO� scheme. Both
approaches allow for the creation of a species-specific optical
lattice with a tunable relative potential strength between spe-
cies.

In the following sections we consider the relative merits
of the TI and TO schemes. We focus our attention on Bose-
Fermi combinations throughout, paying special attention to
mixtures including 87Rb �18,26–31�. Section II presents the
methods used to calculate potential energies and heating
rates of atoms in a light field. We present the TI and TO
approaches in Sec. III, and quantify their relative merits. For
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several of the stable alkali-metal isotopes, we calculate the
tune-out wavelengths, scattering and associated heating
rates, and the trapping potentials imposed upon a second
species of alkali-metal atom. Section IV discusses the role of
interactions, both in limiting the distinct addressability of
one species and in allowing thermalization between two spe-
cies. In Sec. V we discuss applications of the species-specific
dipole potentials for cooling, engineering mobility, and add-
ing phonons to optical lattices, before concluding in Sec. VI.

II. METHODS

We consider the light-atom interaction in the limit of a
small excited-state fraction. An electromagnetic field induces
an electric dipole potential on a neutral atom, calculated in
Sec. II A, which can be used as a trapping potential for ul-
tracold atomic samples. We consider the residual effect of
spontaneous emission in Sec. II B.

A. Dipole potential

An atom in a ground state �g� will experience a potential
shift due to coupling by the light field to the excited states
�e�. We calculate the sum of these shifts on each state �g�,
including the counter-rotating term, using second-order per-
turbation theory:

Ug =
1

2�0c
�

e
� 	
e�d · �̂�g�	2

���L − �eg�
−

	
e�d · �̂�g�	2

���L + �eg� �I , �1�

where �L is the laser frequency, ��eg is the energy difference
between �e� and �g�, d is the dipole operator, �̂ is the polar-
ization of the light, and I is the light intensity. In the case of
atoms in a weak magnetic field, we use the matrix elements
defined in the �F ,mF� basis, where F is the total angular
momentum and mF is the magnetic quantum number.

We will consider only alkali-metal atoms, which have two
dominant ns→np transitions due to the fine-structure split-
ting. Using nomenclature established by Fraunhofer for the
3 2S1/2→3 2P1/2 and 3 2S1/2→3 2P3/2 transitions in sodium,
we label the corresponding lines in each of the alkali metals
D1 and D2, respectively. Spin-orbit coupling splits each ex-
cited state by a frequency �FS=�D2

−�D1
, while each ground

and excited state is further split by the hyperfine interaction
�HFS and �HFS� , respectively. The atomic data used for Eq. �1�
are the measured linewidths and line centers of the D1 and
D2 lines, and the ground- and excited-state hyperfine split-
tings �32�.

Transitions to higher excited states ns→ �n+1�p are ne-
glected by our treatment. When detuned within �FS of the
ns→np transition, the relative magnitude of the ns→ �n
+1�p shift is less than 2�10−5 for Cs and 7�10−8 for Li.

As Eq. �1� requires a sum over several states and knowl-
edge of individual matrix elements, it is useful to have an
approximate but simpler expression for Ug. If the detunings
�eg=�L−�eg are small compared to �FS, but large compared
to the excited-state hyperfine splitting �HFS� , an approximate
expression for the dipole shift is �33�

Ug �
�c2�

2�0
3 1 − PgFmF

�1
+

2 + PgFmF

�2
�I , �2�

where P=0, ±1 for � ,	± polarization, respectively, gF is the
Landé factor, �1�2� is the detuning from the D1�2� line, �0

= ��D1
+2�D2

� /3 is the line center weighted by line strength,
and �= ��D1

+�D2
� /2 is the average of the D1 and D2 line-

widths. Since �D2
/�D1

�1+3�FS/�0, one can expect an ac-
curacy between ±7% for Cs and ±0.003% for Li. At small
detunings, we empirically find that Eq. �2� deviates from Eq.
�1� by 
1%for detunings min���1 � , ��2 � � /2��1.5�M GHz,
where M is the mass in atomic units.

As an approximate form, Eq. �2� neglects the counter-
rotating terms. For �� � ��FS, the strength of the counter-
rotating contribution is at most �FS/2�L relative to the con-
tribution of one near-resonant dipole transition. Thus, the
neglected shift is at most −2% for Cs, and −0.001% for Li.

B. Heating rate

Detuning and intensity of optical traps must be chosen
with consideration of the incoherently scattered trapping
light that heats the atoms. For each state �g�, we quantify the
rate of scattering in the low saturation limit,

g = �
e

�e	
e�d · �̂�g�	2

�eg
2 I , �3�

where �e is the natural linewidth of the g→e transition, and
�eg=�L−�eg. The rate of scattering of photons can be con-
verted to an average heating rate Hg= 2

3ERg, where ER
=�2k2 /2m is the recoil energy, k=�L /c, and c is the speed of
light.

III. SPECIES-SPECIFIC DIPOLE TRAPPING SCHEMES

It is not surprising that optical traps can be species spe-
cific, given that optical resonances are unique to atomic ele-
ments and isotopes. However, most species-specific optical
traps, such as magneto-optical traps, are tuned to within a
few linewidths of resonance, which is incompatible with
quantum degenerate ensembles. At low temperatures and
high density, any gain in trap depth close to resonance must
be balanced against the heating due to unwanted light scat-
tering �Sec. II B�.

In the sections below we consider two-species mixtures.
The goal is to apply a dipole force to the “target” species
while inducing as little potential as possible on the second
species, which we will call the “spectator.” We define the
“selectivity” as

� = �Ut

Us
� , �4�

where Ut�s� is the potential induced on the target �spectator�.
As discussed in Sec. II, in the low-saturation limit, both

the induced dipole potential and the heating rate are propor-
tional to intensity. We define the intensity-independent ratio
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s =
Ut

Ht + Hs
�5�

to be the “sustainability,” where Ht�s� is the heating rate of
the target �spectator�. The absolute value of s sets the scale
for the possible trapping time �34�. The laser frequency will
be chosen to maximize both � and �s�.

A. The tune-in scheme

The simplest selective potential is one in which the laser
is tuned close to a resonance of the target �see Fig. 1�. Since
the scattering rate is inversely proportional to the square of
the detuning, we consider only heating of the target such that
sTI→Ut /Ht. Considering Eq. �2� in the limit ��t � � ��s�, a
simple estimate is

sTI �  3�

2ER,t�t
��t. �6�

The choice of detuning �t will depend upon the desired se-
lectivity. Assuming that the spectator is far detuned, �s
���0,t−�0,s� and

�TI �  2�t

3�s

�0,s
3 ��0,t − �0,s�

�0,t
3 � 1

��t�
. �7�

Together, Eqs. �6� and �7� explicitly show the opposing de-
pendence on �t and the necessary trade-off between selectiv-
ity and sustainability.

Table I shows the sustainability for bosonic species as
spectators and fermionic species as targets, calculated using
Eqs. �1� and �3� for tune-in selectivities of 100 and 10. The
inverse scaling predicted by Eqs. �6� and �7� is observed: sTI
drops by approximately a factor of 10 when �TI is increased
by a factor of 10. The product of sTI and �TI in Table I varies
between 22 and 36 s for 6Li mixtures and between 140 and
530 s for 40K mixtures, whereas Eqs. �6� and �7� would pre-
dict ranges of 8–21 s and 64–132 s, respectively, excluding
isotope mixtures from the comparison. Finally, we note that
23Na-40K is the optimal tune-in mixture.

B. The tune-out scheme

The tune-out wavelength scheme exploits the characteris-
tic doublet structure of the alkali-metal atoms. By choosing a
wavelength that lies between the two strongest transitions,
the large negative energy shift of the D2 line is balanced
against the large positive energy shift of the D1 line �see Fig.
1�. This atom becomes a spectator, while any other species
experiences the shift induced by the laser and becomes a
target. Since the potential shift on the spectator can be zero,
the selectivity of the tune-out approach is infinite.

The laser frequency �TO at which Us=0 is determined
numerically using Eq. �1� with all �F ,mF� excited states in
the D1 and D2 manifolds. Table II shows the tune-out wave-
length for all 87Rb ground states with �, linear �35�, 	+, and
	− polarizations. An approximate expression for this wave-
length can be derived from Eq. �2�, giving

�TO = �0 −
1 + PgFmF

3
�FS. �8�

For 87Rb, Eq. �8� predicts tune-out wavelengths of 785.10,
787.54, 790.01, and 792.49 nm for PgFmF=−1, −0.5, 0, and
0.5, respectively. Comparing these values to the results of
Table II, we see that the approximations are accurate to
0.04 nm or better. Equation �8� also gives �TO=�D1

for the
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FIG. 1. Energy shift as a function of wavelength for 87Rb in the
�F ,mF�= �2,2� state, under linear polarization, for 1 mW/cm2. This
general structure will arise for each of the alkali-metal elements,
with the divergences located at the D1 and D2 lines. The tune-in
scheme for a 87Rb target is indicated by the square marker on the
blue-detuned branch of the potential energy curve. The round
marker indicates the position of the tune-out wavelength, where the
energy shift is zero. Here, 87Rb is the spectator.

TABLE I. Sustainability s of two-species mixtures for tune-out and tune-in schemes, in units of seconds,
using Eq. �5�. The second column indicates the selectivity. Rows with �=� are calculated using the TO
scheme while rows with �=100 and �=10 use the TI scheme. For the lighter spectators, the TI scheme has
higher �s�. The heaviest elements and isotope mixtures favor the TO scheme.

Spectator

Target � 7Li 23Na 39K 87Rb 133Cs

6Li � 0.00134 7.77�10−4 −0.0381 −1.20 −8.45

100 2.66�10−5 0.281 0.220 0.239 0.347

10 3.92�10−6 2.54 2.30 2.49 3.57
40K � 4.28�10−7 5.77�10−4 0.188 −9.03 −25.8

100 3.05 5.78 3.64�10−5 0.251 1.39

10 29.2 53.0 4.65�10−4 3.27 18.8

SPECIES-SPECIFIC OPTICAL LATTICES PHYSICAL REVIEW A 75, 053612 �2007�

053612-3



case of PgFmF=1, which is inconsistent with the assumption
that ��1 � ��HFS. In fact, since PgFmF=1 corresponds to a
dark state with respect to the D1 excitation, there is no tune-
out wavelength for this case.

We note that in Table II the tune-out wavelength for linear
polarization is nearly independent of the choice of ground
state, in contrast with the 	+ or 	− polarizations. Given this
independence, we calculate the tune-out wavelengths using
Eq. �1� for several of the common alkali-metal isotopes in
their stretched ground states under linear polarization �Table
III� �36�.

Tables II and III also give the scattering rates per unit
intensity �scattering cross sections� for the spectator species
at the tune-out wavelength. Due to the large dispersion of
fine splitting among the alkali metals, scattering cross sec-
tions vary by over six orders of magnitude. To understand
the implications for trapping, we need to consider the sus-
tainability s of various pairs of atomic species. Table I
shows sTO in the same mixtures for which sTI is calculated.

Spectators with larger scattering cross sections at �TO have
lower sustainability. In addition to these data, we note that
the 133Cs-87Rb spectator-target combination gives the high-
est possible sustainability among alkalis metals in the
tune-out scheme: s=34 s at a tune-out wavelength of �TO
=880.29 nm �not shown in tables�.

As an example, consider making a lattice for 40K only,
leaving 87Rb unaffected by the lattice and confined only by a
background magnetic trap or FORT. If we consider the mix-
ture in a three-dimensional lattice of arbitrary depth, the 40K
potential shift is 1.54�10−5 �K� �I �mW/cm2��; with
beams of 100 �m waist, the potential shift is 98 nK/mW.
For a lattice that is 8ER deep, we find a 87Rb heating rate
of 98 nK/s.

C. Discussion: Tune-in vs tune-out

With the data of Table I, we can evaluate the practicality
of both the tune-in and tune-out schemes for Bose-Fermi
mixtures of neutral alkali-metal atoms. Since the scattering
rate in the tune-out scheme can be smaller for elements with
larger fine-structure splittings, this approach is better suited
to more massive elements �37�. In particular, the tune-in
scheme is preferable for Li-Na, Li-K, and K-Na mixtures,
and for applications requiring selectivity of less than 10:1.
The tune-out scheme is preferable for Li-Cs, K-Rb, and
K-Cs mixtures when the selectivity required is greater than
10:1, and for Li-Rb mixtures at selectivity of greater than
20:1.

An isotope mixture of potassium could be compatible
with the tune-out scheme, where s�100 ms. Isotope-
specific manipulation within a lithium mixture is less practi-
cal due to sustainabilities of 1 ms or less.

Other factors may also influence whether the tune-in or
tune-out approach is preferred. For experiments with time
scales that are slow compared to the thermalization rate �dis-
cussed further in Sec. IV B�, it may be preferable to heat the
minority species and allow for sympathetic cooling. If the
reservoir of spectator atoms is large, the tune-in scheme
might be preferred since extra energy due to near-resonant
heating would be transferred to the reservoir. For experi-
ments on time scales fast compared to the thermalization

TABLE II. Tune-out wavelengths and scattering rates in 87Rb,
for select polarizations and all ground states. Two states have no
tune-out wavelength, because the D1 line has no F=3 excited state.

Polarization �F ,mF�
�TO

�nm�
sc / I

�cm2/mJ�

� �2, ±2� 790.05 9.0�10−6

�2, ±1� 790.06

�2,0� 790.06

�1, ±1� 790.06

�1,0� 790.05

Linear �2, ±2� 790.04 9.1�10−6

�2, ±1� 790.04

�2,0� 790.03

�1, ±1� 790.03

�1,0� 790.04

	− �2,2� 785.14 9.1�10−6

�2,1� 787.59 8.1�10−6

�2,0� 790.06 9.0�10−6

�2,−1� 792.52 14.4�10−6

�2,−2� �none� -

�1,1� 792.53 14.4�10−6

�1,0� 790.06 9.0�10−6

�1,−1� 787.59 8.1�10−6

	+ �2,2� �none� –

�2,1� 792.52 14.4�10−6

�2,0� 790.06 9.0�10−6

�2,−1� 787.59 8.1�10−6

�2,−2� 785.14 9.1�10−6

�1,1� 787.59 8.1�10−6

�1,0� 790.06 9.0�10−6

�1,−1� 792.53 14.4�10−6

TABLE III. Tune-out wavelengths and scattering rates for vari-
ous elements. We have assumed linear polarization and stretched
states and show a comparison of Eqs. �1� and �2�.

Element �F ,mF� �TO �nm�
sc / I

�cm2/mJ�
Eq. �1� Eq. �2�

6Li � 3
2 , 3

2 � 670.99 670.99 2.8
7Li �2,2� 670.97 670.97 2.4
23Na �2,2� 589.56 589.56 2.0�10−3

39K �2,2� 768.95 768.95 1.4�10−4

40K � 9
2 , 9

2 � 768.80 768.80 1.7�10−4

87Rb �2,2� 790.04 790.01 9.1�10−6

133Cs �4,4� 880.29 880.06 1.5�10−6
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rate, the tune-out scheme might be preferred even if s is
smaller, since spectator heating will not affect the target.

Finally, we note that if a third species is included, it will
play a spectator role in the tune-in scheme and a target role
in the tune-out scheme.

D. Lattice confinement effects

In Secs. III A and III C, we have discussed the ratio of
induced potential to heating rate as a local quantity. How-
ever, the spatial dependence of intensity in an optical lattice
means that moving atoms may not sample all laser intensities
uniformly, and the heating rate should be modified accord-
ingly. A more relevant characterization of trapping and dis-
sipation is

sglobal =
Ut

pk


Ht� + 
Hs�
, �9�

where the angular brackets indicate expectation values and
Ut

max is the maximum potential depth of the target. In the
case where only one heating rate dominates, we define a
quantity � to represent the enhancement of sustainability due
to the lattice:

�TO,TI �
sglobal

s
→

I0


I�s,t
, �10�

where the expectation value is taken for the spectator species
in the tune-out case and for the target in the tune-in case. In
a one-dimensional lattice, the intensity is I�x�= I0sin2�kx�,
where k=2� /�L.

For the tune-out scheme, neither the position nor the mo-
tion of the spectator is coupled to the standing wave inten-
sity. We can assume that all intensities are equally sampled
and use the average intensity 
I�s,t= I0 /2 to give �TO=2.

For the tune-in scheme, the target is the species for which
the heating rate is dominant and for which the lattice en-
hancement of the sustainability must be taken into account.
We first consider � in the case of a localized atom. Classi-
cally, we expect deeply bound states of a blue-detuned lattice
to avoid the intensity maxima where incoherent scattering is
high, such that the intensity experienced by the atom is less
than the average. Heating is therefore reduced and �TI is
increased. For an atom localized to a single site by interac-
tions, we can use Wannier states to calculate the expectation
value of the intensity �see Fig. 2�. For lattice depths �
=Ut

pk/ER�1, these states are approximately harmonic oscil-
lator states with oscillator frequencies �ho=2�ERUt /�. In
this case, �TI�2��; in an arbitrary number of dimensions d
the advantage is increased as �TI�2d�d/2 for ��1.

Considering that classical oscillators spend more time at
turning points than at potential minima, blue tune-in lattices
may not always have �TO��TI. For a delocalized q=1.5�k
Bloch function �in the first excited band�, where q is the
quasimomentum, we show � versus � in Fig. 2. For ��10,
confinement effects give �TI�2.

IV. INTERACTIONS BETWEEN SPECIES

A. Mean-field interactions

Interactions between elements may couple the environ-
ment experienced by the target to the spectator, spoiling the
species-specific potential shaping of both schemes. If target
atoms are trapped in a lattice in the presence of a background
spectator species, a periodic interaction potential could arise
for the spectator due to its interaction with the periodically
modulated density of the target. A mean-field approach is
used to make a simple estimate of the magnitude of this
effect. The interaction potential of the spectator due to the
target is given by Uint,s= �4��2ast /�st�nt, where ast is the
scattering length between species, nt is the density of the
target, and �st=2msmt / �ms+mt� is the reduced mass. As
Ut /Uint,s→1, interaction effects begin to degrade selectivity.
Estimating the three-dimensional density of the target at the
center of a single lattice site using the harmonic oscillator
ground state with frequency �ho and assuming one atom per
site, we find an interaction-limited selectivity

�max � � Ut

Uint,s
� =

��st�
1/4

32��ast�mt
3/2ER

1/2 . �11�

In the case of the 6Li-87Rb target-spectator mixture, the
interaction-limited selectivity is �max=3.1�1/4 �31�, while for
the 40K-87Rb target-spectator mixture, it is �max=0.22�1/4. To
be in a regime where interaction effects might be ignored, we
require �max�1, which gives ��0.01 for 6Li-87Rb and
��400 for 40K-87Rb. While for the lithium target this con-
dition is quite reasonable, the large lattice depths required for
potassium would completely localize the atoms to individual
sites and prevent the exploration of interesting tunneling-
driven physics. Overcoming this interaction limitation and
achieving the high selectivity discussed in Sec. III may be
possible by tuning a magnetic field to a value where aRbK
�0 near a Feshbach resonance �38�. For instance, with depth
�=8 and �max
10, the scattering length between species is
limited to �ast � �7.5a0, where a0 is the Bohr radius.

FIG. 2. A standing wave of laser light increases the ratio of
confinement depth to scattering rate, modifying the sustainability s
calculated for uniform intensity. The enhancement �TI is shown as a
function of � �trap depth� for a localized state �solid line�, a q=0
Bloch state in the lowest band, and a q=1.5�k Bloch state in the
first excited band �both dashed�. At high lattice depths, both wave
functions in the lowest band approach the tight-binding limit �dot-
ted line�. For comparison, �TO=2 for all lattice depths.
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Where species selectivity is not the goal, this interaction-
induced periodic potential for a second species could be used
as an alternative lattice potential. Such potentials are non-
sinusoidal, do not involve a Stark shift, and may have a
dynamic structure if target atoms are mobile. The strength of
this induced potential could be controlled through the inter-
action strength, such as at a Feshbach resonance, as de-
scribed above.

B. Inter-species thermalization

An understanding of the thermalization between species is
important when considering heating or cooling in the trap.
The rate at which energy is transferred between the species
will be relevant in setting the time scales on which adiabatic
experiments can take place. Thermometry is also possible if
there is good thermalization between species; a high-density
target could be confined within a species-specific lattice
while the spectator remains extremely dilute and thus at
lower quantum degeneracy, where temperature is more easily
measured. Conversely, thermal isolation could be useful in
shielding one species from the spontaneous heating in the
other.

In the classical limit, the thermalization rate is propor-
tional to the collision rate of the atoms in the trap, given by
coll=n	v, where n is the overlap density, 	 the scattering
cross section, and v the relative velocity between species.
Random collisions act to equilibrate the system and the rate
of rethermalization is therm�coll /2.7 �39�.

For a degenerate mixture of bosons and fermions, the
classical picture of scattering breaks down, and the rate of
thermalization decreases as the fermionic system becomes
more degenerate. An estimate of the sympathetic cooling of a
uniform system in the degenerate regime using the quantum
Boltzmann equations gives the rate of change in the degen-
eracy �40�:

d

dt
 T

TF
� = −

6��3�
�2 coll�  T

TF
�2

, �12�

where coll� = �3/8�nB	vF is the collision rate between spe-
cies, with the scattering cross section 	=4�aBF

2 , Fermi ve-
locity vF=��6�nF�1/3 /mF, ��3��1.202 06, where � is the
Riemann zeta function, and TF is the Fermi temperature.
Though other assumptions �41� of this treatment are not valid
for the systems we consider in this paper, we use this expres-
sion to determine an order of magnitude for the thermaliza-
tion rate.

Taking the boson density nB=1�1014 cm−3, fermion den-
sity nF=1�1013 cm−3, and using the mass for 40K, we cal-
culate that d /dt�T /TF��−350 s−1� �T /TF�2, which gives a
temperature relaxation time of �30 ms at T=0.1TF. This is
an order of magnitude larger than the the classical expecta-
tion for the rethermalization time of �2 ms for particles
moving at the Fermi velocity. Thus, for rapid experiments in
the deeply degenerate regime, thermal contact is essentially
broken, allowing, for instance, the target to be unaffected by
the heating of the reservoir in the tune-out scheme.

V. APPLICATIONS OF SPECIES-SPECIFIC TRAPPING

A. Isothermal phase-space increase

Two-species mixtures can be used to realize various cool-
ing schemes. For example, dark-state cooling by superfluid
immersion is discussed in Ref. �42�. We present two simple
cooling scenarios in which the presence of an uncompressed
spectator allows the target species to be compressed with
negligible temperature increase but significant improvement
in phase-space density. In both cases, target atoms are first
compressed isothermally, spectator atoms are then removed
from the trap, and finally, the target atoms are decompressed
adiabatically.

We consider a species-selective single-well dipole trap
and a species-selective lattice. A closed cycle is described for
both scenarios with atoms beginning and ending in a FORT.
We assume that the heat capacity ratio between spectator and
target is infinitely large, and that thermalization in the spec-
tator and between the spectator and target species is faster
than any other time scale considered. The latter assumption
may restrict fermion cooling to the nondegenerate regime
�see Sec. IV B�.

In the first scenario, schematically represented in Fig. 3, a
single species-specific beam crosses a FORT. Adiabatic cool-
ing reduces the temperature in proportion to the ratio of av-
erage trapping frequencies, that is, Ti /Tf=�i /�f, where i and
f indicate “initial” and “final.” As an example, consider
40K-87Rb and 6Li-87Rb mixtures, confined by a 1064 nm,
500 mW single-beam FORT with a 1/e2 radius of 20 �m
and a corresponding trap-averaged harmonic oscillator fre-
quency �i=2��540 Hz for 40K and �i=2��950 Hz for
6Li. A 500 mW, 50 �m waist beam at �TO �see Table III� is
turned on perpendicular to the FORT to compress the fermi-

FIG. 3. A cooling procedure using species-specific trapping;
one-dimensional trap shape represents three-dimensional trap-
averaged shape. The solid line represents a FORT, the dashed line
the species-specific trap; open circles are the spectator species and
closed circles are the target. �a� Two species are trapped in a FORT;
�b� the species-selective beam is turned on, compressing and heat-
ing the target species; �c� the target species rethermalizes with the
spectator; �d� the spectator is removed; �e� the target is adiabatically
decompressed to a lower temperature and transferred to a FORT.
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ons in a trap with frequency �f=2��3040 Hz for 40K and
�f=2��3810 Hz for lithium. After providing sympathetic
cooling during the compression of the target atoms, the ru-
bidium is ejected from the trap by temporarily removing the
FORT or by using a resonant pulse of light. The species-
specific trap is then adiabatically ramped down and turned
off, leaving the fermions in the FORT approximately 5.7
�4.0� times colder than the initial temperature for potassium
�lithium�. Though this is a modest change in temperature, the
phase-space density in a harmonic trap is proportional to the
inverse cube of the temperature, and increasing by a factor of
180 for potassium and a factor of 60 for lithium.

In the second scenario, we consider a three-dimensional
lattice created by the tune-out wavelength �43�. The target-
specific lattice is ramped up until peak lattice intensity is
reached. The spectator is evaporatively cooled and ejected by
reducing the spectator trap depth. The lattice is then ramped
back down isentropically, leaving the target in the initial trap
with an entropy and temperature limited by the “plateau en-
tropy” discussed in �44�. As shown there, a target of fermions
with unity filling has an entropy plateau of zero, which
would suggest no lower limit to the achievable temperature.

An important limitation of these schemes will be the com-
petition between adiabaticity and heating. For an ideal gas,
the condition of adiabaticity requires any changes to take
place in times longer than the inverse of the smallest trap
frequency. Using the numbers given in the 40K-87Rb example
of the crossed dipole trap in the tune-out scheme, we find
that adiabaticity requires a relaxation time of 35 ms, at an
intensity of 3.5�107 mW/cm2, yielding a heating of 1.3 �K
during this time, which sets a lower bound for the tempera-
ture attainable in this scheme. Another possible limitation of
the cooling schemes is the interspecies thermalization, which
limits the speed of the isothermal step �see discussion in Sec.
IV B�.

B. Phonons

Unlike crystal lattices of solids, optical lattices do not
support phonons. Since these quasiparticles play a leading
role in the physics of condensed matter, it is of interest to
introduce phononlike excitations into a system of ultracold
atoms in an optical lattice. The boson-mediated interaction
between fermions has been studied in both uniform
�7,8,21,22� and lattice systems �25,45,46�. Little theoretical
work has been done on a system in which only the fermions
are confined to the lattice �47�. Here, the background bosons
are free to interact with the fermions and with one another. If
the bosons are degenerate, the condensate can sustain
phononlike excitations and allow for boson-mediated inter-
actions between fermions on spatially separated lattice sites.

For the phonons in the condensate to play a role in medi-
ating interactions, their spatial extent must exceed the lattice
spacing. The healing length of a uniform Bose condensate,
�= �8na�−1/2 where n is the condensate density and a is the
scattering length between species, sets the relevant length
scale. Species-specific trapping allows the superfluid bosons
to remain at low density while fermions are tightly bound in
the lattice, thereby maximizing the range of the mediated

interaction. A finite selectivity does not prevent mediation of
interactions, since the bosons remain superfluid at depths less
than the Mott-insulator superfluid transition �17�, permitting
both tune-in and tune-out schemes to be used for this appli-
cation.

C. Effective-mass tuning

An optical lattice can be used to change the effective mass
of the atoms in it, allowing for the tuning of experimental
parameters including interaction strength �48� and tunneling
rate �49�, which can be used, for example, to explore differ-
ent regimes of collective dynamics �50�. The effective mass
of a wave packet centered at quasimomentum qc is

m*�qc� = �d2E

dq2�
qc

−1

, �13�

where E�q� is the band energy. Figure 4�a� shows the effec-
tive mass for qc=0 and 0.5�k in a one-dimensional optical
lattice potential U�x�=Upksin2�kx�.

For deep lattices, an approximate form for the qc=0 case
is m*=�2k2 /2�2J, where J is the tunneling energy �51�, giv-
ing an effective-mass enhancement

m*

m
�

e2��

4�3/2�3/4 . �14�

The ratio of effective masses for the target and spectator can
be estimated from Eq. �14�:

FIG. 4. �a� The ratio of the effective mass to bare mass of the
target species is shown as a function of trap depth �t, for both q
=0 and qc=0.5�k, as labeled. The tight-binding approximation
�dashed line� approaches the exact calculation for �t�1. �b� The
effective-mass ratio is shown for the case of a 6Li target and a 133Cs
spectator. Whether the ratio increases or decreases depends on the
selectivity � of the lattice. The critical point is when �=ms /mt

��22.2 in this case�, as explained in the text. The tight-binding
approximation of the effective-mass ratio is also shown �dashed
line�.
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mt
*

ms
* �

exp�2��t�1 − �ms/�mt��
�3/4 mt

ms
�1/4

. �15�

Figure 4�b� shows the effective-mass ratio for the case of a
6Li target and a 133Cs spectator. In particular, it is striking
that for �=10 the ratio decreases with lattice depth, while for
�=100 the ratio increases with lattice depth. The critical se-
lectivity is well predicted by Eq. �15�; at �=ms /mt, the
effective-mass ratio is independent of lattice depth.

Both the tune-out and tune-in schemes provide the means
of choosing selectivity. Several tune-in selectivities are
shown in Table I; the tune-out selectivity can be chosen sim-
ply by choosing a wavelength slightly different from �TO. In
the example used here, the sustainability for �=10 is better
for the tune-in scheme, but tuning to mLi

* �mCs
* at moderate

lattice depths requires a �=100, for which the tune-out
scheme has higher sustainability.

VI. CONCLUSIONS

We have discussed how the choice of wavelength used to
create an optical lattice can tune the selectivity between ele-
ments or isotopes. This control should increase the range of
parameters that can be explored in multispecies ultracold
atom experiments. The tune-out wavelength scheme allows
for the complete cancellation of the trapping potential for
one species while providing a confining or lattice potential
for any other species in the system. This scheme will work
best using the heavier alkali-metal atoms, Rb and Cs, as the

spectator elements, and is most successful for the 40K-133Cs
fermion-boson mixture. The alternative tune-in scheme uses
a near-detuned optical potential, creating a much stronger
potential for one element than the others, without the ability
to strictly cancel the potential for one element. Mixtures in-
volving Li, Na, and K as spectators are most compatible with
this approach, where the 40K-23Na mixture is the most prom-
ising fermion-boson mixture.

The power of species selection lies in its use to engineer
specific lattice environments for the atoms, including adding
a bosonic background to mimic the phonons present in solids
and tuning the relative effective mass of two species. Appli-
cations for which experimental timescales are rapid com-
pared to the sustainabilities calculated in Sec. III are espe-
cially promising. Species selection enables cooling in a two-
species mixture, and in the case of fermions trapped in a
lattice, reduces the temperature of fermions as they are
loaded into a lattice, in contrast with current experimental
realizations �44,52�.
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