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A condensate in an optical lattice, prepared in the ground state of the superfluid regime, is stimulated first by
suddenly increasing the optical lattice amplitude and then, after a waiting time, by abruptly decreasing this
amplitude to its initial value. Thus the system is first taken to the Mott regime and then back to the initial
superfluid regime. We show that, as a consequence of this nonadiabatic process, the system falls into a
configuration far from equilibrium whose superfluid order parameter is described in terms of a particular
superposition of Glauber coherent states that we derive. We also show that the classical equations of motion
describing the time evolution of this system are inequivalent to the standard discrete nonlinear Schrödinger
equations. By numerically integrating such equations with several initial conditions, we show that the system
loses coherence, becoming insulating.
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I. INTRODUCTION

Nowadays Bose-Einstein condensates �BECs� represent
one of more powerful and versatile testing grounds for low-
energy modern physics in which experimental tests on quan-
tum computation �1�, many-body physics �2�, superfluidity
�3�, the Josephson junction effect �6�, atom optics �7�, and
quantum phase transitions �8� can be performed. Conden-
sates can be put into interaction with each other or manipu-
lated by means of optical lattices �OLs�, which are periodic
trapping potentials generated by standing laser waves. By
raising the amplitude of the OL, a condensate loaded therein
is fragmented into an array of interacting condensates. By
adjusting the laser amplitudes, the system is taken into dif-
ferent regimes. The superfluid regime is obtained with weak
optical potentials �OPs�, where the kinetic energy dominates
over the interacting one, and the atoms hop from one well to
another. The opposite—quantum—regime, is generated by
strong OPs that suppress the tunneling of the atoms between
the wells.

In this paper, we consider a one-dimensional gas. This is
prepared by use of a transverse harmonic confining potential
that tightly confines the atoms so that their motion, in the
transverse direction, is limited to the zero point. Along the
longitudinal direction, a further harmonic potential weakly
confines the atoms, and an OP is switched on. For large
enough laser amplitudes, the condensate splits into compo-
nents tightly confined at the minima of the effective poten-
tial. In what follows, we imagine abruptly adjusting the am-
plitude of the longitudinal laser at two instants, in order to
first take the system from the superfluid regime to the quan-
tum one and then to take it back to the superfluid regime. In
this way the system is taken to a nonequilibrium state �NES�
that is described in terms of a particular superposition of
Glauber coherent states �CSs�. The latter combination is de-
rived in the following. Although the system is taken back to
a weak OP regime, as in the superfluid case, this NES fol-

lows a nonclassical dynamics. In fact, we show that the equa-
tions of motion for the system’s order parameter are in-
equivalent to the discrete nonlinear Schrödinger equation.
The present study is in some sense complementary to former
work �9,10�, it continues the work in �11�, and it is motivated
by recent experiments as in Refs. �8,12,13�, where BECs are
manipulated in an OL. Furthermore, the nonadiabatic proce-
dure we describe can be straightforwardly realized in a real
experiment, and then the dynamics of the NES, a superposi-
tion of the canonical CSs, can be directly observed, e.g., by
displacing the condensates with respect to the harmonic trap
center, as in the experiment of Ref. �6�, and by observing the
oscillations of the center of the atomic density distribution.

II. THE MODEL

The quantum dynamics of an array of condensates in a
deep enough OL can be described by the Bose-Hubbard
�BH� model �14�. Let VH�r�=� j=1

3 m� j
2rj

2 /2 be the harmonic
trapping potential and let VL�r�=�2�2 sin2�kr1� / �4Er� be the
one-dimensional OP, where k is the laser wavelength, Er
=�2k2 / �2m� is the recoil energy, and � is the angular fre-
quency of the parabolic approximation of VL at each mini-
mum. Then, the BH Hamiltonian, written in terms of the
boson operators aj and aj

† that, respectively, annihilate and
create atoms at the j site of the lattice, reads

H = �
i

�Uni�ni − 1� + �ini� −
T

2 �
�ij�

�ai
†aj + H.c.� , �1�

where the operators ni=ai
† and ai count the number of bosons

at the i site, and the boson operators satisfy the standard
commutation relations �ai ,aj

†�=�i,j. The indices i , j�Z label
the local minima r1i ,r1j, where r1�=�� /k, of V�r�=VL�r�
+��=2

3 m��
2r�

2 /2 along the lattice. As the BH model describes
a closed system, the total number of bosons N=� jnj is a
conserved quantity. Within the Gaussian approximation, the
Hamiltonian parameters have the following expressions in
terms of the trapping potentials and of the optical one �see
�11��. Uªas�0�m��0 / �2�� is the strength of the on-site*Electronic address: franzosi@fi.infn.it
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repulsion, in which we have set �0=�3��2�3. The latter
approximation is suitable in the limit of tight confinement of
BECs in every well. In fact, in this case the spatial width of
each trapped condensate does not depend, in the first ap-
proximation, on the number of atoms in the well, and the
condensate wave function in every potential minimum is
well approximated by a Gaussian �15�. The site external po-
tential is � jª����+ j2�2�2�1

2 / �4Er�, where ����=���+�2

+�3� /2, and

T��� =
�2�2

4Er
	�2

2
− 1 +

2Er

��
− e−2Er/��
e−�2��/8Er �2�

is the tunneling amplitude between neighboring sites. It is
worth stressing that the Gaussian approximation is not essen-
tial for the use of the BH model, but it is useful in order to
derive an analytic estimation of the Hamiltonian parameters.

When the OL amplitude is weak enough so that T /U	1,
the ground-state configuration of Hamiltonian �1� admits a
factorization into a product of site states that catches the
superfluid nature of the system. The system’s order-
parameter dynamics near the ground state can be studied by
a time-dependent variational principle �TDVP� �17�. Follow-
ing the TDVP method, we describe the system in terms of
the trial state �
�=exp�iS /���i�zi�, which contains a product
of site Glauber CSs. In fact, in Ref. �16� it is shown that in
the limit U=0, N ,M→� at fixed density N /M, the ground
state of Hamiltonian �1� with M wells, is indistinguishable
by a product of local coherent states. Thus, in the strong
hopping regime, such a state should still be a good approxi-
mation. Here

�zi� ª e−�zi�
2/2�

n=0

�
zi

n

n!
�ai

†�n�0� �3�

have the defining equation ai�zi�=zi�zi�, and the zi are com-
plex numbers. The equations of motion for the zj dynamical
variables are derived by a variation with respect to zj and z�

*

of the effective action S=�dt�i� jż jzj
*−H� that is associated

with the classical Hamiltonian H�Z ,Z*�ª �Z�H�Z�, where
�Z�= j�zj�. Hence, zj = �
�aj�
� represents the classical ca-
nonical variables of the effective Hamiltonian H and satisfy
the Poisson brackets �zj

* ,z��= i� j� /�. The classical Hamil-
tonian is

H = �
j
�U�zj�4 + � j�zj�2 −

T

2
�zj

*zj+1 + c.c�� , �4�

where j and j+1 run on the chain sites, and the following
equations of motion result:

i�ż j = �2U�zj�2 + � j�zj −
T

2
�zj−1 + zj+1� , �5�

together with the complex conjugate equations. The con-
straint on the total number of bosons is now satisfied on
average, the quantity N=� j�zj�2 being conserved.

Equations �5� are the discrete version of the Gross-
Pitaevskii equation �15�, and the corresponding superfluid
ground state is approximately given by the discrete Thomas-
Fermi solution

zj =� N

M�
−

�� j − �̄�
2U

ei, �6�

where M�=min�M ,q� and q in turn is the maximum integer

such that 2UN+q��̄−�q��0, and �̄=��j��IM�
� j /M�.

III. DYNAMICS

After having prepared the system in the superfluid
ground-state configuration �6�, it is taken to the Mott regime
by abruptly increasing the OP depth and, after an adjustable
time �, it is carried back to the superfluid regime by suddenly
decreasing the OP depth to the original value. Our goal is to
derive the equations of motion that describe the dynamics of
the system after the latter decreasing of the OP amplitude.
We will show that these equations of motion are more com-
plicated than the standard ones recalled in Eq. �5�, and in-
equivalent to these. Furthermore, as we said above, the su-
perfluid ground state is well approximated by a product i�zi�
of CSs. Hence, the condensate in each site i is described by
a CS �zi�, that is, a semiclassical state. On the contrary, we
shall show that, after this stimulation, the system will be
described by a product of integrals of site CSs. This means
that the semiclassical nature of the site states is partially
destroyed during the intermediate quantum regime, in spite
of the system being in a superfluid regime.

Following the procedure above, at the time t=0 the am-
plitude of the OP is suddenly increased by varying � from its
initial value �0 to �=�1	�0. Since the tunneling amplitude
T��� in Eq. �2� is dominated by the exponential term
exp�−�2�� /8Er�, it will result in T��� /T��0�→0 for �
→�1. Meanwhile, also U and � j are modified when chang-
ing the OP amplitude, but their dependence on � is much
less dramatic. In fact, we have U��1�=U��1 /�0 and
� j��1�=� j +���1−�0� /2. In order to apply the sudden ap-
proximation when the potential amplitude is varied, that is,
for 0� t��b with �b��, the jump in the potential depth
must be fast compared with the tunneling time between
neighboring wells, but slow enough so that no excitations are
induced in each well, that is 2� /� ,2� /�2 ,2� /�3��b
�� /T��0�.

For t��b �we will assume �b=0 from now on�, the system
enters into the Mott regime and the classical description of
the system dynamics is no longer allowed; thus we resort to
the quantum one. The appropriate dynamics is described by
the Schrödinger equation with Hamiltonian �1� in which we

have to set T=0, U=U��1�¬ Ũ and � j =� j��1�¬�̃ j. The
quantum time evolution of the initial state �3� is

��t�� = 
i�IM

e−�zi�
2/2 �

ni=0

+�
�zi�i�t��ni

�ni!
e−ini

2u�t��ni� , �7�

where �i�t�ªexp�i /��Ũ+ �̃i�t�, u�t�= Ũt /�, and the zj are
those defined in �6�. We want to stress that, although the
factorization of the state vector still holds, the term
exp�−ini

2u�t�� in Eq. �7� breaks the CS structure of the initial
state �3�, and aj��t�����t���t��. By direct calculation, one can
easily verify the following relations:
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��t��aj
†aj��t�� = �zj�2,

zj�t� ª ��t��aj��t�� = zje
�i/���̃jt−i�zj�

2 sin�2u�t�� � e−2�zj�
2 sin2�u�t��,

��t��aj+1
† aj��t�� = zj+1

* zje
−2��zj�

2+�zj+1�2�sin2�u�t��

� e�i/����̃j−�̃j+1�t−i��zj�
2−�zj+1�2�sin�2u�t��. �8�

The system shows the characteristic scenario of phase col-
lapse and revivals, observed in many BEC systems �4,5�. For
0� t��, the wells’ populations ��t��aj

†aj��t�� do not change,
whereas site wave functions zj�t� are dynamically active. The
modulus of zj�t� is a periodic function of t, whose revival

time is Tm=�� / Ũ. The phase of the wave function � j

ªarg�zj�t� / �zj�t���= �̃ jt /�− �zj�2sin�2u�t�� of the site j, is

driven by the three time scales 2Tm, T�̃j
=2�� / �̃ j, and, for

the sites where �zj�2�2�, Tzj
, the solution of the equation

�zj�2 sin2�u�t+Tzj
��= �zj�2 sin2�u�t��+2�. Moreover, the site-

dependent external potentials �̃ j induce a dephasing between
the wave functions of near sites: � j −� j+1=−����1 /2�2�2j
+1� /Er− ��zj�2− �zj+1�2�sin2�u�t��. Such dephasing leads the
system out of the ground-state configuration.

After a time �, the system is taken back to the superfluid
regime, T /U	1, by abruptly decreasing the OP depth �in a
time of order �b�0� to its initial value. The t=� initial state

����� = 
j�IM

E j �
nj=0

+�
�zj

1�nj

�nj!
e−inj

2u1�nj� �9�

given by Eq. �7�, where E j =exp�−�zj�2 /2�, zj
1=zj� j���, and

u1=u���, by the identity

lim
�→0+

�
−�

�

dx exp�− �p + ��x2 − inx� = exp�− n2/�4p����/p ,

with p=−i / �4u1�, can be rewritten as the superposition of
product states of CSs at each site,

����� = 
j�IM

�
−�

� dxj

2��u1

e−i�/4eixj
2/�4u1��zj

1e−ixj� , �10�

where the states labeled by zj�=zj
1e−ixj are the normalized CSs

of Eq. �3� with zj =zj�.
The time evolution for t�� of the mean-field state �10�

can be derived within the TDVP picture, in a way similar to
that previously described, by resorting to a suitable superpo-
sition of Glauber CSs. Thus we introduce the trial state �
�
=exp�iS /���Z�v, where �Z�vª�i�zi ,u1�v is written in terms of
the states �zi ,u1�v that in turn are superpositions of the stan-
dard Glauber ones as

�zi,u1�v ª �
−�

�

dxf�x,u1��zie
−ix� . �11�

Here �zie
−ix� are the standard CSs given in �3�, and

f�x,u1� =
1

2��u1

e−i�/4eix2/�4u1�. �12�

A remark about the trial state that we have chosen is in order.
The TDVP method provides the best approximation to the
true state within the restricted set of states caught by the trial
one; thus, in general, we do not know what superposition of
the canonical CSs gives a class of states broad enough to
obtain a good approximation of the true state. However, in
this case, the form of the superposition �11� is suggested by
the fact that it includes the initial condition �10�. Further-
more, in the limit �→0, that is, u1→0, �zi ,u1�v→ �zi� and, in
this way, the canonical CSs �3� and the standard dynamics
�5� are recovered. From now on we drop the explicit depen-
dence on u1 in �zi ,u1�v. The scalar product between the �z��v
states is defined as v�zj �z��vª�dx dy f*�x ,u1�f�y ,u1�
��zje

−ix �z�e−iy� �here the integrations over x and y run from
−� to ��; thus, from the definition �11� and by the normal-
ization of the Glauber CSs �� ����=exp��*��−1/2����2

+ ����2��, the following identities can be checked by direct
calculation:

v�zj�zj�v = 1,

v�zj�i��t�zj�v =
i�

2
�zj

*ż j − ż j
*zj� ,

v�zj�aj
†aj

†ajaj�zj�v = �zj�4,

v�zj�aj
†aj�zj�v = �zj�2,

v�zj�aj
†aj+1�zj+1�v = zj

*zj+1e−2��zj�
2+�zj+1�2�sin2�u1�

� ei��zj�
2−�zj+1�2�sin�2u1�. �13�

Following the TDVP procedure, we require the trial state to
be a solution of the weaker form of the Schrödinger
equation,

�
�i��t − H�
� = 0,

where �t is the time derivative and H is the BH Hamiltonian
�1�. From the latter equation, we obtain

Ṡ = i�v�Z��t�Z�v − v�Z�H�Z�v,

and, from this and the relations in �13�, we get

S =� dt	i��
j

1

2
�zj

*ż j − ż j
*zj� − H�Z,Z*�
 . �14�

The effective classical Hamiltonian H�Z ,Z*�ª v�Z�H�Z�v,
can be derived by exploiting the identities in �13� and the
result is

H�Z,Z*� = �
j

�U�zj�4 + � j�zj�2�

−
T

2 �
j

�zj
*zj+1ei��zj�

2−�zj+1�2�sin�2u1� + c.c.�

� e−2��zj�
2+�zj+1�2�sin2�u1�. �15�
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The variation of the action �14� with respect to zj and zj
*

brings us to the classical equations of motion

i�ż j = �2U�zj�2 + � j�zj −
T

2

� �	zj+1 + zj
*zj+1

2 −
1

2
�zj�2zj+1
e�j,j+1

+ 	zj−1 + zj
*zj−1

2 −
1

2
�zj�2zj−1
e�j,j−1 −

1

2
zj+1

* zj
2e�j+1,j

−
1

2
zj−1

* zj
2e�j−1,j� �16�

for j� IM, where � j,k=zj
*zk− ��zj�2+ �zk�2� /2, and with the

complex conjugate equations. It is worth noting that, in the
present case, the dynamical variables zj ,z�

* are related to the
expectation values of the boson operators in a more compli-
cated form than in the Glauber CS case. In fact we have

v�zj�aj�zj�v , =zje
−iu1 exp��zj�2�e−i2u1 −1��. Despite that, the �zj�2

still count the number of atoms in each site j �see the fourth
of equations �13��.

IV. NUMERICAL SIMULATIONS

We have numerically integrated Eqs. �5� and �16� on a
lattice of 256 sites, with the initial conditions �13� with the zj
given by �6�, and for the values of u1 corresponding to the
waiting times �=� /10,� /4 ,� /2. For a BEC in an OL with
T / �2UN��0.01, in a harmonic trap with � j / �2U�=��j
−128�2 and �=0.01, the standard equations of motion �5�
imply a superfluid dynamics.1 This is shown in Fig. 1�a�,
where we plot the regular oscillations of the center of the
atomic density distribution along the chain. These oscilla-
tions have been triggered by displacing the condensates re-
spect to the harmonic trap center, as in the experiment of
Ref. �6�. On the contrary, once ��0, the nonstandard equa-
tions of motion �16�, with the same initial conditions, entail
insulator �dissipative� dynamics for the system. This is
clearly shown in Fig. 1�b�, where we plot the motion of the
system’s center of atomic density distribution for �=� /10
�continuous line�, � /4 �dashed line�, and � /2 �dotted line�.
We also have performed numerical simulations of Eqs. �5�
and �16� by choosing initial conditions in the form of wave
packets of Gaussian profile zj

0=�k exp�−�j−x�2 /�2+ ip�j
−x��, where x=128 is the initial center of the Gaussian, p
=3� /4 is the initial center of mass momenta, �=10 is the
width of the Gaussian profile, and k= �� j exp�−�j
−x�2 / �2�2���−1. The dynamics of these profiles have been
numerically and analytically studied in Ref. �18�, where a
dynamical stability phase diagram for these states was de-

rived. Therein, and also here, the theoretical configuration
where the harmonic trapping is off was considered, and the
dynamics takes place on a finite lattice endowed with reflect-
ing boundary conditions. Thus, we have performed simula-
tions in the same conditions and we have chosen the combi-
nation of the dynamical parameters T / �2UN�=4.17, which
corresponds to the region of the phase diagram of Ref. �18�
where �stable� breather excitations were identified. In Fig. 2
we report the two-dimensional contour plot obtained by nu-
meric integration of �5� with this Gaussian initial condition.
In Fig. 2 is clear that the breather structure is maintained
when the traveling excitation is reflected at the lattice bound-
aries. Figure 3 shows the same quantity obtained by integra-
tion of Eqs. �16� with the same initial condition as in Fig. 2,
and with �=0.5. Figure 3 clearly shows that the initial exci-
tation, integrated with nonstandard dynamics, pretty soon
loses stability, emitting atoms incoherently at any bounce
with the lattice boundary.

V. FINAL REMARKS

In the present paper we have studied how the dynamics of
a superfluid is affected by briefly bringing the system into the

1These parameters are close to the experimental ones used in �6�,
where it was shown that the tight-binding approximation describes
very well the superfluid dynamics of BECs in OLs. Those param-
eters are �2�2 / �4Er�=3Er, T /2�0.07Er, 2UN�12Er N�2�105

atoms, which correspond to the parameters of the classical dynam-
ics T / �2UN��0.01.
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FIG. 1. �a�, �b� Center of the atomic density distribution xc.m.

=� j�zj�2j, as a function of the rescaled time s= t� /U �both dimen-
sionless�. �a� shows the regular oscillations of the center of the
atomic density distribution of a BEC in a harmonic trap obtained by
numeric integration of Eqs. �5�. �b� shows the same quantity ob-
tained by numerical integration of Eqs. �16� with �=� /10 �continu-
ous�, � /4 �dashed�, and � /2 �dotted� lines.
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insulating regime. We have shown that the system is taken to
an excited state, described by a superposition of product
states of Glauber coherent states at each site, which we have
derived. The classical equations of motion ruling its dynam-
ics have been derived. Furthermore, we have shown that
these classical equations of motion are inequivalent to the
standard discrete nonlinear Schrödinger equations that de-
scribe the dynamics of an array of BECs �6� in the superfluid
regime. By numerically integrating such nonstandard equa-
tions with several initial conditions, we have shown that the
system loses coherence, becoming insulating.

The simulations we have performed show that the inter-
play between classical and quantum dynamics leads to loss
of the coherence properties of the system. In fact, the brief
period in the insulating regimes changes the superfluid wave
function, which becomes a superposition of product states of
the site’s coherent states, that is, a product of mean-field
states. Each mean-field state has a complicated distribution
of phases at each site that results from the intermediate quan-
tum dynamics. This distribution of phases leads to a unique

tunneling dynamics described by a complicated hopping
term. By a glance at Eqs. �16� one can guess that, as a con-
sequence of this unusual term, the “effective” tunneling rate
between close sites in the case of Eqs. �16� becomes site
�population� and time dependent. For this reason the system
loses coherence.

It is also worth emphasizing that the nonadiabatic proce-
dure we have described in the present paper can straightfor-
wardly be realized in a real experiment similar to those of
Refs. �12,19�. Therefore, by displacing the condensates with
respect to the harmonic trap, as done in the experiment of
Ref. �6�, and by observing the oscillations of the center of the
atomic density distribution, the effects of the nonstandard
dynamics can be directly observed.
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FIG. 2. Breather excitation obtained by numeric integration of
Eqs. �5� with a Gaussian initial profile. The breather travels along
the chain and bounces at the lattice ends. After any bounce, the
breather is reconstructed.

FIG. 3. Excitation obtained by numeric integration of Eqs. �16�
with the same initial condition as in Fig. 2. The value of the waiting
time is �=� /2. This excitation is completely destroyed after a few
bounces at the lattice ends. Thus, in the far-from-equilibrium situ-
ation, this excitation loses stability and it seems to behave like the
states of the diffusion regime that has been identified in �18�.
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