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The collective modes in a uniform fermionic atomic gas with Feshbach resonance are investigated with the
path integral method in the frame of a fermion-boson model Hamiltonian. We mainly concentrated on the
long-wavelength and low-frequency limits at T=0 K and got an analytical expression for the collective modes
across the whole BCS-Bose-Einstein condensate �BEC� crossover. We completely recover the Anderson-
Bogoliubov modes in the BCS limit and the Bogoliubov modes of the bosonic systems in the BEC limit. The
numerical results show that there exists a continuous interpolation for sound velocity between BCS and BEC
limits.
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I. INTRODUCTION

Since Eagles �1� and Leggett �2� independently extended
the BCS theory to get a continuous picture of evolution from
weak to strong coupling, the crossover from BCS to Bose-
Einstein condensate �BEC� has attracted considerable atten-
tion �3–13�. This crossover leads to a particular interpretation
of a fascinating, but not well-understood phase, known as
pseudogap state and the short coherence length. In 1995,
Randeria et al. �14� raised the interesting possibility that the
crossover physics might be relevant to a high temperature
superconductor. Importantly, a number of experimental re-
sults �15,16� have claimed evidence in support of the BCS-
BEC crossover picture for high temperature superconductor
materials.

In the system of the condensed matter, it is difficult to
strongly modify the strength of the pairing interaction, which
gives a challenge to realize this process in the experiment.
Fortunately we can use gas consisting of ultracold fermionic
atoms to complete this process. To make all fermionic atoms
to a high degree of quantum degeneracy, low enough tem-
perature must be satisfied. The advent of the laser opened the
way to the development of powerful new methods for ma-
nipulating and cooling atoms, but only laser cooling is not
enough, which must be followed by the so-called evaporative
cooling �17,18�. In such a fermionic system, it should be
possible to adjust the interaction strength to tune the system
continuously between BCS-type superfluidity and Bose-
Einstein condensation. This phenomenon, which is referred
to as Feshbach resonance, was first investigated in the con-
text of nuclear physics �19�. Feshbach resonance has become
an important tool in investigations of the basic physics of
cold atoms. Experimentally, long-lived molecules have been
produced �20–22� from ultracold fermionic atoms near the
Feshbach resonance, where a molecule state is resonant with
the atomic state and molecules can form without heat re-
lease. In most of the experiments, molecules formed by
sweeping an external magnetic field through Feshbach reso-
nance �21,22�. In the same year, BEC of long-lived mol-

ecules was observed by using the standard techniques such
as time-of-flight expansion images �4,23,24� and three-body
recombination �6�; but demonstrating condensation of fermi-
onic pairs on the BCS side of resonance presents a signifi-
cant challenge. Observation of fermionic pairs is insufficient
to demonstrate condensation and rather a probe of the mo-
mentum distribution is required. One year later, condensation
of fermionic pairs �7� was discovered by introducing a tech-
nique that takes advantage of the Feshbach resonance to pair-
wise project the fermionic atoms onto molecules. To a cer-
tain extent, most of the fundamental predictions of the
crossover between BCS and BEC have been realized in the
experiment.

In this paper, we calculate the Goldstone modes in the
fermionic atomic gas. The existence of Goldstone modes are
a universal result, which is caused by the spontaneous break-
down of gauge symmetry associated with the superfluid
phase transition. One issue under current investigation is
how to track the evolution of the system in superfluid phase.
One possibility is to measure low-lying collective modes of
the gas �25�. In fact, in the symmetry-broken state, the ve-
locity of the collective modes is dependent on the adjusting
parameter. So we can track the evolution of the system by
observing collective modes. In Ref. �26�, the collective
modes have been calculated by the way of the Feynman dia-
gram, in which we must be careful to pick up the corre-
sponding diagram to get the Goldstone modes. Functional
integrals overcome this difficulty. Keeping the Gaussian fluc-
tuation, we can naturally get the same result as in �26�.

This paper is organized as follows. In Sec. II, we use the
path integral to obtain the effective action of the system. In
Sec. III, we start from the effective action and study the
collective modes across the whole crossover regime to ac-
quire an analytical expression for the sound velocity of Gold-
stone modes. In Sec. IV, we deal with analytical results in
BCS and BEC limits and numerical results. In Sec. V, a
conclusion is given.

II. THE EFFECTIVE ACTION

The Hamiltonian for the dilute gas of Fermi atoms can be
written as ��=KB=1�*Corresponding author. Electronic address: slwan@ustc.edu.cn
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H =� d3x���
�

��
†�x���−

�2

2m
− �	���x�� + �†�x���−

�2

2M
+ 2�

− 2�	��x�� − U�↑
†�x���↓

†�x���↓�x���↑�x��

+ gr��†�x���↓�x���↑�x�� + ��x���↑
†�x���↓

†�x���
 . �1�

This is the so-called fermion-boson model �27–29�, where
a fermionic atom and a quasimolecular boson associated
with the Feshbach resonance are described by the field op-
erators ��x�� and ��x��, respectively. 2� represents the lowest
excitation energy of the Feshbach molecule, also referred to
as the threshold energy of the Feshbach resonance. m and
M =2m are the masses of the Fermi atom and the molecule,
respectively. � is the chemical potential. The last term in Eq.
�1� describes the Feshbach resonance with a coupling con-
stant gr, which describes how a molecular boson can disso-
ciate into two Fermi atoms and vice versa. The Hamiltonian
also includes an attractive interaction −U��0� between at-
oms, arising from the nonresonant process. The factor of 2 in
2� and M =2m reflects the fact that one boson consists of
two fermionic atoms. In the imaginary-time functional inte-
gration formalism, the partition function is written as

Z =� D���
† ,��,�†,��exp�− S� , �2�

where

S = �
0

�

d	� d3x���
�

��
†�x���	 −

�2

2m
− �	���x� + �†�x���	

−
�2

2M
+ 2� − 2�	��x� − U�↑

†�x��↓
†�x��↓�x��↑�x�

+ gr��†�x��↓�x��↑�x� + ��x��↑
†�x��↓

†�x��� , �3�

with �=1/T and 	 imaginary time. D�¯� represents the
functional integral for field operators. x= �	 ,x�� is a four-
dimensional vector.

In order to integrate out the Fermi field, bosonic-like vari-

ables B�x� ,	� and B̄�x� ,	� are introduced by the Hubbard-
Strotonovich transformation

expU�↑
†�↓

†�↓�↑� =� D�B̄,B�exp�−
1

U
B̄B + �↑

†�↓
†B

+ B̄�↓�↑
 . �4�

It is further convenient to introduce the space-time Fou-
rier transform for Grassman, bosonic, and Feshbach mol-
ecules variables.

���x�,	� =
1

�V
�
k�,
n

exp�i�k� · x� − 
n	��C��k�,
n� ,

��x�,	� =
1

�V
�
q� ,�n

exp�i�q� · x� − �n	��b�q� ,�n� , �5�

where 
n=
�2n+1��

� and �n= 2n�
� are the Matsubara frequency

for the Fermi and boson field, respectively. Then, the action
S reads

S =
1

�V��
k,�
�− i
n +

k�2

2m
− �	C̄��k�C��k�

+ �
q
�− i�n +

q�2

2M
+ 2� − 2�	b̄�q�b�q�

+
1

U
�

q

B̄�q�B�q� −
1

�V
�
k,k�

�C̄↑�k�C̄↓�− k��B�k − k��

+ C↓�− k��C↑�k�B̄�k − k��� +
1

�V
�
k,k�

gr�b̄�k − k��

C↓�− k��C↑�k� + b�k − k��C̄↑�k�C̄↓�− k���
 , �6�

where k= �
n ,k�� and q= ��n ,q�� are used to denote both mo-
mentum and Matsubara frequency.

The Grassman variables can be integrated out, yielding

Sef f = − tr ln G−1 +
1

�V��
q
�− i�n +

q�2

2M
+ 2�

− 2�	b̄�q�b�q� +
1

U
�

q

B̄�q�B�q�
 �7�

where

G−1�k,k�� =� ��k��k,k�
1

�V
�B̄�k − k�� − grb̄�k − k���

1

�V
�B�k� − k� − grb�k� − k�� − ��− k��k,k�

� , �8�
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with ��k�= i
n−�k, �k= k�2

2m −�.
To proceed further, we consider a quadratic expansion of

the effective action in terms of fluctuation near the mean-
field value. Choosing mean-field value � and �m for B�k�
and b�k�, respectively, that is

B̄�q� → �V��̄�q=0 + B̄�q�� ,

b̄�q� → �V��m̄�q=0 + b̄�q�� , �9�

we can express the matrix G−1�k ,k�� as

G−1�k,k�� = G0
−1�k,k�� + G1�k,k�� , �10�

where

G0
−1�k,k�� = � ��k��k,k� �̄ − gr�m̄

� − gr�m − ��− k��k,k�
� , �11�

G1 = � 0 B̄�k − k�� − grb̄�k − k��
B�k� − k� − grb�k� − k� 0

� .

Correspondingly, the effective action takes the form

Sef f = − tr ln G0
−1 + �

n=1

�
�− 1�n

n
tr�G0G1�n + �V� 1

U
��̄B�0�

+ �B̄�0�� + 2�� − ����m̄b�0� + �mb̄�0�� +
1

U
�2

+ 2�� − ���m
2 + �

q
�− i�n +

q�2

2M
+ 2� − 2�	b̄�q�b�q�

+
1

U
�

q

B̄�q�B�q�	 . �12�

The constant � and �m are determined by requiring the co-

efficient of the linear terms in B�0�, B̄�0�, b�0�, and b̄�0� to
vanish, leading to the gap equation

1 = Uef f � d3k

�2��3

tanh��

2
Ek�

2Ek
, �13�

where

Uef f = U +
gr

2

2�� − ��
,

Ek = ��k
2 + �r

2,

�r = � − gr�m, �14�

Eq. �12� is still exact, the approximation depends on the
number of power considered. As usual, we will only consider
until the Gaussian approximation. In this approximation

Sef f = − tr ln G0
−1 + �V� 1

U
�2 + 2�� − ���m

2 	 + Sef f
�2� ,

�15�

where

Sef f
�2� =

�V

2 �
q

�b̄�q�b�− q�B�− q�B̄�q��M�q��
b�q�

b̄�− q�

B̄�− q�
B�q�

�
�16�

and

M�q�

=�
M11�q� gr

2Q�q� − grQ�q� grP�q�
gr

2Q�q� M22�q� grP
*�q� − grQ�q�

− grQ�q� grP
*�q� M33�q� Q�q�

grP�q� − grQ�q� Q�q� M44�q�
� ,

�17�

where

M11�q� = − i�n +
q�2

2M
+ 2� − 2� − gr

2P�q� ,

M22�q� = M11
* �q� ,

M33�q� =
1

U
− P*�q� ,

M44�q� = M33
* �q� , �18�

P�q� =
1

�V
�

k

g�k�g�q − k� ,

Q�q� =
1

�V
�

k

f�k�f�q − k� , �19�

and g�k� and f�k� are the ordinary Gorkov function, that is

g�k� =
��− k�

��k���− k� + �r
2 ,

f�k� =
�r

��k���− k� + �r
2 . �20�

III. COLLECTIVE MODES AT T=0 K

The collective modes are determined by the poles of the
propagator matrix M−1�q�. The poles of M−1�q� are deter-
mined by the condition det M�q�=0 and lead to a dispersion
relation for the collective modes 
=
�q�, when the usual
analytical continuation �n→
+ i� is performed. In order to
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obtain the collective mode spectrum, we introduce the trans-
formation �30,31�

b�x� =
1
�2

��1�x� + i�1�x�� ,

B�x� =
1
�2

��2�x� + i�2�x�� , �21�

where �i�x� and �i�x� are real and may be identified with
amplitude and phase fields. This transformation corresponds

to a representation transformation which leads to a subse-
quent transformation matrix:

�
b�q�

b̄�− q�

B̄�− q�
B�q�

� =
1
�2�

1 i 0 0

1 − i 0 0

0 0 − i 1

0 0 i 1
��

�1�q�
�1�q�
�2�q�
�2�q�

� .

�22�

So that matrix M�q� corresponds to

M̃�q� =�
M̃11�q� − i�
 + gr

2P�O��q�� igrP
�O��q� gr�P�E��q� − Q�q��

i�
 + gr
2P�O��q�� M̃22�q� gr�P�E��q� + Q�q�� − igrP

�O��q�

− igrP
�O��q� gr�P�E��q� + Q�q�� M̃33�q� iP�O��q�

gr�P�E��q� − Q�q�� igrP
�O��q� − iP�O��q� M̃44�q�

� . �23�

where

M̃11�q� =
q�2

2M
+ 2� − 2� − gr

2�P�E��q� − Q�q�� ,

M̃22�q� =
q�2

2M
+ 2� − 2� − gr

2�P�E��q� + Q�q�� ,

M̃33�q� =
1

U
− �P�E��q� + Q�q�� ,

M̃44�q� =
1

U
− �P�E��q� − Q�q�� . �24�

Function P�q� can be expanded into the addition of two parts
even P�E��q� and odd P�O��q�. Q�q� is an even function.

In this paper, we only think about the long-wavelength
and low-frequency collective modes. Thus we need to ex-
pand the function P�E��q�+Q�q�, P�E��q�−Q�q�, and P�O��q�
as the series of q� and 
. Before doing this, let us notice that
low-frequency expansion must conform to two conditions
�30,31�. �i� Landau damping of the collective modes do not
exist. So we must keep the imaginary part of the propagator
to vanish. This condition can be satisfied by setting T=0 K.
�ii� The collective modes cannot damp into two quasiparti-
cles. Owing to the minimum energy of single quasiparticle is
�r, so the condition 
�2�r must be carried out. Under
satisfying these conditions above, these functions can be ex-
panded as

P�O��q� = B
 ,

P�E��q� + Q�q� = A + Cq2 + D
2,

P�E��q� − Q�q� = R + Sq2 + T
2, �25�

where

B = �
k

�k

4Ek
3 , A = �

k

1

2Ek
,

C = − �
k

1

8Ek
3� �k

m
− �1 −

3�r
2

Ek
2 � k2 cos2 �

m2 	 ,

D = �
k

1

8Ek
3 , R = �

k

�k
2

2Ek
3 ,

T = �
k

1

8Ek
3�1 −

�r
2

Ek
2� ,

S = �
k

1

8Ek
3�−

�k

m
�1 −

3�r
2

Ek
2 �

+ �1 −
10�r

2

Ek
2 �1 −

�r
2

Ek
2� k2 cos2 �

m2 	
 . �26�

Similarly, we expand M̃11�q�, M̃22�q�, M̃33�q�, and M̃44�q�
in the same form:

M̃11�q� = Z1 + Z2q2 − gr
2T
2,

M̃22�q� = Z3 + Z4q2 − gr
2D
2,

M̃33�q� = Z5 − Cq2 − D
2,

M̃44�q� = Z6 − Sq2 − T
2. �27�
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As is known to all �32�, low energy collective modes are
related to phase-phase fluctuation. In order to extract the in-
formation about the phase-phase fluctuation, we integrate out
the amplitude field and only keep the phase field, then the
effective action of the second order takes the form

Sef f
�2� =

�V

2 �
q

��1
*�q�,�2

*�q��M̃p�q���1�q�
�2�q�

� , �28�

with

M̃p�q� =�M̃22�q� +

2

Wa
G1 � −


2

Wa
G2

� −

2

Wa
G2 M̃33�q� +


2

Wa
G3
� �29�

where

� = gr�P�E��q� + Q�q�� = gr�A + Cq2 + D
2�

=y1 + y2q2 + y3
2,

� = gr�P�E��q� − Q�q�� = gr�R + Sq2 + T
2� ,

G1 = 2�grB�1 + gr
2B� + M̃11gr

2B2 + M̃44�1 + gr
2B�2,

G2 = �B�1 + gr
2B� + �gr

2B2 + M̃11grB
2 + M̃44grB�1 + gr

2B� ,

G3 = 2�grB
2 + M̃11B

2 + M̃44gr
2B2,

Wa = �2 − M̃11M̃44 = Z7 + Z8q2 + Z9
2. �30�

Again, the dispersion relation for the phase-phase collec-

tive modes is obtained from the condition det M̃p�q�=0. Let

det M̃p�q�=0 and only retain the second order of q� and 
, we
obtain

Z7�Z3Z5 − y1
2� + �− CZ3Z7 + Z4Z5Z7 + Z3Z5Z8 − 2y1y2Z7

− y1
2Z8�q2 + �− Z3Z7D + Z3Z5Z9 − Z5Z7Dgr

2 + G3Z3

+ G1Z5 − 2y1y3Z7 − y1
2Z9 + 2y1G2�
2 = 0. �31�

For Goldstone modes, the constant term must vanish. As
proven below, this requirement is automatically satisfied.
Owing to Z3=2��−��−gr

2A, Z5= 1
U −A, y1

2=gr
2A2, and gap

equation �13�, there is an identity Z3Z5−y1
2=0. This result is

very important for us, which makes us assure that the low
energy phase-phase mode is no energy gap. No gap is com-
pletely related to spontaneous breakdown of the gauge sym-
metry associated with the superfluid phase transition. The
method of path integral directly obtained the gapless result.
When we use the quantum field theory method, we must be
careful in choosing a Feynman diagram to ensure the behav-
ior of no gap, or the gapless result is not possible. So that the
sound velocity

vs
2 =

CZ3Z7 − Z4Z5Z7 + 2y1y2Z7

G3Z3 + G1Z5 + 2y1G2 − Z3Z7D − Z5Z7Dgr
2 − 2y1y3Z7

.

�32�

For the crossover, to completely obtain an analytical re-
sult is not possible, a numerical accession is essential; but in
the limit of BCS and BEC, we can obtain the analytical
result.

IV. ANALYTICAL AND NUMERICAL RESULTS

A. Weak coupling limit

In the weak coupling limit, the threshold energy 2� is
very large. ��� can be realized because the chemical po-
tential is at most the order of �F, so the effective interaction
is dominated by nonresonant interaction U. The gap equation
is reduced to

1

U
= �

k

1

2Ek
. �33�

At the same time, fermionic atoms are dominated over
Feshbach molecules, so Feshbach resonance can be ne-
glected and Feshbach molecules are negligible because of
���. Then the Hamiltonian of the fermion-boson model is
reduced to that of the continuum model. Thus in this limit, a
complete BCS theoretic result is recovered. This discussion

corresponds to matrix M̃�q� to be reduced to

MBCS�q� = � M̃33�q� iP�O��q�

− iP�O��q� M̃44�q�
� . �34�

Thus

vBCS
2 = −

C

D +
B2

A − R

. �35�

This analytical result is consistent with the result in �30�,
which shows that our results in the BCS limit are qualita-
tively correct. The weak coupling limit is particularly simple
with all integrals peaked near the Fermi surface. We can take
the approximation

�
k

F��k� = N��F��
−�

�

d� F��� , �36�

where the N��F� is the density of state on the Fermi surface.

By means of Eq. �36�, B=0, D=
N��F�

4�2 , C=−
N��F��F

6m�2 , and vBCS

= 1
�3vF, which recovered the Anderson-Bogoliubov result

�34�.

B. Strong coupling limit

In the BEC limit, ��0, ��−�F. Since the Feshbach mol-
ecules have energy lower than the energy of the two fermi-
onic atoms, most fermionic atoms will combine to form mol-
ecules. We can ignore the fermionic atoms and identify the

system with a bosonic system. These correspond to M̃�q�
equal to

MBEC�q� = � M̃11�q� − i
�1 + gr
2B�

i
�1 + gr
2B� M̃22�q�

� . �37�
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Meanwhile, since the chemical potential � approaches �,

which leads to Uef f =
gr

2

2��−�� and the gap equation is

1 =
gr

2

4�� − ���k

1

Ek
, �38�

using the gap equation,

vBEC
2 =

gr
2� 1

2M
− gr

2C��k

�r
2

2Ek
3

�1 + gr
2B�2 + gr

4D�k

�r
2

2Ek
3

. �39�

In the case of weak Feshbach resonance, we can ignore
the high order of gr. This leads to

vBEC
2 =

gr
2

4M
�

k

�r
2

Ek
3 . �40�

We can approximate Ek=�� k2

2m −��2
+�r

2→Ek= k2

2m −�, then

vBEC =
gr�r

16
� 3�N

m�− ��F�3/2 . �41�

This result is consistent with that of �26� quantitatively.
As in the discussion in �26�, in the BEC limit, Cooper pairs
order parameter is negligible, and �r is reduced to �m and

vBEC is proportional to �NB
C. This dependence on NB

C is char-
acteristic of the Bogoliubov phonon mode in a BEC gas.
Thus Eq. �41� may be regarded as the velocity of the Bogo-
liubov phonon associated with a condensate of Feshbach
molecules.

C. Numerical results

All of our numerical results are given in the canonical
ensemble. To calculate sound velocity, we must self-
consistently solve the energy gap equation �13� and the par-
ticle number equation at the level of the mean field

n =� d3k�

�2��3�1 −
�k

Ek
� + 2�m

2 �42�

to get the values �, �r, and �m. In addition, owing to bare
coupling parameters in fermion-boson model Hamiltonians
U, gr, and �, which result in some ultraviolet divergence,
renormalization to these parameters must be done �29�:

1

Uef f
R =

1

Uef f
− �� d3k�

�2��3

m

k�2
,

1

UR =
1

U
− �� d3k�

�2��3

m

k�2
,

1

gr
R =

1

gr
−

U

gr
�� d3k�

�2��3

m

k�2
,

�R = � +
�gr

R�2

2�Uef f
R − UR�

, �43�

where � is the ultraviolet cutoff and all variables with super-
script R are renormalized parameters. This procedure made
our results convergent and significant.

All numerical results were insensitive to the ultraviolet
cutoff �. In Fig. 1, we plot the behavior of the sound veloc-
ity as the function of the detuning parameter through the
whole BCS-BEC crossover. In order to compare with �33�,
the same parameters have been chosen. The numerical re-
sults show that there exists a continuous interpolation for
sound velocity between the BCS and BEC limits. We also
make a plot for sound velocity using the expressions in �33�
and find that our results are well-consistent with that in �33�
except that there is an apparent difference for the behavior of
the sound velocity in the BCS limit. In our paper, we ne-
glected the contribution of the Feshbach molecules to the
action in order to obtain the results of the BCS limit. Our
results of the BCS limit directly came from the reduction to
the action and agree with the results in �26,30� in the limit of
BCS. In the process of calculating the sound velocity in �33�,
a gauge transformation which makes the action to be ex-
pressed in terms of the modulus of the order parameter and
its phase was done but did not lead to any extra effect on the
action. As it was pointed out �35–37�, this gauge transforma-
tion has changed the measure of the functional integral and
the ground state of the system. This transformation changed
the local fermion concentration but kept the total fermion
number remaining constant. So an extra term must be intro-
duced to compensate for this change. We thought the state-
ment above should be responsible for the difference between

FIG. 1. �Color online� The behavior of the sound velocity v
�circle line� as a function of the detuning � across the BCS-BEC
crossover. The results in the BCS and BEC �up-triangle line� limits
are also included. Our results �down-triangle line� in the BCS limit
are apparently different from that �diamond line� in �33�. Using the
expression for the sound velocity in �33� we get the results repre-
sented by the square line. In order to make contrast, we have chosen
U=7.54�F /KF

3 and g=4.62�F /KF
3/2.
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our results and the results in �33� in the BCS limit.
Hydrodynamic equations have also been used to calculate

collective modes �38� across the BCS-BEC crossover. In the
fermion-boson model Hamiltonian �1�, the BEC limit is free
gas consisting of Feshbach molecules, which leads the sound
velocity to approach zero; but in the frame of hydrodynamic
equations, interaction between Feshbach molecules is in-
cluded and nonzero velocity is obtained in the BEC limit.

V. CONCLUSIONS

In this paper, we have investigated the BCS-BEC cross-
over in the superfluid phase of a uniform gas of Fermi atoms

with Feshbach resonance and obtained an analytical expres-
sion for the collective modes. The results in BCS and BEC
limits also have been recovered and there exists a continuous
interpolation for sound velocity between BCS and BEC lim-
its. Owing to the monotonic behavior of the sound velocity,
we can track the evolution of the system by observing the
phase-phase collective mode in the symmetry-broken phase
in experiment.
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