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We study the Hartree ground state of a dipolar condensate of atoms or molecules in a three-dimensional
anisotropic geometry and at T=0. We determine the stability of the condensate as a function of the aspect ratios
of the trap frequencies and of the dipolar strength. We find numerically a rich phase space structure charac-
terized by various structures of the ground-state density profile.
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I. INTRODUCTION

The realization of Bose-Einstein condensation �BEC� in
low-density atomic vapors �1,2� has led to an explosion of
experimental and theoretical research on the physics of
quantum-degenerate atomic and molecular systems. While
much of the work so far has concentrated on systems char-
acterized by s-wave two-body interactions, the recent dem-
onstration of a condensate of chromium atoms �3� opens up
the study of gases that interact via long-range, anisotropic
magnetic dipole interactions. In a parallel development, it
can be expected that quantum degenerate samples of hetero-
nuclear polar molecules will soon be available through the
use of Feshbach resonances �4,5�, photoassociation �6,7�, or
a combination of the two. When in their vibrational ground
state, these molecules interact primarily via the electric di-
pole potential, and they are expected to provide a fascinating
new type of dipole-dominated condensates in the near future.

As a result of the anisotropy and long-range nature of the
dipole-dipole interaction, a number of phenomena have been
predicted to occur in low-density quantum-degenerate dipo-
lar atomic and molecular systems, both in conventional traps
and in optical lattices. An early study of the ground state of
polar condensates was presented in Ref. �8�, which deter-
mined its stability diagram as a function of the number of
atoms and s-wave scattering length. It identified a stable
structured ground state for a specific range of parameters. At
about the same time, the effect of trap geometry on the sta-
bility of the condensate was considered in Ref. �9� for a
system dominated by the dipole interaction. This was fol-
lowed by the prediction �10� of the existence of a number of
quantum phases for dipolar bosons in optical lattices. Recent
work �11,12� considers the structural phases of vortex lattices
in rotating dipolar Bose gases.

A feature of dipolar condensates, as compared to their
scalar cousins, is the appearance of a roton minimum in their
Bogoliubov spectrum. This feature was discussed in the con-
text of atomic condensates in Ref. �13�, which considered the
impact of the roton-maxon feature in the excitation spectrum
and the stability of pancake-shaped dipolar condensates. For
this particular geometry it was found that the excitation spec-
trum can touch the zero-energy axis for a nonzero wave vec-

tor �14�, which points to the instability of homogeneous con-
densates and the onset of density modulations �15�. A roton
minimum was also found �16� for the case of laser-induced
dipolar interactions in self-bound BECs with cylindrical
symmetry. Quasi-2D dipolar bosons with a density-
modulated order parameter were determined to be unstable
within the mean-field theory �17�, and cigar-shaped quasi-
one-dimensional condensates were likewise found �18� to be
dynamically unstable for dipoles polarized along the axis of
the cylindrical trap. The stability of dipolar condensates in
pancake traps was also recently discussed in Ref. �21�, which
found the appearance of biconcave condensates for certain
values of the trap aspect ratio and strength of the dipole
interaction. From the Bogoliubov excitation spectrum it was
possible to attribute the instability of the condensate under a
broad range of conditions to its azimuthal component.

Further building on these studies, the present paper re-
ports the results of a detailed numerical analysis of the sta-
bility and structure of the Hartree ground state of dipolar
condensates confined in anisotropic harmonic trap. We pro-
ceed by introducing the trap frequencies �x, �y, and �z, re-
spectively, in the x, y, and z directions, and the correspond-
ing trap aspect ratios �y =�y /�x and �z=�z /�x. Thus �z=1
corresponds to a pancake trap, whereas �z=0 corresponds to
a cylindrical trap with free motion in z direction. We further
assume for concreteness that an external field polarizes the
dipoles along the y axis. The stability of the condensate is
then determined as a function of the trap aspect ratios and of
an effective dipolar interaction strength that is proportional
to the number of atoms or molecules in the condensate. Vari-
ous ground-state structures of the condensate are identified in
the stable region of parameter space.

The remainder of this paper is organized as follows: Sec-
tion II introduces our model and comments on important
aspects of our numerical approach. Section III summarizes
our results, identifying up to five different types of possible
ground states, depending on the tightness of the trap and the
particle number. Finally, Sec. IV is a summary and conclu-
sion.

II. FORMAL DEVELOPMENT

The dipole-dipole interaction between two particles sepa-
rated by a distance r is
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Vdd�r� = gdd
1 − 3y2/r2

r3 , �1�

where gdd is the dipole-dipole interaction strength and ŷ is
the polarization direction. For atoms with a permanent mag-
netic dipole moment we have gdd=�0�m

2 /4� while for dipo-
lar molecules gdd=�e

2 /4��0, �m and �e being the magnetic
moment of the atoms and the electric dipole moment of the
molecules, respectively.

Within the mean-field approximation, the condensate or-
der parameter ��r� satisfies the Gross-Pitaevskii �GP� equa-
tion

E��r� = �H0 + g��2�r�� + N� Vdd�r − r�����r���2d3r����r� ,

�2�

where

H0 = −
�2

2m
�2 +

1

2
m�x

2�x2 + �y
2y2 + �z

2z2� �3�

is the sum of the kinetic energy and the trapping potential
and N denotes the number of particles in the condensate. The
second term on the right-hand side of Eq. �2� is the contact
interaction, g=4��2a /m being proportional to the s-wave
scattering strength a, and the third term describes the effects
of the nonlocal dipole-dipole interaction. For dipole interac-
tion dominated systems, g is small compared to Vdd. This is
the case that we consider here, and in the following we ne-
glect the s-wave scattering term altogether.

For convenience we introduce the dimensionless param-
eter

D = Ngddm/��x�
2� �4�

that measures the effective strength of the dipole-dipole in-
teraction, where the oscillator length �x=	� / �m�x�. The
condensate ground state is then determined numerically by
solving the Gross-Pitaevskii equation �2� for imaginary
times. The term involving the dipole interaction energy is
calculated using the convolution theorem,

� Vdd�r − r�����r���2d3r� = F−1
F�Vdd�r��F����r��2�� ,

where F and F−1 stand for Fourier transform and inverse
Fourier transform, respectively. The dipole-dipole interaction
is calculated analytically in momentum space as �8�,

F�Vdd�r�� =
4�

3
�3

ky
2

kx
2 + ky

2 + kz
2 − 1� , �5�

kx ,ky ,kz are the momentum components in x ,y ,z direction.
The initial order parameter was chosen randomly, and the

stability diagram was generated for each pair of parameters
��y ,�z� by increasing the effective dipolar strength D until a
critical value Dcr above which the condensate collapses. Be-
cause of the random initial condition this value varies
slightly from run to run. The plotted results show the average
over 100 realizations of the initial wave function, the error
bars indicating the maximum deviation of Dcr from its mean

D̄cr. This approach typically resulted in numerical uncertain-
ties similar to those of Ref. �19�.

III. RESULTS

A good starting point for the discussion of our results is
the observation that in the case of a cylindrical trap, �z=0,
we found no stable structured condensate ground state. �By
structured profiles, we mean profiles that are not simple
Gaussians.� In particular, solutions exhibiting density modu-
lations along the z axis were found to be unstable. Moving
then to the case of a pancake trap by keeping �y fixed but
increasing �z from 0 to 1, we found for �y �4 the appearance
of a small parameter region where the stable ground state is
characterized by a structured density profile, the domain of
stability of this structured solution increasing with �y. A

�z−D� phase space stability diagram typical of this regime
is shown in Fig. 1 for �y =5. In this figure, region I is char-
acterized by the existence of a usual condensate with its fa-
miliar, structureless Gaussian-like density profile. As �z is
increased, the condensate becomes unstable for decreasing
values of the effective dipole interaction strength D, or alter-
natively of the particle number N. For 0.525	�z	0.7,
though, the ground state changes from a Gaussian-shaped to
a double-peaked density profile �domain II in the figure�,
before the system becomes unstable.

Figures 4 and 5show surface plots and corresponding 3D
renditions of density profiles typical of the various situations
encountered in our study. Figures 4�a� and 5�a� are illustra-
tive of the present case. The appearance of two density peaks
away from the center of the trap results from the interplay
between the repulsive nature of the dipoles in a plane trans-
verse to its polarization direction, the �x-z� plane, and the
confining potential.

Increasing the tightness of the trap along the polarization
direction y, i.e, increasing �y, results in the emergence of
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FIG. 1. ��z ,D� stability diagram of a dipolar condensate in an
anisotropic trap for �y =5. The condensate is unstable in the region
above the solid line. The dashed line is the boundary between a
“structureless Gaussian” and a double-peaked ground-state density
profile. The error bars give an indication of the accuracy of the
numerical simulations.
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additional types of structured ground states. One such case is
illustrated in Fig. 2, which is for �z=5.5. For small values of
�z, i.e., a weak trapping potential along the z direction, we
observe the appearance of a domain �region III in the figure�
characterized by a double-peaked ground state with the
maximum density along the z direction and a Gaussian-like
density in the x direction. This type of double-peaked struc-
ture along the weak trapping axis was first predicted in Ref.
�20�. Typical density profiles in this region resemble those in Figs. 4�a� and 5�b�, but with a rotation by 90 degrees in the

�x ,z� plane. The regions II and III are separated by a small
additional domain IV characterized by a ground-state distri-
bution with a quadruple-peaked structure as illustrated in
Figs. 4�b� and 5�b�, as might be expected. In general, these
characteristics of the ground-state density profile persist until
�y �6.5.

Figure 3 shows a stability diagram typical of higher val-
ues of the aspect ratio �y, in this case �y =7, for 0.4	�z
	1. As D is increased, the ground-state density of the con-
densate first undergoes a transition from a Gaussian-like to a
double-peaked profile of the type illustrated in Figs. 4�b� and
5�b� �region III�. As D is further increased, this domain is
followed for �z close enough to unity by a second transition
to a domain �region V� with the appearance of a density
minimum near trap center. Initially, this minimum is sur-
rounded by a region with a radial density modulation, see
Fig. 4�c�, but for larger values of �z this modulation is re-
duced, see Figs. 4�d� and 5�d�. In that region, the density
profile resembles the solution previously reported in Ref.
�21� for a similar parameter range.

In the case of atoms we have a typical magnetic moment
of 6�B, and we find that the range of critical dipole strengths
D corresponding to structured ground states can be achieved
for 104–105 atoms for trapping frequencies �x�1 kHz. For
molecules with a typical electric dipole moment of 1 Debye
the corresponding number is 103–104 molecules. While
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FIG. 3. Stability diagram of a dipolar condensate in an aniso-
tropic trap with �y =7, as a function of the dipolar strength D and
the aspect ratio �z. The region above the solid line is characterized
by unstable ground-state solutions of the mean-field equation �2�.
The dashed line marks the boundary between a structured and a
Gaussian-like ground-state density profile. The dotted line is the
boundary between the region with ringlike and two-peaked conden-
sate in the �x-z� plane.

FIG. 4. �Color online� Two-dimensional surface plots of the
structured ground-state density profiles typical of various stable do-
mains: �a� Double-peaked density profile in the �x-z� plane for re-
gion II, for the parameters �y =5, �z=0.6, and D=23. The points of
maximum density are away from the trap center and along the x
direction. In region �III� the shape of the condensate is similar, but
with maximum density along the z direction. �b� Typical quadruple-
peaked density profile characteristic of region IV. Here �y =5.5, �z

=0.575, and D=42. �c� Stable ground-state solution in region V
with �z	1. The density is higher and modulated on a radius away
from the trap center in the x-z plane. In this example �y =7, �z

=0.85, and D=40. �d� Density profile typical of the domain V. The
condensate is biconcave with maximum density along a constant
radius from the trap center. In this example, �y =7 and D=32.
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FIG. 2. Stability diagram of a dipolar condensate in an aniso-
tropic trap with �y =5.5, as a function of the dipolar strength D and
aspect ratio �z. The region above the solid line corresponds to un-
stable solutions of Eq. �2�. The dashed line is the boundary between
the structured and the standard ground-state density profiles. The
dotted-dashed line marks the boundary between the domains with
quadruple-peaked and double-peaked ground-state density profiles.
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these are relatively high particle numbers, especially for the
atomic case, they do not seem out of reach of experimental
realization.

IV. CONCLUSION

In conclusion, we have performed a detailed numerical
study of the ground-state structure and stability of ultracold
dipolar bosons in an anisotropic trap for dipoles polarized
along the y direction. The trap aspect ratios along y and z

direction, �y and �z, were used as control parameters, and the
mean-field stability diagram was established as a function of
these parameters and a dimensionless interaction strength D.
For small �y the system was found to exhibit a standard
density profile, but for larger values, and depending on �z,
various structured ground states were found to appear before
reaching the unstable regime where the condensate collapses.
These include a four-peak structured solution in the x-z
plane, a ringlike ground state with a modulated radial density
profile. For �y 
7 and �z=1, we found a biconcave conden-
sate profile, as already reported in �21�.

For strong confining potentials along the dipole polariza-
tion direction, i.e., for large �y, increasing �z can be viewed
as resulting in a change from a quasi-one-dimensional to a
quasi-two-dimensional geometry. As such we can think of
the various ground-state structures as a result of dimensional
crossover in a trapping geometry. To gain a deeper under-
standing of these structures as we approach the instability
region, future work should study the Bogoliubov spectrum of
the trapped system.
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FIG. 5. Three-dimensional ground-state density profile for the
same parameters an in Fig. 4.
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