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We present a semiclassical theory of the sub-Doppler forces in an asymmetric magneto-optical trap where
the trap-laser frequencies are unequal to one another. To solve the optical Bloch equations, which contain
explicit time dependence, unlike in the symmetric case of equal laser detunings, we have developed a conve-
nient and efficient method to calculate the atomic forces at various oscillating frequencies for each atomic
density matrix element. In particular, the theory provides a qualitative understanding of the array of sub-
Doppler traps �SDTs� recently observed in such an asymmetric trap. We find that the distances between SDTs
are proportional to the relative detuning differences, in good agreement with experimental results. The theory
presented here can be applied to a dynamic system with multiple laser frequencies involved; the number of
coupled equations to solve is much reduced and the resulting numerical calculation can be performed rather
simply and efficiently.
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I. INTRODUCTION

Since laser cooling of neutral atoms was first proposed
�1�, there have been many advances in manipulating neutral
atoms by laser light �2�. Among the various techniques, the
magneto-optical trap �MOT� is known to be one of the sim-
plest ways to obtain cold atoms �3�. Although the MOT has
been widely used as a well-established precooled atom
source, it still provides vast unexplored research subjects,
such as nonlinear dynamics �4�, instability-induced atomic
pulsation �5�, or the spontaneous symmetry breaking of an
atomic population �6�.

In particular, one of the interesting characteristics of the
MOT itself is the intrinsic property of the sub-Doppler tem-
perature therein �7–9�. It is well known that there exist two
kinds of forces in the MOT: a Doppler cooling force as well
as a sub-Doppler one �10�. The Doppler force originates
from the difference of the scattering rates of a moving atom
from the counterpropagating laser beams and exists within a
broad range of velocity and position space. On the contrary,
the sub-Doppler force results from the coherences between
the magnetic sublevels of the ground state and exists in the
vicinity of the origin of the phase space. The latter plays an
important role in obtaining low atomic temperatures down to
approximately 10 �K, or the corresponding high density of
an atomic cloud �11�.

Recently, we have investigated the trap parameters when
the detunings of the trap-laser beams propagating along the
transverse axes are different from those on the horizontal �z�
axis �12�. We observed experimentally that, when the relative
laser detunings are different, the sub-Doppler force gradually
disappears, resulting in an abruptly decreased damping coef-
ficient, approaching the value expected in simple Doppler
theory. Also we found that, as the intensity of the transverse

laser beams increases, new sub-Doppler traps appear at sym-
metric positions with respect to the MOT center, and their
displacements from the center are proportional to the detun-
ing differences. In this paper, we present a semiclassical
theory of the sub-Doppler forces in a two-dimensional MOT,
where two differing laser frequencies are involved. The
theory can be easily extended to a general atomic dynamics
system containing multiple laser frequencies.

Calculation of the atomic dynamics in the presence of
bichromatic or multichromatic laser beams has been per-
formed in several studies �13–16�. In that research, the den-
sity matrix elements were expanded by Fourier series in
terms of the frequency differences. Instead of direct calcula-
tion of all the Fourier components, however, we have formu-
lated an alternative method to find the nonvanishing Fourier
components as described in Sec. III. Since we retain only the
nonvanishing elements, the number of coupled equations to
solve is greatly reduced, and accordingly the numerical cal-
culation can be simpler and more efficient than the methods
described in Refs. �13–16�. Moreover, the theoretical method
that we have developed can be extended to arbitrary accu-
racy by increasing the number of iterations.

The paper is organized as follows. In the next section, we
present the general theoretical frame to calculate the atomic
forces. Then a detailed explanation of how to obtain the os-
cillation frequencies of all the density matrix elements fol-
lows. In Sec. IV, we present the calculated results in various
conditions, and summarize the calculated results in the last
section.

II. METHOD OF CALCULATION

Here we present the calculation of the semiclassical sub-
Doppler forces in two dimensions. In order to calculate the
force, one has to solve the following optical Bloch equation
�17�:*Electronic address: whjhe@snu.ac.kr
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where � is the density matrix operator, and the atomic
Hamiltonian H0 is given by

H0 = � �
me=−Fe

Fe

��0 + �Bmege��eme
	
eme
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mg=−Fg

Fg

�Bmggg

��gmg
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Here �0 is the atomic resonance frequency, ge �gg�, me �mg�,
and Fe �Fg� are the Landé g factor, the quantum number of
the magnetic sublevels, and the angular momentum of the
excited �ground� state, respectively. We also included the
Zeeman shift �B=�BB /�, where B is the magnitude of the
magnetic field directed along the z direction.

The laser scheme under consideration is shown in Fig. 1.
We assume that an atom moves along the z direction with a
velocity of v and, in the atomic rest frame, experiences an
electric field given by

E� �x,z� =
Ez

2
�̂+eikzz−i��z−kzv�t +

Ez

2
�̂−e−ikzz−i��z+kzv�t

+
Ex

2
�̂−

xeikxx−i�xt +
Ex

2
�̂+

xe−ikxx−i�xt + c.c., �3�

where �i, ki, and Ei are the angular frequency, the wave
vector, and the amplitude of the electric field on the i axis
�i=z ,x�, respectively, and �± ��±

x� represents the polarization
of �± photons propagating in the ±z �	x� directions. We
define the detuning difference as 
=
x−
z, where 
i=�i
−�0.

Since the polarizations of the laser photons on the x axis
are decomposed as

�̂±
x = 	

1
�2

�ŷ ± iẑ� ,

where we take z as the quantization axis, the interaction
Hamiltonian V is given by

V = �
m=−Fg

Fg

�
q=0,±1

�q
Fe,m + q�1,q;Fg,m	 � �em+q	
gm� + H.c.,

�4�

where

�±1 =
1

2
��ze

±ikzze−i��z	kzv�t −
1

2
��x sin kxxe−i�xt,

�0 = −
i

�2
�x cos kxxe−i�xt, �5�

with the Rabi frequencies �i=−degEi /� for i=z ,x. Here deg
is the matrix element 
eFe

�d �gFg
	 of the dipole moment op-

erator d. The last term in Eq. �1�, representing the spontane-
ous emissions, satisfies the relations
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�6�

Finally, the force experienced by an atom at z=0 is given
by

F = − � dV

dz
 =

i

2
�kz�z �

mg=−Fg

Fg


Fe,mg + 1�1,1;Fg,mg	

� 
emg+1���gmg
	ei��z−kzv�t −

i

2
�kz�z �

mg=−Fg

Fg


Fe,mg − 1�1,

− 1;Fg,mg	 � 
emg−1���gmg
	ei��z+kzv�t + c.c. �7�

When we solve Eq. �1�, unlike for the case of a single oscil-
lation frequency, it is not possible to obtain equations that do
not contain explicit time dependence by a suitable transfor-
mation, since there exist two oscillation frequencies. There-
fore we have to make an approximation and truncate the
equations after a finite number of iterations.

Now let us solve Eq. �1�, which can be written as

�̇ = Q�1�, �8�

where

Q�1� = −
i

�
�H0 + V,�� + ��̇�sp. �9�

Here Q�1� is a diagonal matrix whose dimension is FN�FN,
where FN= �2Fe+1�+ �2Fg+1�, and the order of the eigen-
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FIG. 1. Two-dimensional laser configuration. The circularly po-
larized laser beams on the z and x axes have different frequencies. A
constant magnetic field B is applied along z axis.

HEUNG-RYOUL NOH AND WONHO JHE PHYSICAL REVIEW A 75, 053411 �2007�

053411-2



states is �e−Fe
	 , . . . , �gFg

	. Then we transform Eq. �8� to a
frame rotating with an angular frequency �z, i.e., where the
i , j component of � is given by �ij =eicijt�ij and �ij is the
slowly varying density matrix element. cij =−�z ��z� when
the states i and j belong, respectively, to the excited and
ground �ground and excited� states, whereas cij =0 when i
and j belong to the same excited or ground state.

Then Eq. �8� becomes

�̇ij = Qij
�2�, �10�

where

Qij
�2� = e−icijtQij

�1� − icij�ij . �11�

Since there exist several oscillation frequencies such as
�z±kv and �x, we cannot eliminate the explicit time depen-
dence in Eq. �11�. Therefore we expand �ij in terms of the
various oscillation frequencies as follows:

�ij = �
k=1

b�ij�

Ak
�ij�ei�k

�ij�t, �12�

where Ak
�ij� and �k

�ij� are the kth element of the amplitude
vector A�ij� and the oscillation frequency vector ��ij� for given
indices �i , j�, respectively, and b�ij� is a scalar denoting the
number of elements of the vector ��ij�.

We now insert Eq. �12� into Eqs. �10� and �11�, and define
the following function:

Qij = �̇ij − Qij
�2� = �

k=1

b�ij�

i�k
�ij�Ak

�ij�ei�k
�ij�t − Qij

�2�, �13�

where Qij
�2� is expressed in terms of Ak

�ij� and �k
�ij�. Note that

Eq. �13� vanishes identically when b�ij� is an infinite number.
In a real situation, however, we have to use a finite number
of b�ij�. In order to obtain various values of �k

�ij�, we have
considered interactions that are connected by not more than
N photons. If N is an odd �even� number, we can obtain
Qij =0 for i and j belonging to different �same� energy states.
For example, when we consider the interactions connected
by five photons, Qeg and Qge vanish just as in the case of an
infinite number of b�ij�, where e �g� denotes the state �eme

	
��gmg

	�. However, Qee and Qgg do not vanish, which implies
the existence of some errors in �ee and �gg. The final task is
then to calculate all the Ak

�ij� values by equating the terms
with equal oscillation frequencies in Eq. �13�.

In the calculation, we have to include the b�ii� equations
associated with the normalization conditions �note that b�ii�

are the same for all i�, as given by

�
i=1

FN

Ak
�ii� = �1, k = 1,

0, k = 2, . . . ,b�ii�.
�14�

As will be explained in the next section, one element of ��ii�

is 0, which implies the nonoscillation case, and all the other
elements are composed of pairs of ±c, where c is a function
of 
 and kzv. Then we may define the first element as 0; thus
the first element of A�ii� is real, and the other elements are
complex. Instead of including the normalization conditions,

the same number of equations in Eq. �13� should be ruled
out. Since only the nonvanishing elements are included in
Eq. �12�, the number of coupled equations �Eqs. �13� and
�14�� can be significantly reduced compared to the cases in
Refs. �13–16�. Therefore, once the oscillation frequencies are
obtained as shown in the method of the next section, the
calculation can be straightforward. We also note that the off-
diagonal elements satisfy Ak

�ij�*=Ak
�ji�.

After we obtain all the values of Ak
�ij�, we can calculate the

density matrix elements as

�ij = eicijt�
k=1

b�ij�

Ak
�ij�ei�k

�ij�t. �15�

Inserting Eq. �15� into Eq. �7�, the force then becomes

F = − �kz�z �
m=−Fg

Fg


Fe,m + 1�1,1;Fg,m	 � Im A1
�em+1,gm�

+ �kz�z �
m=−Fg

Fg


Fe,m − 1�1,1;Fg,m	 � Im A1
�em−1,gm�,

�16�

where we have assumed that the first element of ��em±1,gm� is
±kzv. Since the force in Eq. �16� is obtained after averaging
over the time, none of the other components of A�em±1,gm�

except the first term contribute to the force.

III. CALCULATION OF THE OSCILLATION
FREQUENCIES

In this section, we calculate the various oscillation fre-
quencies �k

�ij� for all of the matrix elements. Let us first define
the number of interactions N, which is assumed to be an odd
number. The case for even N will be treated later on. Here
we calculate the oscillation frequencies of the density matrix
element 
em �� �gm+�m	 as shown in Fig. 2�a�. The procedure
of calculations can be summarized as follows. We first obtain
all the possible routes connecting the states �em	 and �gm+�m	
within a number of photons not greater than N. Then we
calculate the oscillation frequencies by the method described
below.

The transition schemes are shown in Fig. 2�b�, where the
oscillation frequencies with respect to �z are �kzv, 
�, �−kzv,

�, and 
 for �−, �+, and � transitions, respectively. In the
calculation of the oscillation frequencies, we have used the
fact that the absorption or emission of each polarized photon
contributes to the resulting frequencies according to the rules
described in Table I. For instance, let us consider the route
shown in Fig. 2�c�. In this route, an atom emits a �− photon,
absorbs a � photon, emits a �− photon, absorbs a �+ photon,
and finally emits a �− photon. In this case, the characteristic
frequencies are calculated to be

�− kzv,− 
� + �
� + �− kzv,− 
� + �− kzv,
� + �− kzv,− 
� .

�17�

Since each element in parentheses contributes equally, there
exist 24 results, including the duplicated ones, and so we
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finally obtain eight different frequencies given by −4kzv+
,
−3kzv+2
, −3kzv, −2kzv±
, −kzv−2
, −kzv, and −
.

We now discuss a systematic method to obtain all the
possible routes from the state �em	 to the state �gm+�m	, which
can be accomplished by considering the change of the mag-
netic quantum number for the emission as well as absorption
of �± or � polarized photons. This can be formulated as

�
j=1

N

�− 1� jkj = �m , �18�

where the sign −1 �+1� for odd �even� j stands for the emis-
sion �absorption� of photons. The alternating behavior of the
sign implies the fact that emission and absorption processes
occur in a similar alternating fashion. In Eq. �18�, the integer
kj represents the polarization of the jth photon, which is ±1
for �± and 0 for a � photon. Therefore, once we obtain the
integers �k1 ,k2 , . . . ,kN� satisfying Eq. �18�, we can find all
the different routes between the two states under consider-
ation. Since there exist many sets of integers �k1 ,k2 , . . . ,kN�
corresponding to different routes between the states, we may
create a matrix T whose row elements are composed of the
integers �k1 ,k2 , . . . ,kN�. In other words, Tij is the jth element
of the ith set of �k1 ,k2 , . . . ,kN�.

For example, for �m=4, the matrix T can be written as

T =�
− 1 0 − 1 1 − 1

− 1 1 − 1 0 − 1

− 1 1 − 1 1 0

− 1 1 0 1 − 1

0 1 − 1 1 − 1
� . �19�

Each row of the matrix T in Eq. �19� represents a different
route from �em	 to �gm+�m	. For instance, the first row
�−1,0 ,−1 ,1 ,−1� represents the route as shown in Fig. 2�c�,
which was mentioned above.

With the transition schemes shown in Fig. 2�b�, in order to
find the oscillation frequencies, we define the row matrices
a�ij� for given i and j, as follows:

a�ij� = ��kzv,
� , Tij = − 1,

�
� , Tij = 0,

�− kzv,
� , Tij = + 1,

�20�

where Tij is the ijth component of the matrix T. For example,
for Tij =−1, a1

�ij�=kv and a2
�ij�=
. Here the indices i and j run

from 1 to the number of rows of T and N, respectively. To
obtain the oscillation frequencies for a given �m, we merely
have to calculate the following equation for all the possible
different sets of l1 , l2 , . . . , lN, and i:

�
j=1

N

�− 1� jalj

�ij� = − al1
�i1� + al2

�i2� − + ¯ + �− 1�NalN
�iN�, �21�

where lj =1,2 �j=1,2 , . . . ,N� and the row number of the
matrix T is i=1,2 , . . .. Therefore the number of sets includ-
ing the null results is 2N� the number of i. Note that the
explicit expression of Eq. �21� for the first row of the matrix
T with �m=4, for example, is given by Eq. �17�. If we
perform similar calculations as in Eq. �17� for all other rows
of the matrix T, i.e., Eq. �21�, while excluding the meaning-
less terms, we can obtain the elements of the vector
��em,gm+�m�. The oscillation frequencies for �ge are simply op-
posite in sign with respect to �eg, that is, �k

�ij�=−�k
�ji�.

In the case of transitions between excited and excited
states, or ground and ground states, the matrix T is defined in
a slightly different manner; its row elements are composed of
N−1 integers �i.e., k1 ,k2 , . . . ,kN−1� satisfying � j=1

N−1�−1� jkj

=�m. To calculate the oscillation frequencies of �ee or �gg,
we have to perform the different calculation of

�
j=1

N−1

�− 1� jalj

�ij�, �22�

for all the different sets of lj �j=1,2 , . . . ,N� and i. The typi-
cal oscillation frequencies are listed in Appendix for N=5
and two-dimensional laser configurations, where the arbi-
trary Fg→Fe=Fg+1 transition line is assumed.

Note that for an even number of N, the matrix T is
changed; for the eg �ee or gg� transitions, T is defined by all
the possible values of integers kj satisfying �i=1

N−1�−1� jkj

=�m �� j=1
N �−1� jkj =�m�. Moreover, when there exist other

laser frequencies, we only have to add the frequencies to the

me mme
��

mg
mmg

��

me

4�mg

(a)(a)

(b)(b)

(c)(c)

�

�

vkz�

�

vkz

FIG. 2. �a� Scheme of the calculation of the oscillation frequen-
cies of the density matrix elements 
em �� �gm+�m	. �b� The oscilla-
tion frequencies relevant to each transition. �c� Typical route from
�em	 to �gm+4	.

TABLE I. The contribution to the resulting frequencies by ab-
sorption or emission of the polarized photons.

�+ �− �

Absorption −kzv ,
 kzv ,
 


Emission kzv ,−
 −kzv ,−
 −
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matrix a�ij�. For example, when there exist three laser fre-
quencies with detunings of 
z, 
x, and 
y, the matrix a�ij� is
given by

a�ij� = ��kzv,
1,
2� , Tij = − 1,

�
1,
2� , Tij = 0,

�− kzv,
1,
2� , Tij = + 1,

�23�

where 
1�2�=
x�y�−
z.
In summary, the procedure for the calculation of the sub-

Doppler forces is summarized as follows. First, we choose
the number of interactions �N� and calculate the oscillation
frequencies for each matrix element by using the method
described in this section. Then, by solving the coupled linear
equations �Eqs. �13� and �14��, the matrix elements are cal-
culated. Finally, the forces can be calculated from Eq. �16�.

IV. RESULTS

We present the calculated results for the Fg=1 to Fe=2
transition line in two-dimensional laser configurations. Note
that it is straightforward to extend to other transition lines. In
the calculation we have employed parameters like those used
in typical experiments. The laser detuning and the Rabi fre-
quency for the z axis laser are 
z=−2.5 and �z=0.2 �here,
 is the decay rate of the excited state�, respectively.

Figures 3�a� and 3�b� show the calculated forces F�v�,
where the detuning differences are 
=0.0 and 
=−0.5,
respectively, the Rabi frequency for the transverse laser is

�x=�z, and B=0. Here the force is calculated at x=0, which
implies that the polarization of the transverse laser beams
excites only the � transitions. In Fig. 3, the thin, thick solid,
and dotted curves represent the total, sub-Doppler, and Dop-
pler forces, respectively. When we calculate the Doppler
cooling force, all the ground-state coherences are set to zero.
As can be seen in Fig. 3, when the detuning difference is
zero �Fig. 3�a��, there exists a sub-Doppler force at v=0.
However, as the detuning difference becomes nonzero �Fig.
3�b��, the sub-Doppler force at v=0 diminishes and new ad-
ditional sub-Doppler forces available at v= ±
 /kz are cre-
ated. The qualitative explanation for these resonances will
follow below.

As is well known from the study of Ref. �8�, in the �+

−�− laser configurations, the main origin of the sub-Doppler
force is the scattering force, which originates from the popu-
lation differences in the ground-state sublevels. So we have
plotted the populations of the ground-state sublevels in Fig. 4
for 
=0 �Fig. 4�a�� and 
=−0.5 �Fig. 4�b��. In Fig. 4�b�, we
have only considered the nonoscillating terms among the
various oscillating components. The three figures in Fig. 4�c�
represent detailed plots of Fig. 4�b� at v�
 /kz, 0, and −
 /kz
from left to right, respectively. When 
=0 �Fig. 4�a��, the
resonance at v=0 exhibits abrupt population differences be-
tween the sublevels �g1	 and �g−1	, which in turn produce a
novel scattering force, i.e., the sub-Doppler force. When 

=−0.5 �and also at the v=0 resonance that is suppressed
now�, we can observe abrupt changes of the populations at
v= ±
 /kz, which result in steep sub-Doppler forces at those
velocities.

Figure 5 shows the calculated ground-state coherences. If
we consider five photon interactions and assume only the �
transition is excited from the transverse laser beams, the os-
cillation frequencies are −2kzv and −2kzv±2
 for ��g−1 ,g1�,
and −kzv±
 for ��g−1 ,g0� and ��g0 ,g1�. The real and imagi-
nary parts of the matrix element ��g−1 ,g1� oscillating at
−2kzv, which is the major component, are presented in Fig.
5�a� �Fig. 5�b�� as thick and thin curves for 
=0 �
=
−0.5�, respectively. The main difference is the decrease of
the widths of the coherences in Fig. 5�b�, which results in the
weak sub-Doppler force at v=0 for 
�0. The coherences
��g−1 ,g0� and ��g0 ,g1� have two major components oscillat-
ing at −kzv−
 and −kzv+
. Since the coherence at −kzv	

has a resonance near v= 	
 /kz, we present the coherences
��g−1 ,g0� and ��g0 ,g1� oscillating at −kzv−
 near v=
−
 /kz in Figs. 5�c� and 5�d�, respectively. The coherences
oscillating at −kzv−
 can be obtained by symmetry: The real
and imaginary parts of ��g−1 ,g0� ���g0 ,g1�� oscillating at
−kzv+
 are equal to ��g0 ,g1� ���g−1 ,g0�� and −��g0 ,g1� �
−��g−1 ,g0�� oscillating at −kzv−
 with v→−v, respectively.
Unlike the coherences at v=0, whose real �imaginary� com-
ponent shows a Gaussian �dispersive� shape, these have
somewhat complicated shapes.

In the calculations considered so far, we have assumed
that x=0, which implies that the laser photons from the trans-
verse directions contribute to only the � transition. However,
in real situations, atoms experience complicated polariza-
tions depending on the x value. Here we study this phenom-
enon in detail, and the results are shown in Fig. 6. The cal-
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FIG. 3. Calculated forces at 
=0.0 �a� and −0.5 �b�. The
total, sub-Doppler, and Doppler forces are represented by thin, thick
solid, and dotted curves, respectively.

SEMICLASSICAL THEORY OF SUB-DOPPLER FORCES IN… PHYSICAL REVIEW A 75, 053411 �2007�

053411-5



culated forces F�v� at B=0 and F�B� at v=0 are presented in
Figs. 6�a� and 6�b�, respectively, at the position x from x
=0 to � /4 with a step � /16 �� is the wavelength of the
transverse laser beam�. The displacement along the x axis is
equivalent to the addition of a phase for the reflected beam of
the transverse laser beams. For example, when x=0, the po-
larization of the transverse beam is �, while when x=� /4, it
is equally composed of �+ and �−. Between these two posi-
tions, the polarization is a combination of �+, �−, and �. In
Fig. 6�a�, as x changes from x=0 to � /4, we can see that the
strength of the sub-Doppler force at v=0 almost remains
unchanged, whereas those at v= ±
 /kz slightly decrease. In
Fig. 6�b�, we can see similar trends as in Fig. 6�a�; the force
at B=0 is almost unchanged but the forces at B= ±�
 /�B
decrease and finally vanish at x=� /4. However, unlike the
forces in Fig. 6�a�, there exist additional forces at B
= ±�
 / �2�B�, which vanish at x=0.

Let us now discuss the mechanism causing the discrep-
ancy in the two calculated forces in Fig. 6. We consider the
simple transition diagrams in the right panels of Figs. 6�a�
and 6�b�. In Fig. 6�a�, an atom having a velocity v with B
=0 is considered. In the absence of the transverse laser
beams, the magnetic sublevels of the ground state with �m
= ±2, connected by the laser frequencies �z−kzv and �z
+kzv, result in coherence at v=0, which is the origin of the
sub-Doppler force at the MOT center. In the presence of the
transverse laser beams at x=0, the sublevels with �m= ±1
are connected by � transitions in combination with �± tran-
sitions, which leads to the sub-Doppler forces at v= ±
 /kz.
Also, at x=� /4, the transverse laser beams contribute to the
�± transitions. Therefore the sublevels with �m= ±2 are co-
herently connected by the laser frequencies �z±kzv and �x,
which also results in the sub-Doppler force at v= ±
 /kz.
Since the transverse laser beams contribute to the resonances

at v= ±
 /kz regardless of the x value, the sub-Doppler forces
are only slightly changed. In the case of Fig. 6�b�, when x
=0, the resonances occur at B= ±�
 /�B. However, when x
=� /4, the coherent connection between the sublevels with
�m=2 results in the resonances at B= ±�
 / �2�B�. At posi-
tions between x=0 and � /4, we can observe five resonances.
As was reported in the previous paper, these resonances oc-
cur as five sub-Doppler traps in the asymmetric MOT �12�.

When the intensities are high, we can observe higher-
order resonances as presented in Fig. 7. Figures 7�a� and 7�b�
show the calculated force F�v� at B=0 and F�B� at v=0,
respectively, where �z=�x=1.5, 
z=−2.5, 
=−0.5, and
x=� /8. As shown in Fig. 6, we can observe two-photon reso-
nances at v=0 and v= ±
 /kz for Fig. 7�a� and at B=0, B
= ±�
 /�B, and B= ±�
 / �2�B� for Fig. 7�b�. On the other
hand, we can observe four-photon resonances at v= ±
 /3 for
Fig. 7�a� and B= ±2�
 /�B for Fig. 7�b�. The transition
schemes corresponding to these resonances are shown
in the right panels of Fig. 7. In the case of Fig. 7�a�, the
energy conservation relation ±���z	kzv− ��z±kzv�+�x

− ��z±kzv��=0 leads to resonances at v= ±
 /3kz, where the
upper �lower� sign represents the upper �lower� figures. And,
in Fig. 7�b�, the energy conservation ��±�z	�x±�z	�x�
=�BB results in the resonances at B= 	�
 /�B where the
upper �lower� sign denotes the lower �upper� figures.

V. CONCLUSIONS

We have developed an efficient method to calculate the
atomic sub-Doppler forces in the presence of bichromatic
laser fields and applied it to the case of the asymmetric trap-
laser detunings in a six-beam MOT. Instead of expansion in
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the Fourier series, we take into account only the nonvanish-
ing terms, which greatly simplifies the calculations. We have
been able to explain all the observed effects in the calcula-
tions, such as the existence of multiple traps and their physi-
cal origins, nonlinear resonances, and three-dimensional
array of sub-Doppler traps. Note that in our recent experi-

mental studies we reported multiple sub-Doppler traps in two
dimensions �12�. The interesting feature of such multiple
sub-Doppler traps is the easy adjustability: We can vary the
distances between the traps by merely changing the laser
detunings. The calculated forces in the two-dimensional
MOT show two peculiar features: one is the suppression or
weakness of the sub-Doppler forces at the MOT center and
the other is the appearance of additional sub-Doppler forces
at v= ±
 /kz when B=0. When the stationary atom is consid-
ered in a constant magnetic field B, other sub-Doppler forces
occur at B= ±�
 /�B and B= ±�
 / �2�B�.

As was observed in the experiment �12�, the sub-Doppler
forces at the midpoint are very weak compared to the ones at
the sides, which is due to the difference of the transition
strengths responsible for the sub-Doppler forces. For the
three-dimensional asymmetric MOT, one can simply add one
more frequency �with a detuning difference 
1� and conse-
quently sub-Doppler forces at v= ±
1 /kz are generated. We
are currently performing an experiment on the realization of
the three-dimensional array of sub-Doppler trap array as ex-
pected in this theoretical analysis. We also plan to study the
effect of the coherence of each laser wave on the formation
of multiple sub-Doppler traps. Moreover, the theoretical cal-
culation method presented in this paper can be extended to a
more general case of various laser fields where multichro-
matic fields exist, and can also be useful for experiments
employing the versatile properties of the easily adjustable
sub-Doppler trap arrays readily available in an asymmetric
MOT.
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APPENDIX

The oscillation frequencies for N=5 for the ee and gg
transitions are listed as follows. Here ��m,m�� represents
��eme

,eme�
� or ��gmg

,gmg�
� when m=me or mg, respectively. For ee

transitions, i.e., ��me,me+�m�, me=−Fe , . . . ,Fe−�m, and for gg
transitions, ��mg,mg+�m�, mg=−Fg , . . . ,Fg−�m. We denote u
=kzv for simplicity.

��m,m� = �0, ± 2
,− u ± 
,− 2u,− 2u ± 2
,u ± 
,2u,2u ± 
� ,

��m,m+1� = �0, ± 2
,− u ± 
,− 2u,− 2u ± 2
,u ± 
� ,

��m,m+2� = �0, ± 2
,− u ± 
,− 2u,− 2u ± 2
,− 3u ± 
,u ± 
� ,

��m,m+3� = �0,− u ± 
,− 2u,− 2u ± 2
,− 3u ± 
� ,

��m,m+4� = �0,− u ± 
,− 2u,− 2u ± 2
,− 3u ± 
,− 4u� .
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and −0.5 �b�. The ground-state coherence ��g−1 ,g0� �c� and
��g0 ,g1� �d� oscillating at −kzv−
 near v=−
 /kz.
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For the eg transitions, the frequencies are given by the
following equations. For ��em−�m,gm�, we have m=−Fg+�m
−1, . . . ,Fg with �m=1, . . . ,N.

��em,gm� = �− u,− u ± 2
,− 2u ± 
,− 2u

− 3
,u,u ± 2
,2u ± 
,2u − 3
, ± 
,− 3
�, for m =

− Fg, . . . ,Fg �A2�

��em−1,gm� = �− u,− u ± 2
,− 2u ± 
,− 2u − 3
,− 3u,

− 3u ± 2
,u,u ± 2
,2u ± 
,2u − 3
, ± 
,− 3
� ,

��em−2,gm� = �− u,− u ± 2
,− 2u ± 
,− 2u − 3
,− 3u,

− 3u ± 2
,u,u − 2
, ± 
,− 3
� ,
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��em−3,gm� = �− u,− u ± 2
,− 2u ± 
,− 2u − 3
,− 3u,− 3u ± 2
,

− 4u ± 
,u,u − 2
, ± 
,− 3
� ,

��em−4,gm� = �− u,− u − 2
,− 2u ± 
,− 2u − 3
,− 3u,− 3u ± 2
,

− 4u ± 
,− 
� ,

��em−5,gm� = �− u,− u − 2
,− 2u ± 
,− 2u − 3
,− 3u,− 3u ± 2
,

− 4u ± 
,− 5u,− 
� ,

��em+�m,gm� = ��em−�m,gm��v → − v�, with m = − Fg, . . . ,Fg

− �m + 1, for �m = 1, . . . ,N . �A3�

Also we have the relation

��i,j� = − ��j,i�

where i� j for all i , j.
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