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We present a general and mathematically simple method to control two-level systems. It is based on a
piecewise time-independent procedure. We assume that some parameters of an external interaction potential
can be rapidly switched at specified time instants, and then kept constant during small time intervals �t. By
properly setting the parameter values, obtained from algebraic, instead of differential or integral, equations, we
can drive the time evolution of arbitrary observables. We illustrate the approach with some examples and
discuss important technical aspects, relevant in real concrete situations, such as the robustness of the method to
errors in the control parameter values, the influence of the switching mechanism transient times, the appropri-
ate choice for the �t’s, and so on.

DOI: 10.1103/PhysRevA.75.053410 PACS number�s�: 32.80.Qk, 34.10.�x, 02.60.Pn

I. INTRODUCTION

The manipulation and control of quantum processes �1,2�
are among the present and near future challenges in the
physical and chemical sciences �3�, being relevant in both
fundamental and applied aspects. A great part of the excite-
ment in the area comes from the rapid advances in the fab-
rication of time-domain ultrashort laser fields, actually mak-
ing it possible to directly interfere in atomic and molecular
�4–8�, and condensed mater �9–11� systems; drive chemical
reactions �12,13�; implement qubits for quantum computa-
tion �14,15�, etc.

Allied to the experimental progress, a great effort has
been put forth on the theoretical side. The goal is to develop
rapid and accurate methods to predict how a given quantum
system can be driven to a desired time evolution by means of
external “tunable” potentials like electromagnetic fields. Ob-
viously, a certain degree of physical intuition is helpful in
such tasks �16�. However, years of research show that, in-
deed, solid mathematical analysis is necessary to established
the conditions for quantum control �17–19�.

From a technical point of view, there are different ways to
follow. For instance, one possibility is to use the so-called
closed-loop learning approach �20,21�, where a real time in-
teraction between the system and the control device provides
the necessary feedback to maintain the system on the correct
track. Another is to consider the control as an inverse prob-
lem �2,16,22,23�, i.e., once the desired quantum state evolu-
tion is established, to determine what is the appropriate form
for an external time-dependent potential leading to such an
evolution.

In this contribution we propose a general procedure for
quantum control, which is based on the inverse problem pro-
tocol. Nevertheless, it differs from other known methods be-
cause of its mathematical simplicity. In fact, we avoid com-
monly employed techniques like maximizing functionals or
solving a set of time-dependent differential equations. The
“trick” is to implement the control through an external po-
tential U, which depends on a set of parameters ��n�. The

�n’s are changed to appropriate specific values at the instants
tj, and then kept constant during time intervals �tj. Hence,
within each �tj we have a time-independent problem, simple
to solve. By properly setting the switching times and the
parameter values, we can drive the time evolution of the
system. Besides the mathematical straightforwardness, the
approach allows a clear picture of all the physical features
involved in the control process, which sometimes are hidden
in sophisticated mathematical descriptions. We should men-
tion that a similar idea, but used in a different context, has
been applied to probe black-box two-level systems in quan-
tum process tomography �24�.

Throughout the paper the derivations, results, and ex-
amples are focused on two-level systems. We do so, first, due
to their great importance, since many different phenomena
are described and controlled in terms of two-level systems
�5,10,24–30�, even in certain instances where the problem is
effectively a many-level system �31–35�. Second, because in
this case we can perform the control with a minimum num-
ber of parameters, two or eventually just one. Thus, we can
introduce the method without the necessity of addressing a
multidimensional parameter space. The protocol, however,
can equally well be used in more general situations, as we
briefly comment at the end of the work.

The paper is organized as follows. In Sec. II we present
the control procedure. Different examples of applications are
shown in Sec. III. In Sec. IV we discuss some relevant as-
pects, like the robustness to errors in the control parameter
values, how to properly choose the time intervals �tj, and the
generality of the approach �i.e., that it can be used to control
the time evolution of any observable, regardless of the sys-
tem’s initial state�. Final remarks are made and conclusions
drawn in Sec. V.

II. THE METHOD

A. Time evolution of a piecewise time-independent
two-level system

Assume a two-level system Hamiltonian H0, with eigen-
vectors ��0�= � 1

0 � , �1�= � 0
1 �� and eigenvalues �E0 ,E1�. Now,

consider an arbitrary interacting potential U, so that H=H0
+U reads �in the H0 eigenstate basis�
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H = 	 E0 u exp�− i��
u exp�i�� E1


 . �1�

From �1� we see that �n �U �n�=0 �n=0,1�, which is the case,
for instance, when the unperturbed states possess defined
parity and the potential is odd, a typical situation for dipolar
interactions—important in quantum control. Furthermore,
the actual parameters of U, e.g., the intensity and phase of an
applied laser field, are directly related to −� �u� +� and
0���2� through �1 �U �0�=u exp�i��. This reparametriza-
tion is very useful since it allows one to discuss the method
simply in terms of u and �.

For fixed u and �, the solution of H ��±�=E± ��±� leads
to ��±�=A± �0�+B± �1�, where

A± =
±�2u exp�− i��

	�1 ± �E1 − E0�/	
, B± =�1 ± �E1 − E0�/	

2
,

E± =
�E1 + E0� ± 	

2
, 	 = �4u2 + �E1 − E0�2. �2�

Under the action of H the time evolution of ���t= t0��
=C0�t0� �0�+C1�t0� �1� is given by �tan�
�=2u / �E0−E1�, �
= �E+−E−� /�=	 /��

���t�� = C0�t��0� + C1�t��1� ,

C0
1
�t� = 
�exp�
i��t − t0��cos2	


2

 + sin2	


2

�C0

1
�t0�



1

2
�1 − exp�
i��t − t0���exp�
i��sin�
�C1

0
�t0��

� exp	− i
E


�
�t − t0�
 . �3�

In quantum control one constantly needs to adjust an ex-
ternal interaction to correctly drive ���t��. If this potential
changes continuously in time, H=H�t� and hence ���t�� are
given by the explicit time-dependent Schrödinger equation
i��� /�t� ���=H�t� ���, instead of by the above type of solu-
tion. In this case, the control protocol often demands rela-
tively advanced theoretical analysis to determine what are
the best functional forms of U�t�, resulting in the sought
behavior for the state evolution.

Our goal here is still to control the system by properly
tuning �in time� relevant potential parameters. However, we
shall avoid technical complications like solving sets of time-
dependent differential equations. So we propose a piecewise
time-independent procedure. We assume that at determined
instants tj we can very rapidly switch u and � to specific
values uj and � j, which are then kept constant during time
intervals �tj+1= tj+1− tj �j=0,1 ,2 , . . . �. “Very rapidly” means
that the elapsed time for the transition uj−1 ,� j−1→uj ,� j, the
transient time, is much shorter than any characteristic time of
the system �see the next sections for details�. Under this as-
sumption, ���t�� for each �tj+1 is given by �3�, with

u = uj, � = � j, and t0 → tj . �4�

The above prescription holds since the assumed sudden
change in the parameter values allows one to obtain ���tj

+��
from ���tj

−�� just by projecting ���tj
−�� onto the “new” eigen-

states of the time-independent H in the interval tj � t� tj+1
�here, tj

+ �tj
−� means an instant right after �before� t= tj�.

Therefore, in the present framework the control protocol
is to determine the sets of �t1 ; t2 ; . . . � and �u1 ,�1 ;u2 ,�2 ; . . . �
leading to the appropriate ���t��.

B. Expectation values

Usually, the goal in controlling a quantum state is to ob-
tain specific expectation values for an observable of interest,
represented by an operator V. In other words, to have a cer-

tain S̃ for S�t�= ���t� �V ���t�� at t= t̃. We recall that S�t� is
restricted to v−�S�t��v+, with v± the eigenvalues of the
Hermitian V.

Suppose V is written in the basis ��0� , �1�� �with v ,v0 ,v1

real and 0���2��

V = 	 v0 v exp�− i��
v exp�i�� v1


 . �5�

For a time-independent system described by �1�–�3�, S�t�
reads

S�t� = „C0
*�t� C1

*�t�…	 v0 v exp�− i��
v exp�i�� v1


	C0�t�
C1�t�



= �C0�t��2v0 + �C1�t��2v1 + 2v Re�C0

*�t�C1�t�exp�− i��� .

�6�

Now, from the explicit form of C0�t� and C1�t� in Eq. �3�, we
see that the time dependence of the terms �C0�t��2, �C1�t��2,
and C0

*�t�C1�t� above is entirely given by the trigonometric
functions sin���t− t0�� and cos���t− t0��. Therefore, we have

S�t� = V0 + V1 sin���t − t0�� + V2 cos���t − t0�� . �7�

Finally, the coefficients Vj in Eq. �7� can be obtained from a
direct comparison with a lengthy but straightforward expan-
sion of �6�, resulting in �C0�t0�=r0exp�i�0�, C1�t0�
=r1exp�i�1��

V0 = �v0r0
2 + v1r1

2��cos4�
/2� + sin4�
/2��

+ �v0r1
2 + v1r0

2�sin2�
�/2 + �v0 − v1�r0r1 cos��0 − �1 + ��

��cos2�
/2� − sin2�
/2��sin�
�

+ vr0r1 cos��0 − �1 + ��sin2�
�

+ vr0r1 cos��0 − �1 + 2� − ��sin2�
�

+ v�r0
2 − r1

2�cos�� − ���cos2�
/2� − sin2�
/2��sin�
� ,

V1 = v�r0
2 − r1

2�sin�� − ��sin�
�

− �v0 − v1�r0r1sin��0 − �1 + ��sin�
�

+ 2vr0r1sin��0 − �1 + ���cos4�
/2� − sin4�
/2�� ,
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V2 = �v0 − v1��r0
2 − r1

2�sin2�
�/2 − v�v0
2 − v1

2�cos�� − ��

��cos2�
/2� − sin2�
/2��sin�
�

− �v0 − v1�r0r1cos��0 − �1 + ��

��cos2�
/2� − sin2�
/2��sin�
�

+ 2vr0r1cos��0 − �1 + ���cos4�
/2� + sin4�
/2��

− vr0r1cos��0 − �1 + 2� − ��sin2�
� . �8�

Note that the S�t� characteristic period of oscillation, �
=2� /�, depends only on the system’s Rabi frequency �
=�4u2+ �E1−E0�2 /�. So fast changes in the observable ex-
pectation values are achieved by strong variations of u.

To find the specific �, u, and t= t̃, leading to a certain S̃,

we need to set S�t�= S̃ and then to solve Eq. �6�. Although it
may seem a little cumbersome, Eq. �6� is just a trigonometric
polynomial, and hence straightforward to deal with numeri-
cally. The procedure to impose a whole specific “trajectory”
for S�t� is the following.

�1� To define the set of time intervals ��tj�. In practice,
their actual choice is related to both the details of how fast
the Hamiltonian parameters can be changed �e.g., determined
by the external laser field time response�; and how similar
the obtained and ideal target trajectories must be for a spe-
cific application.

�2� Within each �tj, to choose a t̃ for which S�t̃� assumes

the desired value S̃. The exact t̃ is not very important if �tj is
small enough. In our simulations we always take t̃= tj+1

− .
�3� To solve, at t= t̃, the appropriate Eq. �6� for the corre-

sponding � and u.
The quantum control is obtained from the calculated set

of parameters � and u. It is clear from the previous discus-
sions that, the smaller the ratio between the transient time for
each step j and the Rabi period �, the more accurate the
control. We observe that our approach contrasts with others,
like those in �8,16,22� �see also �33,34� for an overview�,
which demand more complex numerical methods.

III. RESULTS AND EXAMPLES

Next we show the potentiality of the approach by discuss-
ing different examples. We assume in all the applications a
two-level system of energies �in the atomic system of units�
E0=0.323 849 a .u. and E1=0.323 968 a .u., so that
�E=E1−E0=0.119�10−3 a .u., which corresponds to a
natural time of �0=1.28 ps. We choose these particular val-
ues just for definiteness; however, we mention that they cor-

respond to the two excited states used to control the breaking
of DH2 molecules �5�. The quantum control is implemented
by tuning the parameters u and � as previously discussed. In
laboratory conditions, for instance, our procedure could be
realized by applying an external field to the system, e.g., a
laser beam of variable amplitude and configured by a phase
modulator �21�. The field parameters related to u and �
through the matrix element �1 �U �0� �see Sec. II A; in this
case with U=���t� �8,16,22,32,36�,where � is the dipole op-
erator and ��t� a piecewise time-independent electric field�
should be set to the appropriate constant values during the
corresponding time intervals.

A. Controlling S„t… at determined t values

We start with a simple situation and discuss the control of
the observable V= �n��n� �n=0,1� �8,37�. Thus, S�t� is just
the probability for the system to be found in the state n at
time t. The V parameters are v0=1−n, v1=n, and v=0. We
shall drive the system evolution so that at times equal to 1, 2,
3, and 4 ps, the population of the level n=0 is given by
Sa�t�=0.2t /�t, Fig. 1�a�, and Sb�t�=0.05�t /�t�2, Fig. 1�b�.
The parameters leading to it are listed in Table I. They
change only after time intervals of �t=1 ps. Hence, within

TABLE I. Control parameter values used in each interval of 1 ps in Fig. 1. ū=u / �E1−E0� and � is in
radians.

Interval Fig. 1�a� solid line Fig. 1�a� dashed line Fig. 1�b� solid line Fig. 1�b� dashed line

0–1 ū=0.630, �=2.649177 ū=0.546, �=1.569089 ū=0.840, �=0.870655 ū=0.630, �=1.493502

1–2 ū=0.630, �=4.896750 ū=0.504, �=4.143567 ū=0.630, �=0.687220 ū=0.630, �=0.214842

2–3 ū=0.630, �=4.048721 ū=0.504, �=3.432818 ū=0.630, �=1.346751 ū=0.630, �=0.070247

3-4 ū=0.630, �=2.567145 ū=0.504, �=3.136860 ū=0.630, �=0.082234 ū=0.630, �=3.449264
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FIG. 1. The observable S�t�, here the population at n=0, con-
trolled �solid and dashed lines� with the different sets of parameters
listed in Table I. The dotted curves represent the target trajectories
Sa�t� �a� and Sb�t� �b�. In �a� the initial state is unique, but evolves
according to two different sets of control parameters. In �b� the two
curves represent different initial states �see main text�.
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�t the quantity S�t� follows the dynamics of a two-level
system under the action of a time-independent potential, pre-
senting then simple Rabi oscillations.

In the first example, Fig. 1�a�, we assume as the initial
state C0=1/�2 and C1=exp�i� /4� /�2 and perform the con-
trol with two different sets of u’s and �’s. The existence, in
certain cases, of multiple solutions is a consequence of the
polynomial character of Eq. �6�. It may be an advantage,
since among different possibilities one can pick those that
are easier to implement.

For the second example, Fig. 1�b�, we have two initial
states, the solid �C0=1/�2, C1=exp�i� /4� /�2� and dashed
�C0=�3/2, C1=exp�i� /4� /2� curves. Obviously, each state
demands a different set of parameters �see Table I�. We
should observe that the quantum control can always be
implemented regardless of the initial state �see the discussion
in Sec. IV�. For instance, the initial state C0=�3/2,
C1=exp�i� /4� /2, resulting in Sb�t�, would also lead to Sa�t�
at the specified t values, provided the parameters were cor-
rectly tuned.

B. Controlling S„t… as a trajectory

In the previous example, the control is achieved only at
certain time instants. Of course, by making the �tj’s shorter,
the number of points where S�t� agrees with a given trajec-
tory increases. However, it may seem that S�t� can follow a
full path only in the limit of �tj→0, i.e., for a true continu-
ous time-dependent control. Fortunately, this is not the case.
We can configure S�t� reasonably close to a target trajectory
by making the �tj’s small but finite, as illustrated next. We
leave to Sec. IV a more detailed discussion about how to
properly choose such �tj intervals.

Unless otherwise mentioned, hereafter we set �tj =�t
=100 fs �38�. For V we assume �in arbitrary units� v0=1,
v1=3, v=�3, and �=� /2; thus v−=0 and v+=4. Once
�0 /�t=12.8, the time intervals are much shorter than the
unperturbed system �u=0� natural time. Thus, the obtained
S�t� can be regarded as a fairly good approximation for a
continuous trajectory in the �0 time scale. As the initial state
we take the same one used in Fig. 1�a�.

We begin with a somewhat critical shape for S�t�, the
staircaselike function of Fig. 2�a�. From Eq. �6� we have
dS�t� /dt= �V1 cos���t− t0��−V2 sin���t− t0����. Since the
term between braces is bounded, abrupt changes of S are
associated with �=�4u2+ �E1−E0�2 /�. So, whenever we
seek sharp variations of S �e.g., at the edges of the staircase-
like trajectory�, we need large �u’s.

For S�t�2.5 ps�=3, S�2.5� t�7.5 ps�=0.5,
S�7.5� t�12.5 ps�=3.5, and S�t�12.5 ps�=1, we perform
the control in two different ways: �i� changing both u and �;
and �ii� keeping u constant and changing �. For �i� we show
in Fig. 2 the values of u and � and the resulting S�t�. Observe
that, each time S presents a jump, Fig. 2�a�, there are more
pronounced corresponding variations of u, Fig. 2�b�, and of
�, Fig. 2�c�.

Such strong changes of u in short times �eventually nec-
essary, e.g., to control molecular processes in the presence of

collisions �39�� may pose technical difficulties in practice.
Note that u has units of energy and, for the case of an exter-
nal field, u is directly related to its intensity. Thus, in our
example the method would demand fast variations of the
field amplitude. So another possibility is to fix u at a value
never inferior to the minimum necessary to promote the larg-
est �S /�t transition and then to control only the phase pa-
rameter �. This is shown in Fig. 3�a� �continuous curve�,
where we set u / �E1−E0�=2.94, i.e., a value 1.52 times larger
than the maximum u in Fig. 2�b�. In Fig. 3�c� we display S�t�
around a jump region. We observe some �not strong� oscil-
lations for S�t� before reaching the aimed constant value of
0.5, a behavior not seen in Fig. 2�a�. This loss of quality in
the control during short times is the price to be paid for using
just one, namely �, instead of two control parameters. We
mention that a third possibility, to fix � and change u, has the
already mentioned drawback and gives overall poor results.

For a smooth S�t�, on the other hand, the conditions for
control are more favorable. Suppose the target trajectory
S�t�=S0+S1 exp�−��t−T1�2�+S2 exp�−��t−T2�2�, i.e., basi-
cally two Gaussians centered at different instants in time.
Figure 4�a� �continuous curve� displays the result for T1
=2.5 ps, T2=10 ps, S0=3.0, S1=−2.9, S2=0.9, and �
=1.54 ps−2. We keep u / �E1−E0�=1.1 constant and change
only �, Fig. 4�b�. Note that we can set a lower value for u,
compared to that in Fig. 3, even thought here the maximum
and minimum of S�t� are very close to the allowed extremes
of v−=0 and v+=4. This is possible because there are no
abrupt variations for S�t�. Furthermore, we do not have the
short spurious oscillations observed in the previous case.

From Figs. 2–4, we see that during time intervals �T

where S�t�= S̃ is constant, the control parameters also tend to
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FIG. 2. �a� S�t� configured as a staircaselike function by the
control parameters �b� u and �c� �. The dotted curve represents S�t�
for small random errors for the set �tj�.
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fixed values �the arrows in the figures indicate some ex-
amples�. To understand this fact, note that a trivial way to get

S�t�= S̃ is to have ���t��=exp�−i�Ea /��t� ��a�, with ��a� the

eigenstate of H�u ,�� for which ��a �V ��a� is exactly S̃.
Hence, in these situations the method �within �T� progres-
sively selects the parameters until ���t��→ ��a� and then
locks in their values. We illustrate this by showing in Fig. 5

the projections ����t� ��a��2 and ����t� ��b��2 �with ��b� the
corresponding second eigenstate of H� around t=2.5 ps for
the example of Fig. 2. ��a� is the state to which ���t��
evolves so as to lead to S�t�=0.5. This transition process
starts at t=2.5 ps, finishing 0.38 ps later. At t=2.88 ps, u and
� also reach the appropriate fixed values �marked by arrows
in Figs. 2�b� and 2�c��. We should mention that it is just an
artifact of this particular example ��b� to be close to a sta-
tionary state, resulting in S�t�2.5 ps�=3.

IV. DISCUSSION

After presenting and exemplifying the method, we now
pass to discuss some of its general technical aspects.

A. The control sensitivity to errors in the parameter values

An important point is the stability of the approach to
small errors in the control parameter values. So a first issue
relevant to estimating how accurate must be the switching
mechanics concerns the time instants tj at which the param-
eters must be changed. In our calculations we suppose the
sudden approximation �see the discussion before Eq. �4��.
Thus, a delay for the transition uj ,� j→uj+1 ,� j+1 may intro-
duce some deviations from the target trajectory. Hence,
quantifying how a “detuning” in the tj’s affects the quality of
the control is also a way to probe the role played by finite
transient times, which in a real situation can be short but not
zero.

We test this by introducing errors �tj for the tj’s. Each �tj
is randomly sorted within �−�t /16.66, +�t /16.66�, so the
error interval width corresponds to 12% of the time intervals
�t=100 fs used in the examples. The dotted curves in Figs.
2�a�, 3�a�, 3�c�, and 4�a� display S�t� for the correct param-
eters tuned at times tj +�tj. Comparing Figs. 2�a� and 3�a�,
where in the former �latter� the control is performed with u
and � �just ��, we see that, as expected, the control quality is
less affected by errors when both parameters are used. We
also observe better results in Fig. 4�a� than in Fig. 3�a�, in-
dicating that smooth S�t�’s are more robust to errors.

A second situation is for small errors in the values of the
control parameters themselves. We simulate it by considering
uj +�uj and � j +�� j, where �uj and �� j are taken randomly
within �−uj /20,uj /20� and �−� j /20,� j /20�. Hence, the error
interval widths correspond to 10% of the parameters correct
values uj and � j. In Figs. 6�a� and 6�c� we consider the
control of both u and � and in Figs. 6�b� and 6�d� only of �.
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All figures display S�t� for the control performed with the
exact u and �; errors only for �; and errors for both u and �.
We see that, as before, by controlling two parameters the
deviations are much less pronounced. In fact, the worst case,
especially for 5� t�11 ps, is that of Fig. 6�b� �dashed and
dotted curves�. However, it is a critical example: a nons-
mooth S�t�, controlled with just a single parameter, �, for
which there are random errors.

B. Generality of the method regarding the initial state ��„t0…‹

and the observable V

In the explicit applications we discuss only two observ-
ables V and a few shapes for S�t�. However, in testing the
method, we have been able to control different paths S�t� for
many different V’s, always with good numerical accuracy. So
a natural question is if the present approach allows us to
drive S�t� to any desired trajectory �under the restriction v−

�S�t��v+�, regardless of the operator V and the problem
initial state ���t0��. Due to our specific type of protocol, this
is equivalent to asking if, by setting the Hamiltonian param-
eters and choosing an appropriate instant t0� t̃� t0+�t, we

can make S�t= t̃� assume any value S̃. We show in the Ap-
pendix that this is the case; thus the method can be used to
control two-level systems in arbitrary contexts.

To demonstrate the generality of the method’s building
block procedure, i.e., to perform a parametric local control at
each time interval �tj, we have considered in the Appendix
the most unfavorable situation. We have found that, to con-
trol a completely general case, we should assume �t��. In
most examples throughout the work we set �t=�0 /12.8 �re-
call that �0���, apparently in contradiction with this condi-
tion. We observe that in the Figs. 2–4, the chosen initial state

���t0�� already gives S�t0� around the desired value S�t̃�= S̃
for t0� t̃� t0+�t. Actually, the figures reflect this fact since
the transients for t� t0=0 are almost imperceptible, e.g., in
Fig. 2�a� seen just as a very small spike for S�t�0�. The
important point is that, when controlling the time evolution
of S�t�, if for each time interval �tj+1 we already start with a
state ���tj�� close to the target state ���t̃��, then the condi-
tions in the Appendix can be relaxed. Obviously, such
“closeness” of states at each tj is automatically satisfied
when we perform the control for a smooth S�t�. In these
cases there are no important restrictions for the values of �tj,
which can be small, limited only by external aspects, like the
control tuning mechanisms.

However, if we cannot select the initial states �40� and
also S�t� has rapid variations or even jumps as in Figs. 2 and
3, we still can use short time intervals, provided u can as-
sume large values. The method then naturally selects u so as
to make the ratio � /�t appropriate for the control. We illus-
trate it with a simple example, assuming S�t� to be the nu-
merical constant 3.99, i.e., almost the maximum allowed
value of v+=4. We set �t=100 fs and perform the control,
shown in Fig. 7�a�, using both u and �. As the initial state we
take C0=0.840 745 and C1=0.541 431exp�−i� /2�; thus
���t0� �V ���t0��=0.01 is very close to the lowest possible
value of v−=0. In the Appendix we show analytically that, to

obtain S̃=v+ within �t, from an initial state leading to S�t0�
=v−, we need � /�t=2. Figure 7�b�, displaying � /�t as func-
tion of time, is in agreement with such results. Indeed, during
the first control step t /�t�1, we have u /�E=3.02, a high
value for u, making � to be short enough to meet the time
condition, here of � /�t=2.08. Note, furthermore, that for
t /�t�2, u has already decreased to u��E.

Finally, if we cannot freely change u or even set it to a
high constant value as in Fig. 3, then we can make the �tj
small in the smooth regions of S�t�, but need to assume
larger time intervals at the beginning of the control process
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and around the strong variation regions of the target trajec-
tory.

C. Connection with laser field parameters

The proposed scheme is based on a control of “bare” pa-
rameters. So it is of fundamental importance to know how
they are related to actual external potential parameters, e.g.,
of a laser field, produced in laboratory conditions. Below we
address two points related to this issue.

The first is that the method assumes a fast transient time
�sw for the parameter switching. Recently, a quantum control
experiment has been reported �38� with a field pulse of �sw
=100 fs. In fact, the present state of the art in femtosecond
pulse shaping �see, for instance, Refs. �41�� implies that as
“sudden” one should consider changes typically taking place
within this time scale. For our previous examples and a laser
field of �sw=100 fs, we find that �sw/�0�0.08 is relatively
small, therefore satisfying the method’s main assumption
�see the discussion just before Eq. �4� in Sec. II A�.

Nevertheless, a possible difficulty for a concrete realiza-
tion of the discussed examples is the assumed time step of
�t=100 fs, for which the desired condition of �sw��t does
not hold. In this case a continuous variation of the potential
parameters within �sw has an effect similar to that of intro-
ducing errors in the values of the tj’s, exemplified in Sec.
IV A. This probably would lead to a less accurate control
than, for instance, those seen as continuous lines in Figs. 2�a�
and 3�a�. A way to overcome the problem is to use longer
�t’s. In Fig. 8 we show the same situation as in Fig. 2, but
for �t=200 fs. The control is still very good and even errors
in the tj values �dotted curve in Fig. 8�a�� do not introduce
strong perturbations. Note that, since the error interval width
�12% of �t=200 fs� is about �sw/4=25 fs, we may expect to
have experimentally a reasonable good control. Unfortu-
nately, by increasing �t the protocol accuracy becomes more

sensitive to deviations in uj and� j. Observe in Fig. 8 that,
during the control process, the changes in the parameter val-
ues occur more frequently, if compared to Fig. 2. Indeed, in
Fig. 8 we do not see such large plateaus as in Fig. 2. Hence,
the accumulated error �due to eventual deviations �uj and
�� j� will be more pronounced. Thus, in a real situation there
is a compromise between how fast the transients are and how
accurately the parameter values can be tuned. But, of course,
with advances in the fabrication of lasers with shorter �sw,
this feature loses part of its relevance.

The second point is related to the laser amplitudes neces-
sary in concrete applications. An important aspect is if we
are dealing with an N-level systems, but the control can be
performed by manipulating just two of them �31–35�. In such
cases, the field peak values will determine the validity of a
two-level description for the quantum control of an N-level
systems. Obviously, this is not a concern when we have ef-
fectively only two levels, e.g., no other levels are accessible
under the experimental conditions �10,24,27� �for a more
technical analysis see also Refs. �42��.

To estimate the magnitudes of the fields, we recall the
discussion in the beginning of Sec. III, and, as usual in the
dipolar approximation, neglect possible spatial variations of
�. We can write then

u = ��1�U�0�� = ��1����0�� � ����10, �9�

where �10 is the modulus of the dipole matrix element.
Therefore, as a function of time the field amplitude has ex-
actly the same profile �e.g., like those seen in Figs. 2�b� and
3�b�� as u. Moreover, we observe that in many examples
�9,35,43� the quantity �10 is typically of the order of 1 a .u.
So in atomic units �max is numerically around umax. For ex-
plicit values consider Fig. 2�b�. Since we have that
umax/�E=2, then �max=2.3�10−4 a .u. For comparison, in
the original paper controlling the DH2 molecule �5�, the
maximum control field peak is 1.9�10−4 a .u.; hence our
method demands similar field amplitudes.

Finally, in certain instances one may wish to decrease the
laser intensities. In our model it can be done by allowing
larger time steps, as directly observed in Fig. 8, where we
use �t=200 fs. Note that umax/�E=1.2, in contrast to
umax/�E=2 of Fig. 2�b�, i.e., a diminishing of 40%. Thus,
the method allows a certain flexibility in setting the maxi-
mum field peaks, provided we can afford to lose some accu-
racy in the control process.

V. REMARKS AND CONCLUSION

We have proposed a very simple method to control the
time evolution of quantum states and consequently the ex-
pectation values of relevant operators. The main idea is to
change, only at appropriate time instants, the parameter val-
ues of an external interaction. So we are left with a succes-
sive set of time-independent systems. Of course, the idea of
using piecewise analytic solutions to solve either time-
independent �44� or time-dependent �45� Schrödinger equa-
tions, in the context of atomic and molecular physics, is not
new. However, only recently has it been considered in quan-
tum control, e.g., in quantum process tomography �24� and in
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tailoring average moments of wave packets �46�. Here we
apply this approach to a full tracking control.

Here the solution of the inverse problem, i.e., to obtain the
external potential �e.g., an electric field� leading to the de-
sired time evolution, is relatively simple since we need to
solve a set of time-independent algebraic, instead of differ-
ential or integral, equations. Regarding this observation, a
few comments comparing ours to more conventional
schemes are in order. For this, we briefly summarize the
optimal and inverse �or tracking� control methods below �for
an overview of different methods see, e.g., Ref. �18��.

The optimal method is based on a functional J1 involving
the wave function and the target time evolution, e.g., S�t�.
The minimization of this functional results in the field for the
sought control: to maximize the expectation value of a deter-
mined operator �within a certain time interval�, to make the
system wave function follow a predefined evolution �8�, etc.
Usually, a second functional J2 �a penalty cost term� is also
introduced. Its role is to avoid solutions for which the field
presents undesired features like divergences. The joint mini-
mization of J1+J2 represents then a balance between finding
the field for the exact target control and keeping the field
fluence down. The method’s drawback, however, is its de-
mand for computationally intensive iterative optimization
procedures �16� �although more efficient algorithms are be-
ing reported in the literature �34,47��.

The inverse method follows the standard viewpoint of in-
verse problems. The output S�t� is specified and the input,
the external potential, must be found. A differential equation
for S�t�, whose order depends on the characteristics of the
observable operator V and the interaction potential U �16�, is
obtained. From it we can write down the desired U in terms
of the time derivatives of S�t�= ���t� �V ���t��. But U ap-
pears explicitly in the Schrödinger equation, which deter-
mines the evolution of ���t��. Thus, we end up with a set of
coupled nonlinear differential equations and numerical meth-
ods are necessary. One important aspect is that one imposes
only the target evolution of S�t�. No restrictions are set on
the external potential �the electric field�. Hence, in some in-
stances the method gives singular solutions. In such cases,
allied to the inverse procedure, a special treatment for han-
dling the field divergences must be considered �22�.

From the above, the mathematical simplicity of the piece-
wise time-independent parametric control becomes obvious.
It deals with linear algebraic equations and does not invoke a
recursive procedure in time, even when extended to N-level
systems �see below�. Moreover, the method always leads to
regular solutions. A simple and intuitive way to understand
this last fact is to realize that imposing a trajectory S�t� along
a full continuous time interval can be too restrictive, de-
manding singular external fields. In the present scheme we
relax this imposition. We set the control only at a single
instant t̃ within each time interval �tj. As already discussed,
for appropriate time scales the obtained S�t� can fairly
enough be considered a continuous path. Since we have a
certain flexibility to choose the time parameter values, we
always are able to find finite solutions for Eq. �6�.

As a last comparison, we shall also cite the local control
theory �LCT�, developed by Tannor, Kosloff and others

�32,36,48�. In this method, recently reviewed in Ref. �49�,
the external perturbation on a system is determined within
each time instant �49�, so as to influence a target observable.
Therefore, our method and the LCT have the same common
feature of not demanding information on later time
dynamics—through forward-backward iteration—typical of
global optimization approaches. However, technically they
are different. In the local control theory one considers time-
dependent external pulses and then writes down the problem
Schrödinger equation. From it one derives rate relations,
given how a level energy or its population varies in time. By
properly choosing the external field at each t �a function of
the time-dependent wave equation at the same t�, it is pos-
sible to change monotonically the energy of certain states,
lock the population of a set of levels, cool the system internal
degrees of freedom �e.g., vibrational modes of molecules�,
etc. �49�. Our method strikes in a different direction. First,
we focus and control the relevant expectation values directly,
rather than their time variations. So our method may be
easier to apply if one needs a specific shape for S�t�, whereas
the LCT may be more appropriate if only monotonic varia-
tions �or no variations at all� of the observables are targeted.
Second, our method requires a different character for the
external field, which in the LCT is basically a train of pulses.
So the experimental setup necessary for each implementation
might be different.

We have discussed the method in the context of two-level
systems, interesting for their own sake. However, the ap-
proach can be extended to a more general situation of N
levels. In this case the main equation for the control is a
direct generalization �but of course a much more compli-
cated version� of Eq. �6�. Furthermore, if for a full control a
multiparameter potential U��1 , . . . ,�2� is necessary, then the
analysis of how generally we can apply the method and what
are the conditions for the control requires extending the type
of discussions in the Appendix to a multidimensional param-
eter space. It is feasible, nevertheless, since there are differ-
ent efficient techniques to classify the allowed dynamical
outcomes of a system in terms of its parameter “landscape,”
used, for instance, in such complex systems as biological
ones �50�. Similar techniques are already employed in
closed-loop learning quantum control for as many as 130
independent parameters �see, e.g., �51� and references
therein�.

Finally, we observe that we have used the fact that a two-
level Hamiltonian is exactly diagonalized �cf. Eqs. �2� and
�3�� to obtain an explicit analytical dependence of S�t� on the
external potential parameters. So all the numerical work is

reduced to solving S�t�= S̃. This is not the case for N-level
systems �actually, for three levels a closed solution is also
possible �52��, for which an N�N Hermitian matrix, analo-
gous to Eq. �1�, must be numerically diagonalized. In this
case, the piecewise time-independent parametric control
method is implemented through two steps. For each time
interval �tj, we first set the parameter values, diagonalize the
Hamiltonian, and then find numerically the N coefficients
Cn�t� to be inserted into the appropriate extension of Eq. �6�.
Second, we determine within �tj how close �S�t�− S̃� is to
zero, thus deciding if new parameter values �chosen based on
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the numerical evaluation of ��S� should be tested again for
that �tj. Since for, let us say, 100 states a numerical calcu-
lation of H is really fast in any personal computer, our
method is still easy to handle, demanding relatively low
computational time for tens of levels.

Presently we are applying our procedure to control three-
�53� and four-�54� level systems. The results will be reported
in due course.
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APPENDIX

Here we shall demonstrate that for an arbitrary V, if we
correctly fix the parameters u and � in the Hamiltonian H of
Eq. �1� and properly set a t= t̃ within the time interval

�t0 , t0+�t�, we can obtain any specified value v−� S̃�v+ for
S�t= t̃�, regardless of the initial state ���t0��.

We start by observing that, under the action of H and for
t0� t� t0+�t, the time evolution of the initial state
���t0��= ��0� is given by

���t�� = exp	−
i

�
H�t − t0�
��0� . �A1�

Within �t the eigenstates of H, ��± ��, are a good basis for the
problem. Nevertheless, we always can expand ���t�� in the
basis of eigenstates of V, ��v±��. In particular, for t= t̃, sup-
pose ���t̃��=c− �v−�+c+ �v+�. Since �c−�2+ �c+�2=1, we have

S̃=��t̃�v++ �1−��t̃��v−, with 0���t̃�= �c+�2�1. Therefore, if
somehow we can make ��t̃� assume any value between 0 and

1, we can set S̃ as we wish.
Let us define

��t� = ��v+���t���2, �A2�

so that ��t̃�= �c+�2. Next, up to unimportant overall phases we
can write �0�a ,b�1, 0�� ,��2��

�v+� = �a exp�i��� + � + �1 − a�− � ,

��0� = �b exp�i��� + � + �1 − b�− � . �A3�

Thus, defining �= �t− t0��− ��−��, from Eqs. �A1� and �A3�
we have for Eq. �A2�

��t� = 2ab + 1 − �a + b� + 2�ab�1 − a��1 − b�cos��� .

�A4�

To state that we are able to perform the quantum control
for any possible observable V and initial state is equivalent to
stating that we can control � assuming �v+� and ��0� are
completely arbitrary vectors.

Now, by inspecting Eq. �2�, one quickly realizes that, first,
if we have total freedom to choose u and �, then the eigen-
states of H can be made equal �up to global phases� to any
vector of the two-level Hilbert space. Hence, one of the two
projection parameters in �A4�, say a= ��+�v+��2, can be set to
any allowed value. Second, if we properly choose t= t̃, so
that ��t̃� assumes any value within �0,��, then the cosine
function in Eq. �A4� can span the whole numerical interval
�−1,1�. This is possible whenever �t���+�, for � given
by �−� �mod ��. So a sufficient condition to fully control �,
independent of �−�, is to have �t��. However, more fa-
vorable phase differences may lead to shorter time intervals
�see below�.

Finally, it is straightforward to show that Eq. �A4�, for an
arbitrary b, can assume any value between 0 and 1, provided
we can freely vary cos��� and a, which is always possible
from the above results. Thus, the generality of the control
procedure is established.

As an application we particularize Eq. �A4� to a situation
for which the control is somewhat extreme. Suppose we tar-

get S̃=v+, so that ��t̃�=1. Obviously, the most “difficult”
initial state in this case is ���t0��= �v−�, where then b=1−a
and �=�+�. Thus, Eq. �A4� reduces to

��t� = 4a�1 − a�sin2��t − t0��/2� . �A5�

Imposing ��t̃�=1 above, we find a=1/2, t̃= t0+�t, and a
minimum value for the time interval of �t=� /2.
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