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We present a theoretical method for Coulomb three-body rearrangement collisions solving a Chew-
Goldberger-type integral equation directly. The scattering boundary condition is automatically satisfied by
adiabatically switching on the interaction between the projectile and hydrogen atom. Hence the outgoing wave
function is obtained without the tedious procedure of adjusting the total wave function in the asymptotic
region. All the dynamical information can be derived from the outgoing wave function obtained on pseu-
dospectral grids numerically. Taking �−+H�1s� and p̄+H�1s� collisions as examples, we demonstrate the
usefulness and powerfulness of the method and present the state-specified capture cross sections of heavy
negatively charged particles by hydrogen atoms. The convergence and accuracy of the numerical procedure are
examined with sufficient care.
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I. INTRODUCTION

Coulomb three-body rearrangement collisions have been
studied extensively as one of the most fundamental dynami-
cal processes. They serve as a prototype of general ion-atom
collisions and electron-atom collisions. In high energy re-
gions perturbative treatments like the Born approximation
are generally applicable and the theoretical study of them is
not difficult. As the collision energy decreases higher-order
effects become important and we are obliged to use nonper-
turbative approaches. The computational time required by
the nonperturbative approaches, e.g., the close-coupling
method, inevitably increases dramatically. The semiclassical
trajectory method, which reduces the numerical burden to
some extent, can be applied for the heavy particle motion if
the collision energy is not too low. In the low energy region
where the de Broglie wavelengths of the relevant particles
are comparable or even larger than the target geometrical
size, all three particles have to be treated quantum mechani-
cally.

In the traditional close-coupling method a time-
independent scattering equation derived from the stationary
Schrödinger equation is generally solved under the boundary
condition that the wave function becomes a sum of the inci-
dent plane wave and the scattered outgoing spherical wave in
the asymptotic region. The scattering wave function also has
to satisfy the regularity at the origin. In general, the
N-channel coupled differential equations are solved outward
N times using different initial conditions at the origin to ob-
tain N sets of independent solutions. Taking a linear combi-
nation of the independent solutions, one has to adjust the
wave function to the proper boundary condition in the
asymptotic region to obtain the K matrix or the T matrix. As
the number of channels N increases, numerical difficulties

increase rapidly. First, the integration of multichannel
coupled equations becomes time consuming for large N
nearly in proportion to N4. Second, linear independency of
the N sets of solutions becomes worse owing to the contami-
nation of unphysical solutions that grow up exponentially at
large distances. Requirement of a large number of channels
happens when the masses of the exchanged particles differ
significantly. For example, when heavy negatively charged
particles like negative muons or antiprotons collide with hy-
drogen atoms in a 10 eV energy region the heavy particles
are mostly captured into highly excited states with the prin-
ciple quantum number n��� extending to all the possible
angular momenta l. Here � is the reduced mass between the
proton and the heavy particle in the unit of electron mass �1�.

One way to circumvent the difficulties involving the mul-
tichannel scattering equations is to introduce the freedom of
time. Although the spatial and temporal parts of the wave
function can be separated for the stationary scattering prob-
lems, introducing the redundant variable of time replaces the
boundary condition in space by an initial condition in the
time domain. In this treatment, a wave packet �2� is prepared
at a starting point to represent the incident particle and the
wave packet is propagated inward following the Schrödinger
equation. Though this method has a merit that it can provide
an intuitive physical picture of the time evolution for the
particle motion, it has a demerit that one has to sacrifice the
numerical accuracy. In order to localize the wave packet
within a sufficiently small region, one has to superpose many
states belonging to different collision energies, and accord-
ingly, keeping high numerical accuracy throughout the colli-
sion is difficult. In fact, Sakimoto �2–4� could not obtain the
state-specified capture cross sections for antiprotons, kaons,
or muons colliding with hydrogen atoms. He just presented
the total capture cross sections subtracting the sum of elastic
and excitation probabilities from the unity.

Esry and Sadeghpour �5� and Hesse et al. �6� calculated
the state-specified capture cross sections by the hyperspheri-
cal coordinate method using a scaled mass for antiprotons.
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Scaling down the antiproton mass makes the principal quan-
tum number of the captured states lower and the number of
the coupled channels much smaller. The usage of scaled
mass helps qualitative understanding of the capture process
but there is no way to convert the cross sections of the
scaled-mass calculations to those of the real mass quantita-
tively. Recently, Ovchinnikov and Macek �7� applied the ad-
vanced adiabatic approach to the problem and presented the
n-dependent capture cross sections. Although their sophisti-
cated method may be accurate qualitatively for the relevant
process, the quantitative reliability for the minute informa-
tion such as the n-distribution is not clear. Yamanaka and
Ichimura �8� obtained the state-specified antiproton-capture
cross sections solving the Faddeev equation and neglecting
the angular momentum exchange between the antiproton and
the electron. Even though the approximation simplifies the
numerical treatment significantly, the justification of the ap-
proximation is not easy. As a matter of fact, we demonstrated
in our recent study that the contribution owing to the angular
momentum exchange between the projectile and the electron
is important. Cohen �9,10� studied the processes extensively
by the classical trajectory Monte Carlo �CTMC� method. The
applicability of the classical mechanics at such low energies
is not clear, especially for the motion of the electron. Be-
sides, ambiguity occurs in extracting the discrete quantum
numbers n and l from the classical continuous quantities. To
the best of our knowledge, reliable state-specified capture
cross sections have not been reported yet from nonperturba-
tive quantal calculations apart from our recent work of anti-
protons colliding with hydrogen atoms �11�.

II. THEORETICAL METHOD

A. General time-dependent formalism

The time-independent Schrödinger equation of a Coulomb
three-body system in the center-of-mass frame is written as
�atomic units are used hereafter unless otherwise stated�

H��� = E��� , �1�

with

H = −
1

2�1
�r

2 −
1

2�2
�R

2 +
Z1Z2

r
+

Z1Z3

�R + a0r�
+

Z2Z3

�R − a1r�
.

�2�

Here E=Ec+E1s is the total energy of the collision system in
the center-of-mass frame with Ec the incident energy of the
projectile in the center-of-mass frame and E1s the ground
state energy of hydrogen atom. r and R are, respectively, the
distances from particle 1 to particle 2 and from the center-
of-mass of particles 1 and 2 to particle 3. Z1, Z2, Z3 are the
electric charges of particles 1, 2, and 3, respectively. �1 is the
reduced mass of particles 1 and 2, and �2=M3�M1

+M2� / �M1+M2+M3�. M1, M2, and M3 are the masses of
particles 1, 2, and 3, respectively, and a0=M2 / �M1+M2� and
a1=M1 / �M1+M2�. Circulating indices 1, 2, and 3 defines a
different Jacobi set. The Hamiltonian can be recast into two
forms before and after the collision for rearrangement pro-
cesses as

Hi��i� = E��i� , �3�

Hf�� f� = E�� f� , �4�

and the corresponding interactions are

Vi = H − Hi, �5�

Vf = H − Hf . �6�

The solutions of Eq. �1� satisfying a proper boundary condi-
tion can be conveniently expressed utilizing an integral ex-
pression

�+�t� = �i − i	
−�

t

e−i�H−E��t−t��f�t��Vi�idt�

= �i − i	
−�

t

eiE�t−t��U�t,t��f�t��Vi�idt�. �7�

The time-dependent wave function �+�t� satisfies Eq. �3� as
t→−�, and it also satisfies Eq. �1� at t=0 if f�−��=0, f�0�
=1, and f�t� switches on adiabatically �12�, i.e., d

dt f�t�→0. A
choice of f�t�=exp�−� � t � � gives a Chew-Goldberger formal
solution at t=0 as

�+ = �i +
1

E − H + i�
Vi�i, �8�

where � is a positive infinitesimal number. We integrate Eq.
�7� propagating the time-dependent part instead of solving
Eq. �1� or Eq. �8�. f�t� can be any function so long as it is
switched on adiabatically. For instance, f�t�=exp�−t2 /�2� can
be used for �→�. Once we get �+�t=0� by propagating Eq.
�7�, we can derive any dynamical information of the collision
system from it.

B. Numerical procedures

We have introduced a general theory for solving scatter-
ing problems. Coulomb three-body systems cover a variety
of physical processes. The characteristic of each system de-
pends strongly on the combination of the masses and the
charges of the constituting particles. We deal with heavy
negatively charged particles, negative muons, and antipro-
tons, colliding with hydrogen atoms as examples to show
how to propagate Eq. �7� effectively and accurately. For the
convenience of the calculation, we choose the proton for
particle 1, the electron for particle 2, and the negatively
charged projectile for particle 3. The initial wave function �i
of the system is the product of the ground state wave func-
tion of the hydrogen atom and the plain wave of the projec-
tile

�i�r,R� = �1s�r�eik0·R, �9�

where k0 is the initial momentum of the projectile in the
center-of-mass frame. The Hamiltonian of the initial channel
and the corresponding interaction are

Hi = −
1

2�1
�r

2 −
1

r
−

1

2�2
�R

2 , �10�
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Vi =
1

�R − a1r�
−

1

�R + a0r�
. �11�

Since the total angular momentum L, its component M onto
the incident beam direction, and the parity are good quantum
numbers, we can expand the time-dependent wave function
as

��t� = 

LM

�LM�r,R,t�

= 

LM



�

F��r,R,t�	LM
� �le,l� , �12�

with

	LM
� = 


me,m
�lemelm�LM�Yleme

�r̂�Ylm�R̂� . �13�

Here � represents the angular momentum of the electron le,
the angular momentum of the heavy negative particle l, and
the parity collectively. Each �LM�r ,R , t� can be propagated
independently. The corresponding radial part of the total
Hamiltonian for a given LM is written as

H�r,R� = �	LM
� �H�	LM

�� �

= �−
1

2�2

�2

�R2 +
l�l + 1�
2�2R2 −

1

R

�,�� + �−

1

2�1

�2

�r2

+
le�le + 1�

2�1r2 −
1

r

�,�� + �	LM

� �
1

R
−

1

�R + a0r�

+
1

�R − a1r�
�	LM

�� �

= H��R� + H��r� + V�,���r,R� . �14�

After the partition, the time propagation from t to t+�t can
be performed by the split-operator method in the energy rep-
resentation �13� as

U�t + �t,t� = e−iH�r,R��t

= e−iV�r,R��t/2e−iH�R��t

� e−iH�r��te−iV�r,R��t/2 + O��t3� . �15�

We first propagate the wave function a half-time step in
V�r ,R�, and then a full-time step in H�r� and H�R�, and
finally another half-time step in V�r ,R�. The advantage of
this time-propagation scheme is that each operator is diago-
nal in the other two dimensions. V�r ,R� couples only differ-
ent channels ���� and H�R� and H�r� are, on the other
hand, diagonal for �� ,���. These characters make the time
propagation computationally efficient.

For three-body rearrangement collisions, we also have to
deal with continuum wave functions although the key dy-
namics takes place mainly when the three particles are close
to one another. In the direct integration method on grid
points, the whole coordinate space is confined in a finite box.
We have to filter out the outgoing waves at the boundary in
order to eliminate the unphysical reflection. For this purpose,
we add an optical potential near the boundary to absorb the
outgoing particle flux. The optical potential �14� we used is

Vopt�,r� = �0 for r � rc,

− iV0� r − rc

rmax − rc
 for r � rc, � �16�

with

21/2/A � V0 � 3/2A , �17�

A = �2��rmax − rc� . �18�

Here  is the energy of the basis wave function and rmax and
rc are the position of the boundary in the radial direction and
the position to start the filtering, respectively. � is the re-
duced mass associated with coordinate r. We choose rc in
such a way that rc is smaller for higher energy. The optical
potential added to the Hamiltonian H�r� is

Vopt�r� = 

i

Vopt�i,r���i���i� for i � 0, �19�

where �i� and ��i� are the eigenenergies and eigenwave
functions of H�r�. The Vopt�r� depends on the grid structure
but it does not depend on the collision energy. It is a univer-
sal optical potential which can be used to absorb the ejected
electron in a broad energy range. Similarly we add an optical
potential to H�R�. After a long time propagation from
t=−� to t=0, in the interaction region, we get the stationary
wave function �+�t=0�, which satisfies the proper boundary
condition. Since the proton mass is much larger than the
electron mass, the center-of-mass of the hydrogen atom is
regarded to stay on the proton to a good approximation, and
hence we set a0=0 and a1=1. The final wave function cor-
responding to the capture of the state of a principal quantum
number n and an angular momentum l is expressed as

� f
� = jle

�knlr��nl�R�	LM
� , �20�

where knl is the ejected electron momentum associated with
the formation of an exotic hydrogen atom in the nl state. The
T-matrix element is given by

Tnl
� = �� f

��Vf��LM
+ � , �21�

and the state-specified capture cross section is readily ob-
tained as

�nl
� �L� =

4�2�1knl

k0


�

�Tnl
� �2. �22�

We introduce two other ways to calculate the capture cross
sections. The wave function �LM

+ �0� can be further recast
into

�	LM
� ��LM

+ � = �	LM
� ��i� + 
 anle

� �nl�r�F��R�

+ 

nl

bnl
� �nl�R�fnl

� �r� . �23�

The first term represents the incident channel, the second
term stands for the excitation and elastic channel, and the
third term is the capture channel. The asymptotic form of the
ejected electron wave function is
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fnl
� �r� =

eiknlr

r
for r → � . �24�

Define

Gnl
� �r� =	 �nl

* �R��	LM
� ��+�dR , �25�

and we obtain bnl
� as

knl

�1
�bnl

� �2 = Re�−
i

�1
„rGnl

� �r�…* �

�r
„rGnl

� �r�…�
rc

, �26�

where Re denotes the real part. The definition of the capture
cross sections gives

�nl
� �L� =

�2knl

�1k0


�

�bnl
� �2. �27�

Suppose that we calculate bnl
� in Eq. �26� at each time t

and propagate the wave function of Eq. �7� with f�t�
=exp�−t2 /�2� from −� to �, then the averaged ejected elec-
tron current is

knl

�1
�b̄nl

� �2 =
�2
���

	
−�

� knl

�1
�bnl

� �t��2dt . �28�

The capture cross section can be calculated in the third way
as

�nl
� �L� =

�2knl

�1k0


�

�b̄nl
� �2. �29�

Equation �29� corresponds to the procedure that we collect
all the ejected electrons associated with capture to nl states in
the whole collision process. If the wave function �+�0� is
converged satisfactorily, the three expressions, Eqs. �22�,
�27�, and �29�, should give the same results. In the next sec-
tion we examine the numerical convergence by comparing
the results from these three methods.

III. CONVERGENCE CHECK

We adopt f�t�=exp�−t2 /�2� for the switching function. In
the calculations, we cannot propagate the time-dependent
wave function taking the limits �→� and �t→0. We have
to investigate how to choose proper � and �t beforehand.
The switching parameter � is regulated by the slowest motion
in the system and the time step �t is regulated by the fastest
motion on the contrary. Generally speaking, the fastest mo-
tion is the motion of the captured 1s state of the exotic atom
and the slowest motion is the motion of the free projectile
with the incident velocity v0. Therefore, we choose � and �t
taking 1/v0 and 1/ �1s

h � as the units, respectively, where 1s
h is

the ground-state energy of the formed exotic hydrogen atom.
In the following discussions, we assume that a negative
muon is the projectile. For the convenience of later discus-
sions, we name Eq. �22� as T method, Eq. �27� as C0 method,
and Eq. �29� as C1 method. Table I shows the n-dependent
capture cross sections for L=10 as �n�L=10�=
�,l�nl

� �L�
calculated by the three methods. We see that the capture

cross sections calculated by the three methods are in good
agreement within a few percent difference. This comparison
convinces us that the present theoretical method is reliable
and the calculations are well converged.

Although the three methods give the same results after a
long time propagation, the discrepancy increases as we re-
duce the propagation time as shown in Fig. 1. As we see
from the equations, the T method is more sensitive to the
convergence of the wave function in the inner region while
the C0 and C1 methods are sensitive to the accuracy of the
asymptotic wave function at rc. The convergence of the total
wave function at a different location differs as a function of
the adiabatic parameter �. For the present example, the T
method converges faster than the other two and the C0
method converges most slowly. In Eq. �7�, the initial wave
function multiplied by the interaction plays a role of a source
term, which is localized in the inner region. If � is too short,
the negative muon and the electron cannot reach the
asymptotic region at t=0. The electron observed in the
asymptotic region at t=0 is produced in advance by a time
required for the propagation, and the interaction Vi has to be
completely switched on. This analysis clarifies the reason
why the C0 method converges most slowly and it approaches
to the converged value from below as we increase the propa-
gation time �. In contrast, we collect all the electrons in the
asymptotic regime and the time-delay effect is smeared
partly in the C1 method. Though the C1 method converges
faster than the C0 method, it has a demerit that twice the

TABLE I. n-dependent capture cross sections �in a.u.� of muons
by hydrogen atoms calculated by the three methods for L=10, Ec

=2.0 eV, �=50, and �t=30.

n

�n�L=10�

T C0 C1

9 1.85�10−4 1.92�10−4 1.90�10−4

10 3.05�10−3 3.10�10−3 3.07�10−3

11 2.80�10−2 2.82�10−2 2.79�10−2

12 1.82�10−1 1.79�10−1 1.78�10−1

13 6.42�10−1 6.63�10−1 6.62�10−1

14 1.12 1.12 1.15

0.0

1.0

2.0

3.0

0 10 20 30 40 50

σ(
L=

10
)

(a
.u

.)

τ (1/v0)

T
C0
C1

FIG. 1. �Color online� Muon-capture cross sections calculated
by the three methods �see the text� as functions of the propagation
time � for L=10 and Ec=2.0 eV.
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propagation time is needed since the integral from t=0 to t
=� is also to be carried out.

Next we check the convergence of the channels regarding
the angular momentum of the electron. Figure 2 shows the
n-dependence of the partial capture cross sections with re-
spect to the final angular momentum of the electron for L
=10 and Ec=2.0 eV. Ten channels are used in the range 0
� le�3 for the expansion. We see that, for the large capture
cross sections near n�14, the le=0 channel is the dominant
one and the contribution of angular momentum exchange
between the muon and the electron is small. le=1 contributes
about 10% and le=2 contributes less than 1%. The contribu-
tion from le=3 is almost negligible for the major capture
channels. Even though the le=0 channel is the dominant one
for the total capture cross sections, the capture to the lower n
states is mainly from le�0 channels. For example, the le
=1 channel is the major capture channel for n=10,11,12
and the le=2 channel is the dominant one for n=9. Thus we
can predict that, if we measure the angular distribution of the
ejected electrons, the low energy electrons have isotropic
distributions and the high energy electrons tend to show an-
isotropic distributions.

If we replace the negative muon by an antiproton, the
formed protonium atoms are expected to be in even higher
excited states. This increases the numerical difficulty. Al-
though we have already presented some results for the anti-
proton collisions �11�, we had better provide more details for
the convergence check. Figure 3 depicts the ratios of the
n-dependent antiproton-capture cross sections for different
propagation time �. Similarly to the negative muon case, the

C0 method converges most slowly so that we do not present
it in the figure. The capture cross sections also approach to
the converged values from below for the T method and from
above for the C1 method consistently with the muon-capture
case as shown in Fig. 1.

We also examine the distribution of the angular momenta
of the ejected electron in Fig. 4. The feature of the le distri-
bution is very similar to that of the muon case. For n�30,
the le=1 channel contributes more than the le=0 channel,
and for n�27, the le=2 channel becomes the dominant one.
Similarly we can predict that, if we measure the angular
distribution of the outgoing electrons, lower energy electrons
have isotropic distribution while higher energy electrons tend
to show anisotropic character.

We also tested the dependence of the results on �t, Rmax,
and rmax to confirm that the final results are converged satis-
factorily. In the present study, we always calculate the cross
sections by the three methods to make sure the results are
converged.

IV. RESULTS AND DISCUSSION

At first we show the wave function �+�0� which contains
all the dynamical information of the collision system. Since
it is impossible to plot a six-dimensional function �+�0� di-
rectly, we plot the total wave function on a two-dimensional
color coding �r ,R� by choosing le=0 and averaging over the
angular part of R as shown in Fig. 5.

As a matter of fact, the plotted wave function corresponds
to �F��r ,R , t=0��2 in Eq. �12� for ��le=0, l=L�, which is the
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le = 1
le = 2
le = 3

FIG. 2. �Color online� n-dependent muon-capture cross sections
and channel contributions of different le for L=10 and Ec=2.0 eV.
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FIG. 3. �Color online� Antiproton-capture cross sections calcu-
lated by the T method and the C1 method as functions of the propa-
gation time � for L=25 and Ec=2.72 eV.

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

22 24 26 28 30 32 34

σ n
(L

=
25

)
(a

.u
.)

n

Ec = 2.72 eV

p + H-

total
le = 0
le = 1
le = 2
le = 3

FIG. 4. �Color online� n-dependent antiproton-capture cross sec-
tions and the channel contributions of different le for L=25 and
Ec=2.72 eV.
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FIG. 5. �Color online� Two-dimensional plot of the total wave
function ���+�0��2, see Eq. �7�� for L=10, Ec=2.0 eV, and le=0.
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dominant channel for total capture cross sections as we have
seen in Fig. 2. The electron moves to large r when R is small
and it stands for the capture process. On the contrary, the
muon moves to large R when r is small and it stands for the
elastic scattering process. The two particles cannot move to
the distant region from the proton simultaneously owing to
the energy conservation. The wave function decays exponen-
tially when both R and r increase simultaneously. For the
muon case, we choose Rmax=30–50 a.u. and rmax
=150–200 a.u. We have to use larger rmax to describe the
motion of low energy electrons.

The total muon-capture cross sections �T=
�L,nl�nl
� �L�

summed over the quantum numbers n , l ,L ,� are shown in
Fig. 6. We also present the antiproton-capture cross sections
for comparison. Besides, the muon-capture cross sections
calculated by Sakimoto �4� and by Cohen �15� are presented.
Our muon-capture cross sections are in good agreement with
others. Although the masses of muon and antiproton differ by
almost one order, the total capture cross sections are close to
each other. This will raise a question of how the total capture
cross sections depend on the mass of the projectile. The an-
swer to this question may need further study.

Figure 7 shows the L-dependent capture cross sections
�L=
�,nl�nl

� �L�. In general, the capture cross sections in-
crease almost linearly as the total angular momentum L in-
creases, reaches a peak, and then decreases as the L increases
further. The high-L tail of the cross section drops sharply at
low energies. As for higher incident energies, the peak moves

to higher L and has a broad distribution extended to higher L.
The capture cross section depends on �a� the geometrical

overlap of the wave functions between the formed exotic-
atom states and the hydrogen ground state, and �b� the pen-
etration of the projectile wave function into the hydrogen
atom. The former one does not depend on the incident energy
and peaks at n���. Because of the conservation of the total
energy, there exists an upper limit of n for the capture. If the
L is greater than �n−1�, the ejected electron angular momen-
tum le must be greater than 0. As shown in the above, the
dominant capture channel is le=0 or l=L. Therefore the cap-
ture cross sections drop dramatically as L increases for low
incident energies. As the incident energy increases, the upper
limit of n increases significantly, and the capture to l=L
states is always possible unless the L is larger than �n−1�.
For a high incident energy, the capture cross sections should
have a broad distribution peaked at n��� if we only con-
sider the geometrical overlap. On the other hand, as the in-
cident energy increases, high L partial waves can penetrate
into the inner region and the capture cross sections will peak
at higher L. All these features are similar to that of the
antiproton-capture case apart from that the necessary L is
smaller for the muon capture owing to the mass difference.

As we have seen in Figs. 2 and 4, le=0 is the dominant
channel so that the l-dependent capture cross sections are
expected to be similar to the L dependence. Figure 8
shows the l-dependent muon-capture cross sections �l
=
�L,n�nl

� �L�. For the low energy case �Ec=2.0 eV�, the
highest possible n is 15 and the highest l is 14, which gives
the maximum cross section. Owing to the existence of the
upper limit of n by the energy conservation, the l distribu-
tions show a sharp cutoff for low incident energies. As the
collision energy increases, the effect of the upper limit be-
comes less important and the l and L distributions show a
similar pattern.

Figure 9 shows the n-dependent muon-capture cross sec-
tions ��n=
�L,l�nl

� �L��. Most of the muons are captured into
high n states above 10. The capture cross sections decreases
quickly as n decreases below 10. As the collision energy
increases, the n-dependence shows a broader distribution. All
these features can be understood in a similar way as for the L
dependence.

Finally, we present the state-specified muon-capture cross
sections �nl=
�L�nl

� �L� at Ec=10.0 eV in Fig. 10.
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FIG. 6. �Color online� Total muon-capture cross sections �open
circles� and antiproton-capture cross sections �filled circles�. The
total muon-capture cross sections calculated by Cohen �15� �open
squares� and Sakimoto �2� �filled squares� are also plotted.
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FIG. 7. �Color online� Total angular momentum L-dependent
muon-capture cross sections normalized to the total capture cross
sections at the incident energies of 2.0, 4.0, 6.0, 8.0, and 10.0 eV.
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FIG. 8. �Color online� Angular momentum l-dependent muon-
capture cross sections normalized to the total capture cross sections
at the incident energies of 2.0, 4.0, 6.0, 8.0, and 10.0 eV.
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The muon is mainly captured into the states with the an-
gular momentum l�16 and the principal quantum number
n�22. The probability of capture to the lower n decreases
quickly. The distribution is consistent with the l and n distri-
butions in Figs. 8 and 9. Cohen �10� also predicted that the
peak distribution is around n�22 and l�15 by the CTMC
calculations.

To summarize, we have presented our recently developed
theoretical method for Coulomb three-body rearrangement
collisions. We transform the time-independent scattering
equation to a time-dependent integral form taking account of
the causality through adiabatic switching and solve the inte-
gral equation by the split-operator method in the energy rep-

resentation. The convergence has been tested by comparing
the results calculated by three equivalent expressions of the
scattering amplitude. The method can be extended to more
general Coulomb three-body rearrangement collisions, in
which the initial and final channels are described by different
Jacobi sets. The combination of the masses is arbitrary, for
example, such as the electron exchange in ion-atom colli-
sions and the electron �positron� collisions with hydrogen
atoms. Antisymmetrization of the wave function can be done
easily for the systems which contain two identical fermions.
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