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We present an efficient method of inclusion of the core-valence correlations into the configuration interac-
tion �CI� calculations. These correlations take place in the core area where the potential of external electrons is
approximately constant. A constant potential does not change the core electron wave functions and Green’s
functions. Therefore, all operators describing interaction of M valence electrons and N-M core electrons �the

core part of the Hartree-Fock Hamiltonian VN-M, the correlation potential �̂1�r ,r� ,E�, and the screening of

interaction between valence electrons by the core electrons �̂2� may be calculated with all M valence electrons
removed. This allows one to avoid subtraction diagrams which make accurate inclusion of the core-valence
correlations for M �2 prohibitively complicated. Then the CI Hamiltonian for M valence electrons is calcu-

lated using orbitals in complete VN potential �the mean field produced by all electrons�; �̂1+ �̂2 are added to the

CI Hamiltonian to account for the core-valence correlations. We calculate �̂1 and �̂2 using many-body pertur-
bation theory in which dominating classes of diagrams are included in all orders. We use neutral Xe I and all
positive ions up to Xe VIII as a testing ground. We found that the core electron density for all these systems is

practically the same. Therefore, we use the same �̂1 and �̂2 to build the CI Hamiltonian in all these systems
�M =1,2 ,3 ,4 ,5 ,6 ,7 ,8�. Good agreement with experiment for energy levels and Landé factors is demonstrated
for all cases from Xe I to Xe VIII.
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I. INTRODUCTION

Accurate calculations for many-electron atoms play an
important role in many advanced topics of modern physics.
This includes parity and time invariance violating phenom-
ena in atoms �1�, search for manifestation of possible varia-
tion of fundamental constants in astrophysical data �2�, or in
present-day laboratory experiments �3�, improving accuracy
of atomic clocks �4�, study of superheavy elements �see, e.g.
�5��, etc. Calculations are needed for planning of experi-
ments and interpretation of the results.

Atoms of the most interest for the listed topics are usually
found in the second part of the Periodic Table where mea-
surements or observations are more likely to give useful in-
formation due to strong enhancement of the effects caused
by interplay between relativistic and many-body effects. On
the other hand, accurate treatment of relativistic and many-
body effects represent a big challenge for atomic calcula-
tions. Not surprisingly, the number of methods capable of
producing reliable and accurate results is very limited. The
most advanced methods have been developed for atoms with
one external electron above closed shells. For example, most
accurate calculations of the parity nonconservation in cesium
where carried out with two most advanced methods. One
was the correlation potential �CP� method �6� combined with
the all-order perturbation theory in screened Coulomb inter-
action �7� and the other was the linearized coupled cluster
approach �8�. With these two methods, energy levels and
transition amplitudes for alkali-metal atoms can be calcu-
lated to the accuracy of fraction of percent while hyperfine
structure and parity violating amplitudes are calculated to the
accuracy of 0.5–1 % �7–9�.

For atoms with more than one external electron in open
shells the accuracy of calculations is significantly lower. For
example, the best accuracy achieved for parity non conser-

vation �PNC� in Tl is around 3% �3% in Ref. �10� and 2.5%
in Ref. �11��. Typical accuracy for energies is about 1% or
worse. The main challenge is the need for accurate treatment
of both core-valence and valence-valence correlations. The
most commonly used methods can be divided in several
main groups: �a� Many-body perturbation theory �MBPT�
�see, e.g. �12��, �b� coupled cluster approach �CC� �see, e.g.
�13��, �c� configuration interaction �CI� �see, e.g. �14��, and
�d� multiconfiguration Dirac-Fock method �MCDF� �see, e.g.
�15��. There are also combinations of these basic techniques.

All of these method have their limitations. For example,
CI usually treats correlations between valence electrons very
accurately but core-valence correlations are either totally ne-
glected or only small fraction of them is included. MBPT can
include more core-valence correlations, but its application to
the correlations between valence electrons is limited by the
fact that these correlations are often too strong to be treated
perturbatively. The CC approach includes certain types of
core-valence and valence-valence correlations in all orders
and in principle can be formulated for any number of valence
electrons. However, the equations are complicated and most
of practical realization of the method deal with only one or
two electrons �or an electron and a hole�.

Significant progress can be achieved by combining differ-
ent techniques. In 1996 we developed a method which com-
bines the MBPT with the CI method �CI+MBPT� �16�. Here,
the second-order MBPT was used to construct the effective
Hamiltonian in the valence space which includes the core-
valence correlations. It differs from the standard CI Hamil-

tonian by an extra correlation operator �̂ which accounts for
the core-valence correlations. Single-electron part of this op-
erator is very similar to the correlation potential used for
atoms with one external electron �6�. It was demonstrated
that inclusion of the core-valence correlations lead to a sig-
nificant improvement of the accuracy of calculations �see,
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e.g. �16–19��. Savukov and co-workers �20� developed a ver-
sion of the method which uses the hole-particle formalism.
They applied the technique for a calculation of the electron
structure of the noble-gas atoms �20,21�.

The CI+MBPT method was successfully used for a num-
ber of atoms with two or three valence electrons �16,17,22�
�or an electron and a hole �20,21��. Its extension to atoms
with more electrons in open shells meets some difficulties. It
turns out that convergence of the MBPT varies very much
from atom to atom and strongly depends on an initial ap-
proximation. The core-valence correlations are often too
large if treated in the same fashion as in our original works
and their inclusion does not improve the results.

It is widely accepted that the Hartree-Fock potential is the
best choice as a zero approximation for consequent use of the
MBPT due to great reduction of the terms caused by exact
cancellation between the potential and electron-electron
Coulomb terms. However, for atoms with open shells HF
procedure is not defined unambiguously. This is especially
true when the CI method is to be used. Here we have free-
dom of how many electrons are to be included into the initial
HF procedure and how many electrons are to be treated as
valence electrons in the CI calculations. It was found in our
previous work �23� that for a wide range of atoms the best
choice is the so-called VN-M approximation. These are the
atoms in which valence electrons form a separate shell, de-
fined by the same principal quantum number. For example,
the ground state configuration of xenon is �Pd�5s25p6. Its
eight outermost electrons have n=5 while all other electrons
have n�5. This means that eight outermost electrons should
be treated as valence electrons and the initial HF procedure
should not include them. This greatly simplifies the MBPT,
improves its convergence and allows one to include higher-
order correlations in the same way as it was done for atoms
with one external electron.

The aim of the present work is to develop a solid theoret-
ical background for use of the VN-M potential as a starting
point. In principle, this starting point is equivalent to any
other choice of the initial HF potential. Indeed, the actual
role of the subtraction diagrams in the correlation operators

�̂ is to reduce results obtained with any zero approximation
to VN-M results �see an explanation below�. However, the
technique for VN-M is much simpler �no subtraction dia-
grams� and allows us to sum dominating chains of higher
order diagrams to all orders �it is practically impossible for
other choice of zero approximation�. This results in a higher
accuracy. Another advance of the present work is the use of
a compact basis for valence states. In our previous works

�22–25� we used the same basis to calculate �̂ and to do the
CI calculations. The basis was formed from the eigenstates

of the V̂N-M potential. This had an advantage of having the
same single- and double-electron matrix elements for all ions
of the same atom. Moving from ion to ion was easy, requir-
ing only change the number of electrons in the CI calcula-
tions. However, convergence of the CI calculations rapidly
deteriorated with growing number of electrons. When num-
ber of electrons became as large as eight, saturation of the
basis was very hard to achieve unless huge computer re-
sources were used. In present work we demonstrate that the

basis states for valence electrons do not have to be eigen-

states of the V̂N-M potential. Instead, HF states calculated in
the mean field of all electrons �of a neutral atom or corre-
sponding positive ion� can be used after minor modifications.
In this case we have to recalculate the CI basis when we
change the number of valence electrons M. However, the
gain is much larger. Since HF states are already good ap-
proximations to the wave functions of valence electrons we
can limit the basis to just few states in each partial wave.
Therefore, even for eight valence electrons the CI matrix is
small, its calculation and diagonalization takes little time but
the final results are very accurate.

We calculate energy levels and Landé g factors for neutral
xenon and all its positive ions from X II to Xe VIII for illus-
tration on how the technique works. Good agreement with
experiment is demonstrated for all cases while very little
computer resources are needed on every stage of the calcu-
lations.

II. CORE ELECTRON DENSITY AND POTENTIAL
IN VN-M AND VN APPROXIMATIONS

The effective Hamiltonian of the CI method has the form
�see, e.g. �16��

Ĥeff = �
i=1

ĥ1i + �
i�j

e2

�ri − r j�
. �1�

Summation goes over valence electrons, ĥ1�ri� is the one-
electron part of the Hamiltonian

ĥ1 = c�p + �� − 1�mc2 −
Ze2

r
+ Vcore, �2�

� and � are the Dirac matrices, Ze is the nuclear charge, and
Vcore is the electrostatic potential created by the core elec-
trons. Regardless of initial approximation used to calculate
core and valence states, the valence electrons never contrib-
ute to Vcore directly. They can only contribute to Vcore via the
self-consistent HF procedure or via any other potential used
to represent valence electrons. If the core electrons and va-
lence electrons belong to different shells the effect of the
valence electrons on electron states in the core and thus on
Vcore can be extremely small. Indeed, in this case the overlap
between density of the valence electrons and density of the
core electrons is small. Therefore, the exchange interaction
between the core and valence electrons, which is propor-
tional to the overlap, is negligible in comparison with energy
of the core electrons. On the other hand, the direct potential
created by the valence electrons is practically constant inside
the core since nearly all charge of the valence electrons is
located outside the core. Constant potential corresponds to
zero electric field and cannot have any effect on the wave
function of the core electrons. The only effect of the constant
potential V0 is in energy shift �E=V0. However, it does not
change the single-particle wave functions and Green’s func-
tions of core electrons since the wave equation contains the
difference E−V0 which does not change. We may formulate
this conclusion using the perturbation theory. In first order in

V. A. DZUBA AND V. V. FLAMBAUM PHYSICAL REVIEW A 75, 052504 �2007�

052504-2



V0 a core state a in the VN-M approximation and ã in the VN

approximation are related by

�ã� = �a� + �
n

�a�V0�n�
Ea − En

�n� . �3�

If the potential V0 is constant, the matrix element �a�V0�n�
=V0�a �n�=0 due to the orthogonality condition. This ex-
plains why the changes of the core wave functions, density,
and potential are very small.

Small overlap between the core and valence states usually
takes place when these states correspond to different atomic
shells defined by the principal quantum number �see, e.g.
�23–25��. In the case of xenon, eight outermost electrons
have principal quantum number n=5 �the 5s25p6 ground
state configuration�, while all core electrons have n�5.
Therefore, if the eight electrons are considered to be valence
electrons we should expect that they have little effect on the
core states. Figure 1 shows electron densities of Xe I and
Xe IX calculated in the HF approximation. For the neutral
Xe I electron densities of valence and core electrons are
shown separately. One can see that the overlap between them
is indeed very small. Therefore, it turns out that when elec-
tron density of Xe IX is calculated it practically coincides
with the electron density of the core states of neutral Xe. The
former is shown by dots of Fig. 1. Resolution of this figure
does not allow us to see any difference between electron
densities of Xe IX and the core of Xe I. This is in spite of
huge difference in energies of core states of two atoms. One
may argue that huge difference in energies should lead to a
noticeable difference in wave functions, at least on large dis-
tances. Indeed, a wave function of an atomic electron has
asymptotic defined by its energy and potential

��r� 	 e−
�2m�E−V�r��dr. �4�

However, in the area up to the radius of the valence shell
there is actually no difference in E−V�r� for the core orbitals

in Xe IX and Xe I since �E= ��V�. The difference in
asymptotic behavior appears only near the radius of the va-
lence shell where the core electron density is extremely
small.

Thus we conclude that the core electron density and po-
tential have practically no dependence on the number of va-
lence electrons if the valence electrons are in a different
shell.

III. CORE-VALENCE CORRELATION CORRECTIONS
IN THE VN AND VN-M APPROXIMATIONS

The use of the Feynman diagram technique allows us to
express the core-valence correlation corrections in terms of
the single-particle wave functions and Green’s functions �7�
�see the Appendix�. Therefore, all the arguments presented
above are applicable when we consider calculation of the

correlation operators �̂1 and �̂2; they may be calculated us-
ing VN-M basis for core electrons.

It may be instructive to clarify this conclusion using more
popular Schrödinger perturbation theory where explicit sum-
mation over intermediate states is involved. The correlations
between the valence and core electrons as well as the screen-
ing of the interaction between the valence electrons happen
inside the area occupied by the core electrons. Let us enclose
the core by a sphere with zero boundary condition for the
core electrons. This allows us to reduce the core electron
problem to the discrete spectrum. Let us now consider the
interaction of the core electrons with external electrons using
the perturbation theory. The constant potential V0 of external
electrons does not change the core electron wave functions.
It also does not change the energy differences En−Em be-
tween the enclosed “core” states, they are shifted by the
same energy V0 �note that these enclosed states form com-
plete basis set inside the sphere�. Therefore, all the terms in
the perturbation theory for the core-valence interaction �be-
yond the mean field which we take into account in the VN

valence orbitals� do not depend on the spectator valence
electrons. This is why we can calculate all core-valence cor-
relations using the VN-M core orbitals. To avoid misunder-
standing we should note that we use this picture for the ex-
planation only, no special boundary conditions for core
electrons are needed for actual calculations �it is obvious if
we use the Green’s function technique; all the integrals over
coordinates are dominated by the core area where the corre-
lations between the valence and core electrons actually hap-
pen�. Note that below we do not neglect effects of V0, we
only treat them as a perturbation since the nondiagonal ma-
trix elements �a�V0�n� are small.

The effective Hamiltonian of the CI+MBPT method has
the form similar to Eq. �1� but with extra terms for single and
double electron parts of it. These terms, for which we use

notation �̂, describe the core-valence correlations �16�. There

is a single-electron operator �̂1 which is added to the single-

electron part ĥ1 �2� of the CI Hamiltonian:

ĥ1�r� → ĥ1 + �̂1. �5�

�̂1 describes correlations between a particular valence elec-
tron and core electrons. It is very similar to the correlation

FIG. 1. Electron densities � �multiplied by r2� of Xe I and Xe IX.
Atomic core �n=1,2 ,3 ,4� of Xe I, solid line; 5s and 5p, dashed
line; electron density of Xe IX, dots.
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potential �̂ used for atoms with one external electron �see,
e.g. �6��.

There is also a two-electron operator �̂2 which modifies
Coulomb interaction between valence electrons:

e2

�r1 − r2�
→

e2

�r1 − r2�
+ �̂2. �6�

Physical interpretation of �̂2 is the screening of Coulomb
interaction between valence electrons by core electrons.

When number of valence electrons is greater than 2 there

is also a three-body operator �̂3 �16� and higher-order many-

body operators �̂4, �̂5, etc. However, they are usually very
small and we will not consider them in the present work.

The full set of diagrams for �̂1 and �̂2 in the second order
of MBPT is presented on Figs. 2–5. It contains the so-called
subtraction diagrams which are proportional to Vcore−VHF,
where Vcore is the potential of the core electrons as in the
effective CI Hamiltonian �1�, VHF is the potential in which
states of the core were calculated. Note that subtraction dia-
grams vanish in the VN-M approximation: Vcore=VHF.

The origin of the subtraction diagrams is clear from the
definition of the perturbation �residual interaction� operator
U=Hexact−H0 where Hexact is the exact Hamiltonian and H0
is the zero approximation Hamiltonian. If the field of exter-
nal electrons is included in H0 it produces additional contri-
butions which we call the subtraction diagrams. Thus the
potential V0 appears with positive sign in the mean field �and
core wave functions�, and with negative sign in the residual
interaction �and subtraction diagrams�. If we calculate all
correlations exactly, to all orders, V0 must disappear in the
final result. In any finite order of the many-body perturbation

theory there are only partial cancellations; lower orders of
expansion in V0 are canceled out. Thus the role of the sub-
traction diagrams is to cancel the potential of spectator va-
lence electrons acting on the core electrons �effect of valence
electrons on the core lines of the diagrams�. In other words,
the subtraction diagrams guarantee that in any given order of

expansion in V0 the operators �̂1 and �̂2 are reduced to the
results of VN-M approximation. Therefore, if the nondiagonal
matrix elements of V0 are small the VN-M approximation is
the best zero approximation since the calculations are much
simpler �no subtraction diagrams�.

It is easy to see all these cancellations of V0 explicitly,
order by order in V0. Here one should remember that change
of the valence electron energies due to change of the core
Hartree-Fock potential �which formally has the first order in
the Coulomb interaction� is actually canceled by the second
order subtraction diagrams; contribution of V0 into the core
wave functions in the second order diagrams is canceled by
the third order subtraction diagrams, etc.

IV. HIGHER ORDER TERMS IN �̂

We have seen above that if the electrostatic potential V0
created by valence electrons is nearly constant inside the
core then the VN-M approximation is equivalent to the VN-M

+V0 approximation, where V0 can have contributions from
all M valence electrons, or any fraction on them or it can be
just a model potential. The only condition is that V0 is nearly
constant inside the core. This means that without any com-
promise on accuracy we can do the calculation in the VN-M

approximation which is technically more simple. Another ad-
vantage of using VN-M is that we have the same effective

1 2 3

FIG. 3. Subtraction diagrams for �̂1
�2�.

1 2 3

4 5 6

FIG. 4. Second-order diagrams for double-electron correlation

operator �̂2
�2�.

1 2

FIG. 5. Subtraction diagrams for �̂2
�2�.
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Hamiltonian for any number of valence electrons from 1 to
M. Therefore we can do the calculations in a very similar
way for all corresponding ions as well as for a neutral atom.

Eliminating subtracting diagrams in the VN-M approxima-

tion makes �̂1 practically identical to the correlation poten-

tial �̂ used for atoms with one external electron. Therefore,
we can try to improve the accuracy of calculations by includ-

ing important higher order terms into �̂1 the same way as it
was done in a number of calculations for alkali atoms �see,
e.g. �7,9��. We include two dominating classes of higher or-

der diagrams into calculation of �̂1. One is screening of the
Coulomb interaction between valence and core electrons by
other core electrons. Another is interaction between an elec-
tron excited from the core and a hole in the core created by
this excitation. Both classes of diagrams are included in all
orders �see, e.g. �7,9� for details�.

We use notation �̂1
�	� for the all-order �̂ operator as com-

pared to �̂1
�2� for the second-order operator. The effect of

inclusion of second and higher order correlations can be il-
lustrated by calculating of the energy levels of Xe VIII. This
ion has only one valence electron and calculations for it can
be done the same way as for other single-valence electron
atoms �see, e.g. �7��. Instead of diagonalizing the CI matrix
we solve HF-like equations for valence electrons in coordi-

nate space, with �̂1 included in it:

�h1 + �̂1 − 
�� = 0. �7�

Here single-electron Hamiltonian h1 is given by Eq. �2�
while �̂1 can be either �̂1

�2� or �̂1
�	�. If no �̂1 is included then

Eq. �7� gives HF energies and wave functions.
The results of calculations are presented in Table I and

compared with experiment. One can see systematic signifi-

cant improvement of the results when first �̂1
�2� and then �̂1

�	�

are included.

We are now going to use the same �̂1
�	� operator for all

ions from Xe VII to Xe II and for neutral xenon. For all these

ions which have more than one valence electrons the �̂2
operator should also be included. In the VN-M approximation

the �̂2 term is given by diagrams on Fig. 4, and no subtrac-

tion diagrams are needed. To include higher-order correla-

tions into �̂2 we use screening factors the same way as we do

this for the exchange diagrams of �̂1 �Figs. 2.2 and 2.4� �see,
e.g. �7��. To explain how screening factors are found and
used we need to go into more details on how the all-order

correlation operator �̂1
�	� is calculated. We use Feynman dia-

gram technique to calculate direct diagrams �Figs. 2.1 and 3�.
It allows us to include an infinite chain of screening dia-
grams in all orders �7�. Application of the Feynman diagram
technique to exchange diagrams �Figs. 2.2 and 4� is much
more complicated �9�. On the other hand, these diagrams are
usually an order of magnitude smaller than direct diagrams.
Therefore it makes sense to use an approximate method by
introducing screening factors. We assume that screening of
Coulomb interaction between core and valence electrons de-
pends only on multipolarity k of Coulomb interaction.
Screening factors fk are calculated as ratios of partial contri-

butions to �̂1:

fk = ��̂k
�	�� � ��̂k

�2�� , �8�

where only direct diagrams are included in �̂k
�2� and �̂k

�	� and
only screening of Coulomb interaction but no hole particle

interaction is included in �̂k
�	�. The values of fk found from

calculations for alkali-metal atoms are

f0 = 0.72, f1 = 0.62, f2 = 0.83,

f3 = 0.89, f4 = 0.94, f5 = 1.00, etc. �9�

The values of fk change very little from atom to atom and the
values presented above can be used for xenon. This is sup-
ported by the results obtained for Xe VIII �see Table I�.

The effect of �̂2 on atomic energies is much smaller than

those of �̂1. Therefore, we can also treat higher-order corre-

lations in �̂2 in an approximate way, via screening factors, as

we do this for exchange part of �̂1. We replace every Cou-
lomb integral Qk on all diagrams on Fig. 4 except diagram
Fig. 4.1 by its screened values fkQk where screened factors fk
are taken as in Eq. �9�. For the diagram Fig. 4.1 only one of
the Coulomb integrals is replaced by its screened value. This
is because this diagram can generate only one infinite chain

TABLE II. Basis states of valence electrons used in the CI cal-
culations, their total number �N� for each atom or ion, and HF
configurations in which they were calculated.

Atom N Basis states Configurations

Xe I 15 5s ,6s ,7s ,5p ,6p ,7p ,5d ,6d ,4f 5s25p6, 5s25p5nl

Xe II 10 5s ,6s ,5p ,6p ,5d ,4f 5s25p5, 5s25p4nl

Xe III 8 5s ,6s ,5p ,6p ,5d 5s25p4, 5s25p3nl

Xe IV 10 5s ,6s ,5p ,6p ,5d ,4f 5s25p3, 5s25p2nl

Xe V 8 5s ,6s ,5p ,6p ,5d 5s25p2, 5s25pnl

Xe VI 8 5s ,6s ,5p ,6p ,5d 5s25p, 5s2nl

Xe VII 8 5s ,6s ,5p ,5d 5s2, 5snl

TABLE I. Removal energies of lowest states of Xe VIII �cm−1�
in different approximations; comparison with experiment.

State HF �̂�2�a �̂�	�b Expt.�26�

5s1/2 839 764 858 722 854 842 854 755

5p1/2 725 342 741 343 738 280 738 288

5p3/2 707 377 722 378 719 550 719 703

5d3/2 536 494 546 174 544 092 544 867

5d5/2 533 632 543 150 541 096 541 939

4f5/2 572 050 590 725 587 324 589 594

4f7/2 571 684 590 056 586 717 589 044

aSolving Eq. �7� with the second-order correlation potential �̂.
bSolving Eq. �7� with the all-order correlation potential �̂.
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of loops representing screening. Therefore, screening should
by included only once. This is very similar to the all-order

treatment of the direct diagram for �̂1 �Figs. 2.1 and 2.3�. If

this diagram is expressed in terms of screened Coulomb in-
teraction, only one of two Coulomb integrals should be re
placed by a screened one �see �7,9� for details�.

TABLE III. Ground state removal energy �a.u.�, excitation energies �cm−1�, and g factors of lowest states of Xe in different
approximations.

State J

CI �̂1
�2�a �̂1

�2�a and �̂2
�2�b �̂1

�	�c �̂1
�	�c and �̂2

�2�b �̂�	�d Expt.

�eE E E E E E g E g

5s25p6 1S 0 −15.21 −15.76 −15.69 −15.53 −15.48 −15.49 −15.61

5s25p56s 2�3/2�° 2 62 710 70 595 68 587 68 289 66 310 67 040 1.4994 67 068 1.500 95 28

1 64 013 71 916 69 873 69 594 67 573 68 319 1.2157 68 045 1.205 5 −274

5s25p56s 2�1/2�° 0 71 616 80 192 78 425 77 568 75 824 76 480 0 76 197 −283

1 72 896 81 586 79 764 78 925 77 120 77 799 1.3160 77 185 1.321 −614

5s25p56p 2�1/2� 1 72 707 81 332 79 318 78 519 76 533 77 283 1.8559 77 269 1.852 −14

0 76 219 84 202 82 183 81 602 79 607 80 350 0.0000 80 119 −231

5s25p56p 2�5/2� 2 73 810 82 369 80 304 79 587 77 545 78 307 1.1005 78 120 1.111 03 −187

3 74 045 82 627 80 568 79 837 77 802 78 564 1.3333 78 403 1.336 −161

5s25p56p 2�3/2� 1 74 755 83 339 81 261 80 549 78 496 79 260 1.0232 78 956 1.023 48 −304

2 74 964 83 540 81 466 80 755 78 705 79 468 1.3913 79 212 1.383 6 −256

5s25p55d 2�1/2�° 0 76 068 84 821 82 949 82 082 80 235 80 919 0 79 771 −1148

1 76 259 84 946 83 067 82 221 80 367 81 054 1.3786 79 987 1.395 −1067

5s25p55d 2�7/2�° 4 76 425 84 622 82 869 81 997 80 257 80 900 1.2500 80 197 1.250 6 −703

3 77 283 85 513 83 764 82 877 81 141 81 783 1.0762 80 970 1.074 9 −813

5s25p55d 2�3/2�° 2 76 370 84 667 82 973 82 001 80 323 80 947 1.3775 80 323 1.375 0 −624

1 80 595 89 175 86 989 86 445 84 279 85 087 0.9900 83 890 −1197

5s25p55d 2�5/2�° 2 78 310 86 627 84 853 83 959 82 199 82 846 0.9419 81 926 −920

3 78 626 86 996 85 209 84 306 82 531 83 184 1.2179 82 430 −754

5s25p57s 2�3/2�° 2 80 504 89 101 86 967 86 367 84 254 85 042 1.4910 85 189 147

1 81 064 89 742 87 648 86 951 84 880 85 655 0.9759 85 440 −215

5s25p57p 2�1/2� 1 83 048 91 935 89 859 89 051 87 001 87 773 1.7930 87 927 1.727 2 154

0 84 221 92 910 90 834 90 110 88 057 88 825 0 88 842 17

5s25p57p 2�5/2� 2 83 464 92 252 90 160 89 397 87 330 88 104 1.1107 88 352 1.127 6 248

3 83 558 92 350 90 262 89 494 87 429 88 204 1.3333 88 469 1.330 265

5s25p56p 2�3/2� 1 83 700 92 521 90 429 89 662 87 594 88 369 1.0216 88 379 0.792 5 10

2 84 883 94 445 92 365 91 398 89 352 90 122 1.1497 89 162 1.190 −960

5s25p56d 2�1/2�° 0 83 637 92 398 90 367 89 562 87 557 88 309 0 88 491 182

1 83 728 92 489 90 466 89 654 87 658 88 405 1.3430 88 550 145

5s25p57p 2�3/2� 2 83 832 92 610 90 519 89 759 87 693 88 466 1.3843 88 687 1.352 0 221

1 84 392 94 128 92 055 90 956 88 909 89 680 0.6345 88 745 0.903 9 −935

5s25p56d 2�3/2�° 2 83 947 92 702 90 695 89 870 87 892 88 632 1.3165 88 708 76

1 86 666 95 327 93 442 92 542 90 699 91 378 0.6980 90 032 −1346

5s25p56d 2�7/2�° 4 84 071 92 767 90 743 89 952 87 956 88 701 1.2500 88 912 211

3 84 273 92 937 90 939 90 134 88 167 88 900 1.0926 89 025 125

5s25p56d 2�5/2�° 2 84 610 93 238 91 272 90 449 88 514 89 232 0.9548 89 243 11

3 84 900 93 476 91 533 90 700 88 790 89 496 1.2085 89 535 39

aSecond-order single-electron correlation operator �CO� �̂ is included.
bSecond-order double-electron CO �̂ is included.
cAll-order single-electron CO �̂ is included.
dAll-order �̂1 and �̂2 are included.
eDifference between experiment and best calculations for the energies.
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V. BASIS

There are two single-electron basis sets in this problem.

One is used to calculate �̂ and the other is used to construct
many-electron states of valence electrons for the CI calcula-
tions.

In principle, it is possible to use the same basis for both
purposes and we did so in many of our earlier calculations
�17,22–25�. The most convenient choice for the basis is the
basis consisting of single-electron states calculated in the
VN-M potential. We use the B-spline technique to calculate
the basis. Lower and upper component of each basis set is
expressed as linear combination of 40 B-splines in the cavity
of radius of 40aB. Expansion coefficients are found from the
condition that the basis states are the eigenstates of HF
Hamiltonian �2� with the VN-M potential. The advantages of
this approach are many: Core and valence states are orthogo-
nal automatically; the basis is reasonably complete and does
not depend on the number of valence electrons. The latter
means in particular that if we want to change the number of
valence electrons �e.g., to do the calculation for another ion�
we do not have to recalculate single and double electron
matrix elements. The shortcoming of this approach is rapid
increase of the size of the CI matrix with the number of
valence electrons. Indeed, a typical number of single-
electrons basis states needed to get saturation of the basis is
around 100. The number of ways valence electrons can be
distributed over these 100 states grows very fast with the

number of valence electrons. For eight electrons like for Xe I

the matrix reaches unmanageable size, even when some con-
figuration selection technique is used.

In the present work we use the basis described above only

for calculation of �̂. For the CI calculations we use a very
compact basis of HF states of corresponding ion or neutral
atom. For example, we perform HF calculations for neutral
Xe I in its ground state �Pd�5s25p6 in the VN approximation
and then use the 5s and 5p states as the basis states for the CI
calculations for Xe I in the VN-8 approximation. Other basis
states like 6s, 6p, etc. are obtained by removing one 5p
electron from the atom and calculating these states in the
frozen field of remaining electrons. The states obtained this
way are not orthogonal to the core which corresponds to the
VN-8 potential. In the relativistic case the basis states for va-
lence electrons must also be orthogonal to the negative en-
ergy states. Both conditions �orthogonality to the core and to
the negative energy states� have been achieved in the present
work by projecting a basis state on the B-spline states above
the core:

�v� → �v�� = �
i

�i��i�v� . �10�

Here summation goes over states above the core. Functions
�v�� are more suitable for the CI calculations than states �v�
because they do not have admixture of the core and negative
energy states. The problem of excluding core and negative
energy states from the basis of valence electrons in relativis-
tic calculations have been studied in detail in Refs. �27–29�.

If more than one state of particular symmetry is included
into the basis �like, e.g., the 6p and 7p states for Xe I� they
also need to be orthogonalized to each other.

TABLE IV. Ground state removal energy �a.u.�, excitation ener-
gies �cm−1�, and g factors of lowest states of Xe VII; comparison
with experiment.

State J

Expt. �26� Calculations

�aE E g

5s2 1S 0 −7.26 −7.27

5s5p 3P° 0 96 141 94 889 0 1 252

1 100 451 99 394 1.4846 1 057

2 113 676 112 598 1.5000 1 078

5s5p 1P° 1 143 259 146 337 1.0153 −3 078

5p2 3P 0 223 673 224 343 0 −670

1 234 685 235 008 1.5000 −323

2 251 853 252 607 1.3027 −754

5p2 1D 2 236 100 237 129 1.1962 −1 029

5p2 1S 0 273 208 281 328 0 −8 120

5s5d 3D 1 287 772 291 855 0.5000 −4 083

2 288 712 292 896 1.1663 −4 184

3 290 340 294 591 1.3333 −4 251

5s5d 1D 2 307 542 317 647 1.0015 −10 105

5s6s 3S 1 354 833 358 686 2.0000 −3 853

5s6s 1S 0 361 671 364 853 0 −3 182

5p5d 3F° 2 393 792 398 186 0.7405 −4 394

3 401 413 406 187 1.0990 −4 774

4 412 567 417 863 1.2500 −5 296

a�=E�expt�−E�calc�.

TABLE V. Ground state removal energy �a.u.�, excitation ener-
gies �cm−1�, and g factors of lowest states of Xe VI; comparison
with experiment.

State J

Expt. �26� Calculations

�aE E g

5s25p 2P° 1 /2 −9.71 −9.72 0.6667

3/2 15 599 15 590 1.3333 9

5s5p2 4P 1/2 92 586 90 191 2.6301 2395

3/2 100 378 97 787 1.7247 2591

5/2 107 205 105 036 1.5629 2169

5s5p2 2D 3/2 124 870 125 900 0.8243 −1030

5/2 129 230 129 897 1.2366 −667

5s5p2 2P 1/2 141 837 145 429 1.1878 −3592

3/2 159 112 162 903 1.3119 −3791

5s5p2 2S 1/2 157 996 161 647 1.5155 −3651

5s25d 2D 3/2 180 250 186 188 0.8058 −5938

5/2 182 308 188 093 1.2004 −5785

5s26s 2S 1/2 223 478 224 641 1.9998 −1163

5p3 3 /2 232 586 232 997 1.3377 −411

a�=E�expt�−E�calc�.
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Full list of valence states for xenon and its ions used in
the calculations are presented in Table II. The first column
shows an atom or ion, the second column gives the total
number of valence basis states, then states are listed together
with the configurations in which they were calculated. Note
that every state with l�0 consists of two functions, e.g., 6p
stands for 6p1/2 and 6p3/2, etc. Note also that the number of
basis states is always small, much smaller than about 100
needed with the B-spline basis. This greatly outweighs the
inconvenience of recalculating the basis for every ion or
atom.

VI. CALCULATIONS FOR XENON AND ITS IONS

In this section we present calculations for xenon and its
ions. The whole calculation scheme consists of the following
steps �we use Xe I as an example�.

�1� HF for Xe IX; VN-8 potential is obtained.
�2� Calculation of B-spline states in the VN-8 potential.

�3� Calculation of �̂1.
�4� HF for Xe I; the 5s and 5p basis states are obtained.
�5� Calculation of valence basis states.
�6� Calculation of single and double-electron matrix ele-

ments, including matrix elements of �̂2.
�7� Calculation and diagonalization of the CI matrix.
At first glance this scheme does not look very simple.

However, none of the steps listed above are very time con-
suming or require large computer power. The most time con-

suming step is calculation of �̂ ��̂1 in step �3� and �̂2 in step

�6��. An efficient way of calculating both �̂1 and �̂2 is pre-
sented in the Appendix. The time scale to obtain all results
presented in this section while using a PC or a laptop is one
day.

Results for neutral xenon are presented in Table III while
results for six positive ions from Xe VII to Xe II are presented
in Tables IV–IX. For neutral xenon �Table III� we study in
detail the role of core-valence correlations by including them
in different approximations. The basis for valence states is
kept the same in all cases �see previous section for the de-
scription of the basis�. The approximations are as follows.

�1� First, we present the results of the standard CI method,
with no core-valence correlations �the “CI” column of Table
III�. Accuracy for the energies as compared to experimental
values are not very good. However, the difference does not
exceed 10% which is sufficiently good for many applica-

TABLE VI. Ground state removal energy �a.u.�, excitation en-
ergies �cm−1�, and g factors of lowest states of Xe V; comparison
with experiment.

State J

Expt. �26� Calculations

�aE E g

5s25p2 3P 0 −11.7 −11.72

1 9 292 8 969 1.5000 323

2 14 127 14 643 1.3744 −516

5s25p2 1D 2 28 412 30 169 1.1256 −1757

5s25p2 1S 0 44 470 47 061 0 −2591

5s5p3 5S° 2 92 183 88 033 1.9744 4150

5s5p3 3D° 1 115 286 115 554 0.6192 −268

2 116 097 116 202 1.2256 −105

3 119 919 120 152 1.3329 −233

5s5p3 3P° 0 133 408 134 320 0 −912

1 134 575 135 493 1.4078 −918

2 134 703 135 579 1.3152 −876

5s5p3 1D° 2 145 807 147 030 1.1261 −1223

5s5p3 3S° 1 155 518 160 672 1.7362 −5154

5s25p5d 3F° 2 156 507 159 419 0.7036 −2912

3 160 630 163 534 1.0901 −2904

4 169 799 172 418 1.2500 −2619

5s5p3 1P° 1 169 673 175 704 1.1706 −6031

a�=E�expt�−E�calc�.

TABLE VII. Ground state removal energy �a.u.�, excitation en-
ergies �cm−1�, and g factors of lowest states of Xe IV.

State J

Expt. �26� Calculations

�aE E g

5s25p3 4S° 3 /2 −13.2 −13.27 1.8987

5s25p3 2D° 3 /2 13 267 14 619 0.9778 −1352

5/2 17 511 18 938 1.2000 −1427

5s25p3 2P° 1 /2 28 036 30 149 0.6667 −2113

3/2 35 650 37 446 1.2569 −1796

5s5p4 4P 5/2 99 664 99 466 1.5814 198

3/2 106 923 106 710 1.7055 213

1/2 109 254 109 169 2.6286 85

5s5p4 2D 3/2 121 929 124 529 0.8925 −2600

5/2 125 475 128 117 1.2153 −2642

5s25p25d 2P 3/2 133 027 135 880 0.8912 −2853

1/2 136 796 139 997 0.7788 −3201

5s25p25d 4F 3/2 134 981 137 617 0.8501 −2636

5/2 136 496 139 103 1.1064 −2607

7/2 141 625 144 013 1.2649 −2388

9/2 145 991 148 958 1.3088 −2967

5s25p25d 2F 5/2 141 824 145 598 0.9889 −3774

7/2 145 011 148 526 1.2658 −3515

5s25p25d 4D 1/2 145 106 147 933 0.4037 −2827

3/2 146 207 148 762 1.1487 −2555

5/2 148 685 151 840 1.1799 −3155

7/2 155 864 159 785 1.2361 −3921

5s5p4 2S 1/2 150 737 154 437 1.5219 −3700

5s25p26s 4P 1/2 157 205 161 777 2.3294 −4572

3/2 165 280 167 775 1.6017 −2495

5/2 170 490 174 875 1.4873 −4385

5s25p25d 4P 5/2 159 643 165 187 1.5539 −5544

3/2 161 435 169 550 1.6737 −8115

1/2 162 867 169 085 2.4382 −6218

a�=E�expt�−E�calc�.
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tions. This is in spite of the fact that calculations for neutral
xenon were done with atomic core corresponding to highly
ionized Xe IX. This is another confirmation that change in the
core potential Vcore from Xe I to Xe IX is very small.

�2� Second-order �̂1
�2� is added to the effective Hamil-

tonian �the “�̂1
�2�” column of Table III�. The results are sig-

nificantly closer to the experiment but the correction is too
large. This is similar to what usually takes place with the
second-order correlation correction for atoms with one exter-
nal electron.

�3� Second-order �̂2
�2� is also added �the “�̂1

�2� and �̂2
�2�”

column�. As one can see �̂2
�2� acts in a direction opposite to

�̂1
�2� and the results are even closer to the experiment.

�4� Higher orders are included in �̂1 while �̂2 is not in-

cluded at all �the “�̂1
�	�” column�. The effect of higher orders

in �̂1 is numerically close to the effect of �̂2 as is evident
from the comparison with previous column. This coincidence
is accidental.

�5� Higher orders are included in �̂1 while �̂2 is included

in second order �the “�̂1
�	� and �̂2

�2�” column�. The results are

improved but for many states the correction is too large.
�6� Higher orders are included in both �̂1 and �̂2 �the

“�̂�	�” column�. This is the most complete calculation we
have in the present work. Here we also included calculated
values of Landé’s g factors. The g factors are very useful for
identification of the states, especially for atoms with dense
spectrum where calculations do not always reproduce the
correct order of the levels.

The last column of Table III presents the difference be-
tween experimental and calculated energies where calculated
energies correspond to the most complete calculation ��̂�	��:
�=Eexpt−Ecalc. This difference does not exceed 2% and
should mostly be attributed to incompleteness of the basis.
Indeed, it is hard to expect that the basis consisting of only
15 single-electron states �from one to three in each partial
wave from l=0 to l=3� to be complete. Test calculations
show that adding more states to the basis do have some ef-
fect on the energies of the states. The effect is larger for
higher states. For example, it is hard to expect any reason-
able accuracy for the states of the 5s25p56d configuration
without having the 6d state in the basis. But adding the 6d
state to the basis also have some effect on the lower

TABLE VIII. Ground state removal energy �a.u.�, excitation energies �cm−1�, and g factors of lowest
states of Xe III.

State J

Expt. �26� Calculations

E g E g �a E�N−1�

5s25p4 3P 2 −14.38 −14.36 1.4523 −14.38

0 8 130 8 313 0 −183 8 319

1 9 794 9 638 1.5000 156 9 528

5s25p4 1D 2 17 099 19 086 1.0477 −1987 17 879

5s25p4 1S 0 36 103 37 280 0 −1177 37 392

5s5p5 3P° 2 98 262 98 847 1.4986 −585 98 729

1 103 568 104 334 1.4553 −766 104 369

0 108 334 108 562 0 −228 109 016

5s25p35d 5D° 3 111 605 110 836 1.4702 769 113 883

2 111 856 111 066 1.4623 790 114 075

4 112 272 111 366 1.4813 906 114 347

1 112 450 111 506 1.4882 944 114 360

0 112 694 112 142 0 552 114 544

5s25p35d 3D° 2 117 240 118 575 1.8400 −1335 122 839

3 121 230 122 482 1.3114 −1252 126 365

1 121 923 123 251 0.6428 −1328 127 257

5s25p35d 1P° 1 119 026 120 856 1.0670 −1830 122 930

5s25p36s 5S° 2 121 476 1.95 119 002 1.1889 2474 125 150

5s25p35d 3F° 2 124 691 127 328 0.8030 −2637 130 640

3 126 120 129 045 1.0994 −2925 132 337

4 130 174 133 970 1.1386 −3796 138 195

5s25p36s 3S° 1 125 617 1.77 124 152 1.7102 1465 132 504

5s25p35d 3G° 4 127 782 131 307 1.1977 −3525 134 519

3 128 349 132 922 0.8245 −4573 137 183

5 132 160 136 422 1.2000 −4262 140 435

a�=E�expt�−E�calc�.
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5s25p55d configuration. The detailed study of the ways to
saturate the basis goes beyond the scope of the present work.

Apart from numerical accuracy comparison of the theory
and experiment can be affected by omitting of the higher-
order relativistic effects from the atomic Hamiltonian. In the
present paper we do not include Breit interaction and quan-
tum electrodynamic �QED� corrections. The study of Breit
interaction in many-electron atoms can be found elsewhere
�see, e.g. �30–34��. In particular, the detailed study of the
Breit interaction �32,35,36� and QED corrections �37� for
cesium, which is next to xenon in the Periodic Table, shows
that the effect of these terms on the energy levels is just a
small fraction of percent and can be neglected in present
calculations.

Tables IV–IX present our results for xenon positive ions
from Xe VII to Xe II. Only results obtained in the “best” ap-

proximation ��̂�	�� are included. Calculations for the ions
start from point �4� in the scheme presented in the beginning
of this section. This is because the first three points are ex-
actly the same as for neutral xenon. Note that one of the most

time consuming steps, calculation of �̂1, does not need to be
repeated. Basis states for valence electrons used in the CI

calculations are described in the preceding section �see Table
II�. We use a shorter basis for the ions because we calculate
only lowest states. To go up in the spectrum we would need
to extend the basis similar to what is done for Xe I. The
analysis of the data in Tables IV–IX show that the accuracy
is generally very good in spite of a very short basis.

For the Xe III ion we also included calculations which use
the basis states of the Xe IV ion �column E�N-1� of Table
VIII�. The purpose of these calculations will be explained in
the negative ions section below.

VII. SOME SPECIAL CASES

A. Highly excited states

One of the additional advantages of the use of VN basis
for valence states is the possibility to study highly excited
states with a very short basis. To get to a highly excited state
with an universal basis like B-splines one has to calculate all
states of the same parity and total momentum J which are
below the state of interest. Also, the completeness of the
basis deteriorates rapidly while going higher in the spectrum.
VN basis is free from these problems. To calculate highly
excited states of a particular configuration it is sufficient to
include into single-electron basis for valence states only
states which correspond to this configuration. For example,
the states of the 5s25p58s of Xe I can be calculated with good
accuracy with only four states in the basis: 5s, 5p1/2, 5p3/2,
and 8s �see Table X�. There are many lower states of same
parity and total momentum J but we can easily get rid of
them by not including corresponding single-electron states
into the basis.

B. Negative ions

An interesting question is whether the method presented
in this paper can be used to calculated states of a negative
ion. At first glance the answer is no because we use VN states
for the basis and negative ions are not bound in the VN ap-
proximation. However, we may consider the following ques-
tion: What is going to happen if we add one more electron to
the CI calculations for a neutral atom, when basis corre-
sponds to the neutral atom?

For atoms like xenon, which do not form negative ions, it
makes more sense to consider a more general question: Can
a basis calculated for a system of N-1 valence electrons be
used to calculate many electron states of a system of N elec-
trons? This can be easily checked. Take, for example, the

TABLE IX. Ground state removal energy �a.u.�, excitation en-
ergies �cm−1�, and g factors of lowest states of Xe II.

State J

Expt. �26� Calculations

�aE g E g

5s25p5 2P° 3 /2 −15.16 −15.09 1.3333

1/2 10 537 10 763 0.6667 −226

5s5p6 2S 1/2 90 874 2.02 91 700 2.0423 −826

5s25p46s �2� 5/2 93 068 1.56 91 729 1.5639 1339

3/2 95 064 1.38 94 188 1.4084 876

5s25p45d �2� 5/2 95 397 1.36 95 802 1.3473 −405

3/2 96 033 1.18 96 534 1.1847 −501

5s25p45d �3� 7/2 95 438 1.42 95 783 1.3940 −345

5/2 106 475 108 559 1.0537 −2084

5s25p45d �1� 1/2 96 858 0.50 97 388 0.5457 −530

3/2 105 313 1.15 107 286 1.0869 −1973

5s25p45d �4� 9/2 99 405 1.31 100 848 1.3093 −1443

7/2 101 536 1.11 103 581 1.1524 −2045

5s25p46s �0� 1/2 101 157 2.43 100 700 2.3677 457

5s25p46s �1� 3/2 102 799 1.59 101 988 1.5811 811

1/2 106 906 1.79 108 148 1.9490 −1242

5s25p45d �1� 1/2 104 250 0.56 104 264 0.6408 −14

3/2 107 904 1.20 109 217 1.3762 −1313

5s25p45d �0� 1/2 105 948 1.36 107 566 1.1311 −1618

5s25p46p �2�° 3 /2 111 792 1.61 112 248 1.6084 −456

5/2 111 959 1.47 112 286 1.4934 −327

5s25p46p �3�° 5 /2 113 512 1.28 114 041 1.2350 −529

7/2 113 705 1.40 114 266 1.3984 −561

5s25p46p �1�° 1 /2 113 673 1.50 114 350 1.5358 −677

3/2 116 783 1.37 117 621 1.3609 −838

a�=E�expt�−E�calc�.

TABLE X. Energies �cm−1� and g factors of the 5s25p58s con-
figuration of Xe I.

State J

Expt. �26� Calculations

E g E g

8s �3/2�° 2 90 805 1.465 92 288 1.5000

1 90 933 1.182 92 414 1.1700

8s� �1/2�° 0 104 063 0

1 101 426 104 118 1.3300
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Xe IV ion and add one more electron in the CI calculations to
get the states of Xe III. We have done this without adding any
new states into the basis. Results are presented in the last
column of Table VIII. We can see that the results for the ion
with the basis of the other ion are almost as good as with its
own basis. Accuracy is a bit lower which is a natural conse-
quence of the worsening of the basis. Adding more states to
the basis would most certainly improve the results.

This findings are not very surprising since we know that
any basis set can be used in the CI calculations. For example,
in Ref. �23� calculations for neutral Kr were performed with
the basis corresponding to Kr IX The only question is how
many states we need to include to get reasonable results. It
turns out that at least in the case of just one more electron
there is no need to greatly increase the basis. This means that
we can also calculate states of negative ions by using basis
states of a neutral atom.

VIII. CONCLUSION

In this paper we present a method of calculation for
many-electron atoms with open shells which is both accurate
and very efficient. The method is based on the so-called VN-M

approximation in which calculations start from the highly
charged ion with all valence electrons removed. High accu-
racy is achieved by inclusion of core-valence correlations by
means of MBPT. Dominating chains of higher order dia-
grams are included in all orders. High efficiency of the
method is mostly due to the compact VN basis set for the
states of valence electrons. The method is expected to work
well for atoms in which valence electrons form a separate
shell �defined by the principal quantum number�. This is usu-
ally the case if valence electrons in the atomic ground state
occupy s and/or p states. This covers roughly half of the
Periodic Table of elements. Calculations for xenon and its
ions illustrate the use of the method.
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APPENDIX: EFFICIENT WAY OF CALCULATING �̂

The correlation correction operator �̂1 is defined in such
are way that its average value over a wave function of a
valence electron is the correlation correction to the energy of
this electron:

�
v = �v��̂1�v� . �A1�

We use the following form of the single-electron wave func-
tion:

��r�njlm =
1

r
� fn�r�
�n� jlm

i�gn�r�
̃�n� jlm


 . �A2�

Then the expression �A1� becomes

�
v =� � fv�r�� f f�r,r��fv�r��dr dr�

+ �2� � fv�r�� fg�r,r��gv�r��dr dr�

+ �2� � gv�r��gf�r,r��fv�r��dr dr�

+ �4� � gv�r��gg�r,r��gv�r��dr dr�. �A3�

Note factors �2 and �4 in all terms except the first one. These
factors make corresponding contributions very small. There-
fore, we do not usually include them. Only � f f will be con-
sidered in this appendix and we will omit the indexes.

1. Second-order �̂

Good efficiency in calculating of �̂ is achieved by divid-
ing the calculations into two steps.

�1� First, all relevant Coulomb Y functions are calculated
and stored on disk.

�2� Then, � is calculated using stored Y functions.
The Coulomb Y function is defined as

Yknm�r� =� r�
k

r�
k+1 �fn�r��fm�r�� + �2gn�r��gm�r���dr�,

�A4�

where r�=min�r ,r�� and r�=max�r ,r��. We will also need a
� function:

� jl�r� = f j�r�f l�r� + �2gj�r�gl�r� . �A5�

Our typical coordinate grid consists of about 1000 points.
Usually all of them are used to calculate Y functions �A4�.
However, there is no need to keep all points for the Y and �
functions for consequent calculations. It turns out that very
little loss of accuracy is caused by the use of a subset of
points defined as every fourth point in the interval

1/Z � r � Rcore.

By cutting off the point on short and large distances and
using only every fourth point in between we reduce the num-
ber of points by an order of magnitude. Then, Coulomb in-
tegrals are calculated in an extremely efficient way

qk�jlmn� = �
i=1

�

� jl�ri�Ykmn�ri�wi. �A6�

Here ��100 is the number of points on the subgrid and wi
are weight coefficients corresponding to a particular method
of numerical integration. Note that only one of two integra-
tions for Coulomb integrals is done on a reduced subgrid.
First integration �A4� is done with the use of all points.

An expression for �̂1
�2� via Y functions is

�1�r,r�� = �
amnk

c1�kvamn�
fn�r�Ykam�r�Ykam�r��fn�r��


v + 
a − 
m − 
n

�A7�
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− �
amnk1k2

c2�k1k2vamn�

�
fn�r�Yk1am�r�Yk2an�r��fm�r��


v + 
a − 
m − 
n
�A8�

− �
amnk

c3�kvabm�
fb�r�Ykam�r�Ykam�r��fb�r��


a + 
b − 
v − 
m

�A9�

+ �
amnk1k2

c4�k1k2vabm�

�
fa�r�Yk1bm�r�Yk2am�r��fb�r��


a + 
b − 
v − 
m
. �A10�

Here c1, c2, c3, c4 are angular coefficients. Expressions for
them can be found elsewhere �16�. Formulas �A7�–�A10�
correspond to diagrams 1, 2, 3, and 4 on Fig. 2. �̂1 is a
matrix of size ��100 in coordinate space. Matrix elements

of �̂1 are calculated by

�v��̂1�w� = �
i=1,j=1

�

fv�ri��1�ri,rj�fw�rj�wiwj . �A11�

Note that we use a two-step procedure to calculate matrix

elements of �̂1. First, �̂1 matrix which is independent on

valence functions is calculated, then matrix elements of �̂1

are calculated. To use the same approach for �̂2 is impracti-

cal. As can be seen from Fig. 4 to make �̂2 independent on
valence states one would have to make matrices of dimen-
sions 2, 3, and 4. Therefore, we just calculate matrix ele-

ments of �̂2 via Coulomb integrals. Corresponding expres-
sions can be found in Ref. �16�. Coulomb integrals are
calculated as in Eq. �A6�.

2. All-order �

We use the Feynman diagram technique to include higher-

order correlations into the direct part of �̂1 �diagrams 1 and 3
on Fig. 2�. The corresponding expression is �9�

��
,ri,rj� = �
nm
� d�

2�
Gij�
 + ��Qim�̃mn���Qnj .

�A12�

Here �̃ is “screened polarization operator”

�̃ = ��1 − Q��−1,

� is polarization operator

���� = �
a

�a�G�
a + �� + G�
a − ����a,

G is Green function

�ĥ1 − 
�G�r,r�� = − ��r − r�� ,

and Q is Coulomb interaction

Qij = e2/�ri − rj� .

The details of calculation of �̂1
�	� can be found elsewhere

�7,9�. Here we only want to mention that operators �̃, �, G,
and Q are matrices of size ��100 in coordinate space.

Therefore, calculation of �̂1
�	� involves manipulation of ma-

trices of relatively small size. If we also recall that �̂1 does
not depend on valence states and needs to be calculated only
once then the efficiency of its calculation is quiet satisfac-
tory.

Higher-order correlations in exchange diagrams for �̂1

�diagrams 2 and 4 on Fig. 2� and for all diagrams for �̂2 are
included via screening factors as explained in the text.
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