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Partially correlated ground-state electron densities for some spherical light atoms are calculated, into which
nonrelativistic ionization potentials represent essential input data. The nuclear cusp condition of Kato is
satisfied precisely. The basic theoretical starting point, however, is Hartree-Fock (HF) theory for the N elec-
trons under consideration but with nonintegral nuclear charge Z’ slightly different from the atomic number Z
(=N). This HF density is scaled with a parameter \, near to unity, to preserve normalization. Finally, some tests
are performed on the densities for the atoms Ne and Ar, as well as for Be and Mg.
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I. INTRODUCTION

In their celebrated theoretical study about adding Cou-
lomb correlation effects to the Hartree-Fock (HF) approxi-
mation, Mgller and Plesset [ 1] concluded by emphasizing the
accuracy of the HF ground-state electron density p(r) in
atomic physics. Their specific conclusion was that p(r) was
correct to second order in the difference between the correct
nonrelativistic Hamiltonian and the Fock operator. Motivated
by this Mgller-Plesset result we reopen here the question of
going beyond the HF ground-state density for some closed
shell atoms. We start out from an unconventional use of the
HF method with nonintegral nuclear charge—say, Z'—in or-
der to get the nonrelativistic ionization potential and scale
the resulting density to satisfy Kato’s cusp condition for the
electron density at the nucleus [2].

The numerically calculated HF ground-state density for
species with nuclear charge Z’ and N electrons, pyp(Z',N,r),
is well known to have an exponential factor in its decay at
large distances from the nucleus, taken as origin r=0, of the
form

pur(Z' ,N,r) ~ exp[-2V2Ix(Z' ,N)r], (1)

in atomic units, where Ix(Z',N) is the appropriate Koop-
mans’ ionization potential, which in turn is the one-electron
HF eigenvalue associated with the highest occupied atomic
orbital (HOAO). In contrast, for a neutral atom with N=Z,
the exact exponential decay factor of the nonrelativistic
ground-state electron density pyg(r) is known to be [3]

—
pNR(Z’N9 r) -~ exp[_ ZVZINR(Z»N)":L (2)

where Iyg(Z,N) is the nonrelativistic ionization potential of
the neutral atom with atomic number Z under consideration.
Thus in Sec. II below we summarize an available method
which allows Iy to be determined semiempirically. With
this nonrelativistic input information, we describe the basic
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scaling proposal of this work. This will enable us to connect
uniquely the basic HF theoretical calculation of pyp(Z’,N,r)
cited in Eq. (1) to the desired (partially correlated) ground-
state density pyr(Z=N,r) of the neutral atom, cited in Eq.
(2). This section ends by analyzing our results of the two-
parameter pyr(Z=N,r) proposed for Ne and Ar. Section IIT
compares and contrasts these results for rare gas atoms with
the divalent atoms Be and Mg chosen because they also have
spherical electron densities. Section IV gives some tests of
the proposed densities by comparison with quantum simula-
tion studies. A summary together with proposals for future
studies which should prove fruitful constitutes Sec. V.

II. SCALING APPROACH TO FORM CORRELATED
GROUND-STATE ELECTRON DENSITIES FROM
HARTREE-FOCK DENSITIES FOR Ne AND Ar

For a nonrelativistic atom with atomic number Z and N
(=2) electrons, the electronic density far from the nucleus
decays as in Eq. (2). Within the Hartree-Fock approximation,
the electronic density of a fictitious atom with atomic num-
ber Z' and N electrons falls off exponentially as given by Eq.
(1), where Ix(Z',N) is its ionization potential calculated
using Koopmans’ theorem [i.e., the eigenvalue of the
highest occupied atomic orbital, with the opposite sign
IK(Z' ,N)==gnoao(Z' ,N)].

If we scale this HF density using the norm-conserving
ansatz

ox(Z'\N,r) = N pyup(Z' ,N,\1), (3)

where \ is a positive parameter, the asymptotic behavior of
the scaled density will be

pn(Z' ,N,r) ~ exp[— 2\2Ig(Z' ,N)\r]. (4)

If we require the scaled density to decay in its long-range
behavior like the exact nonrelativistic one, p,(Z',N,r)
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TABLE 1. Tonization potentials (in a.u.) and fitted parameters for the atoms studied. The experimental
ionization potentials Iy (Z,N) are taken from [5] and the nonrelativistic ones Iyr(Z,N) are calculated
according to Eq. (10). Ix(Z,N) and Ix(Z',N) are Koopmans’ ionization potential for the atom with its original
and slightly modified nuclear charge, respectively. In all cases N=Z.

Atom z 1«(Z,N) Tup(Z,N) Ink(Z,N) z' N=Z/7' I«(Z' \N)
Ne 10 0.850410 0.792482 0.794464 9.9128 1.0088 0.780612
Ar 18 0.591017 0.579155 0.582173 17.9802 1.0011 0.580883
Be 4 0.309270 0.342603 0.344332 4.1270 0.96922 0.366550
Mg 12 0.253053 0.280994 0.280740 12.0960 0.99207 0.285245
~pnr(Z,N,r), we must impose the condition R., m, m,
/ —=1l+—"=1+— (11)
VIK(Z' N\ = VIxg(Z,N). (5) Ry Mz A—-Zm,

On the other hand, if we want this scaled density to satisfy
Kato’s cusp condition at the nucleus [2] for the correct
nuclear charge Z, we must have

ap\(Z' ,N,r 2Z
NG R S
or ag

27
=— —Npur(Z' ,N,r=0), 6)
ap

and taking into account that

(;p)\(Z’,N,r) _)\3 07PHF(Z',N,7\I‘)
ar =0 or =0
N dpur(Z',N,r)
ar r=0

27’

=N pue(Z' Nr=0),  (7)
2N

we obtain

Z'\N=Z. (8)

This identity shows that the two parameters of the model are
not independent. This means that our two-parameter model is
in fact a one-parameter model. Eliminating A between Eqs.
(5) and (8) one finds

K(Z',N) Ixg(Z,N)
Z!2 - 22 .

©)

If we choose Z' so that identity (9) is satisfied, we have a
density py\(Z',N,r) that has the correct nonrelativistic behav-
ior both at the nucleus and very far from it, and so it must
include some amount of Coulomb correlation and can be
considered as an approximation to pyg(Z,N,r).

In order to calculate the nonrelativistic ionization poten-
tials for Ne and Ar we have taken the experimental first
ionization energies and made use of the relativistic correc-
tions given by Chakravorty ef al. [4]:

Roo
Lw(Z,N) = Iexpt(Z,N)R— +AE4(Z,N), (10)
zZ

where

with M, the nuclear mass, m, the electron mass, and A the
atomic mass. All the experimental values were taken from
[5], and the nonrelativistic ionization potentials calculated
according to Eq. (10) appear in Table L

We have slightly modified the Froese-Fischer HF code
[6,7] to allow for noninteger atomic numbers and compute
total densities in order to calculate pyp(Z,N,r) and
p\(Z' ,N,r). Table I also includes the fitted parameters Z' and
\ for the spherical atoms Ne and Ar, as well as the Koop-
mans’ ionization potential for the atom with its original
Ix(Z,N) and slightly modified Ix(Z’,N) nuclear charge. The
latter is closer to Ixg(Z,N) but not identical to it since Z’
# Z and Eq. (9) must be satisfied. It is interesting to note that
Z' is slightly less than Z for these rare gas atoms, the differ-
ence between then being smaller for the heavier atom. This
will be contrasted in Sec. III with the situation in Be and Mg.

Figure 1 shows the scaled Hartree-Fock radial densities
4mr’p\(Z' ,N,r) for Ne and Ar. Both radial densities
47r’p\(Z' ,N,r) and 47r’pye(Z,N,r) are very similar. In or-
der to appreciate the small difference between them, Figs. 2
and 3 show A(dwr’p)=4mr’p\(Z' ,N,r)-4mr’pys(Z,N,r)
for Ne and Ar, respectively. In both cases p,(Z',N,r)
<pup(Z,N,r) close to the nucleus and, of course,
JoA(47r?p)dr=0 since the rescaling given by Eq. (3) is
norm conserving, but there are two differences: A(4mr’p)
has one oscillation for Ne but two for Ar and is one order of
magnitude smaller for the latter.

47 p(r) (a.u.)

Be
——= Ne

i

15 FY

———- Mg
---- Ar

r(a.u.)

FIG. 1. Scaled Hartree-Fock radial densities in atomic units.
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FIG. 2. Radial density difference (in atomic units) between the
scaled and original HF densities for the Ne atom.

III. COMPARISON BETWEEN RARE GAS ATOMS AND
THE DIVALENT ELEMENTS Be AND Mg

The purpose of this section is to present partially corre-
lated ground-state electron densities for Be and Mg and to
compare and contrast with the results for Ne and Ar. For the
latter purpose, we have added to Table I the values of \ and
Z' for Be and Mg and the corresponding scaled radial den-
sities to Fig. 1. The most important difference to be empha-
sized is that whereas, as stressed in Sec. II, the starting HF
densities for Ne and Ar apply to “weakly negative” atomic
ions, the opposite situation obtains for the “divalent” ele-
ments Be and Mg. While the values of the normalization
scaling parameter \ are all within a few percent of unity, for
Ne and Ar, \ is slightly greater than 1, while for Be and Mg,
\ is slightly smaller than 1. However, with regard to the A
variation there is a common feature for the four atoms: Z’
tends to Z in such a way that |\ —1| decreases monotonically
with Z. In order to understand this result we must take into
account that, although the Coulomb correlation contribution
to the total energy of light neutral atoms increases roughly
linearly with the number of pairings between antiparallel
spin electrons (and thus with the atomic number) [8,9], the
correlation contribution to the ionization potential is not a
monotonic increasing function of Z [10]. For the four atoms
considered here the last contribution is similar [10] and A
must get closer to unity as Z increases; otherwise, the corre-
lation contribution to the ionization potential should increase
with Z, since the number of electrons increases.

All this means that the correlation effects become less
important in correcting HF properties for the atoms consid-

A(47rr2p) (a.u.)
0.005 | /\
/\ + - - + ' r(a.u.)
1 2 3 4 5 6 7
—0.005 F
-0.010
-0.015

FIG. 3. Radial density difference (in atomic units) between the
scaled and original HF densities for the Ar atom.
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FIG. 4. Radial density difference (in atomic units) between the
scaled and original HF densities for the Be atom.

ered as the atomic number Z increases. Thus, Be exhibits the
largest deviations from HF results, as shown clearly in the
departures of Z’' and N\ from Z and 1, respectively. Again, as
with Ne and Ar displayed in Sec. II, radial density differ-
ences are also shown for Be and Mg in Figs. 4 and 5. In this
case p,(Z',N,r)>pup(Z,N,r), close to the nucleus, in con-
trast to what happened for Ne and Ar (owing to the different
sign of A—1) and A(47r?p) has two oscillations for both Be
and Mg.

IV. TESTS OF THE PROPOSED DENSITIES

Tables II-V present the density at the nucleus and the
moments of the density calculated using the original Hartree-
Fock density pup(Z,N,r) as well as the scaled one
p(Z',N,r) for the four atoms under consideration. Monte
Carlo and accurate configuration interaction (CI) results from
different authors [11-14] are given for comparison. The
mean relative error

{ Mmax (" = (" accurate
<Vn >accurate

A () =
l< > Nax 2n=—2
n#0

and the mean relative error in absolute value,
A4’ p) (a.u.)

0.08 }

0.06 |

0.04

0.02 f /\

L L L r(a.u.)
\/ > N\& s— 8

-0.02

FIG. 5. Radial density difference (in atomic units) between the
scaled and original HF densities for the Mg atom.
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TABLE II. Density at the nucleus and moments of the density (in a.u.) for the Be atom.

HF Scaled HF VMC? pMmc VMC(v)°  VMC(e)* ECG®
p(0) 35.388 35.654 34.665(13)  35.32(8) 35.8(3) 35.3(1) 353116
2 57.618 58.001 56.79(2) 57.40(10) 58.3(5) 57.4(2) 57.59808
) 8.4088 8.4595 8.3734(14)  8.403(4) 8.408(2) 8.433(2) 8.42735
) 6.1288 5.9766 5.9841(5) 6.065(7) 6.217(2) 5.985(1) 5.97256
() 17.319 16.330 16.197(3) 16.79(4)  18.154(8)  16.343(9) 16.2476
) 63.151 57.454 69.57(4) 57.43(6) 56.772
o 270.66 237.12 318.2(5) 236.7(4)  232.12
A (7 6.14% 0.84% -0.54% 1.06% 12.74% 0.61%
A 622% 0.84% 0.64% 1.38% 12.82% 0.72%

*Variational Monte Carlo results from Langfelder ef al. [11].

"Diffusion Monte Carlo results from Langfelder er al. [11].

“Variance-optimized variational Monte Carlo results from Gélvez et al. [12].
9Energy-optimized variational Monte Carlo results from Gdlvez et al. [12].

®Accurate results from Komasa et al. [13] using exponentially correlated Gaussian functions.

TN 1 o <rn> - <rn>accurate
Are <rn ) = E >
| : | max 2n=—2 <rn >accurate

n#0

appear at the bottom of the tables.

HF results consistently overestimate the moments of the
density for Be, Mg, and Ar (A, (r") =|A,(r")|) while they
underestimate them for Ne (A, (r") =—|A.(")]). In the case
of Be (for which the greatest number of accurate moments
are available in the literature) our scaled density consistently
overestimates the moments but improves the results by
roughly one order of magnitude. This improvement is not
homogeneous; there is a slight worsening on (+~2) and (r")
and a big improvement for higher-order moments. For the
rest of the atoms considered the scaled densities do not ex-

hibit an overall underestimation or overestimation of the mo-
ments (|A,(r)|#|A(r")]). There is, however, a common
trend: although scaled HF values are better than HF ones
(except for Ar), they modestly improve (or slightly worsen)
low-order moments while clearly improve high-order ones.
This seems to imply that scaled densities are better than HF
ones overall but perform better far from the nucleus than
close to it. Regarding the comparison with Monte Carlo re-
sults, scaled HF results are clearly competitive with them.
Liu et al. [15,16] have shown that the density at the
nucleus of an atom is in fact a nonlocal functional of the
electron density that can be calculated via four different

integrals:
1 [ V?p(r)
p(0))=-— f dr,
41 |r|

(12)

TABLE III. Density at the nucleus and moments of the density (in a.u.) for the Ne atom.

HF Scaled HF vMC? DMC®  VMC(v) VMC(e)® MR-SDCI®
p(0) 619.92 619.37 609.83(17)  619.0(9) 615(2) 621(2)
r?) 414.89 414.35 409.69(12)  414.1(4)  412.(2) 417.(2) 414.8753
) 31.113 31.032 30.883(4)  31.03(2)  31.128(3)  31.134(5) 31.1093
(r 7.8911 7.9590 7.9844(5)  7.974(6)  7.935(1) 7.903(1) 7.9385
() 9.3718 9.5677 9.6640(13)  9.64(2) 9.567(3) 9.468(2) 9.5565
) 14.383 14.910 15.13(1) 14.94(2)
) 27.188 28.709
Ae(F) -0.63% 0.00% -0.07% 0.22% -0.14% -0.20%
A ()] 0.64% 0.19% 0.92% 0.44% 0.23% 0.49%

*Variational Monte Carlo results from Langfelder et al. [11].

"Diffusion Monte Carlo results from Langfelder er al. [11].

“Variance-optimized variational Monte Carlo results from Gélvez et al. [12].

dEnergy-optimized variational Monte Carlo results from Galvez et al. [12].

“Results from Meyer et al. [14] using multireference singly and doubly excited configuration interaction that

recovers 95.7% of the total correlation energy.
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TABLE IV. Density at the nucleus and moments of the density
(in a.u.) for the Mg atom.

PHYSICAL REVIEW A 75, 052502 (2007)

TABLE V. Density at the nucleus and moments of the density
(in a.u.) for the Ar atom.

HF Scaled HF MR-SDCI* HF Scaled HF MR-SDCI*
p(0) 1093.7 1094.8 p(0) 3839.8 3839.4
(r2) 614.85 615.63 614.7719 (r2) 1465.0 1464.8 1464.9102
oY 39.920 40.012 39.9303 Y 69.725 69.704 69.7426
(r) 12.258 12.058 12.1357 (r) 16.071 16.097 16.0382
o) 29.612 28.189 28.5698 () 26.034 26.144 25.9344
() 114.30 104.83 () 55.988 56.397
(r* 555.24 490.44 ™ 144.79 146.36
A (7 1.16% -0.41% A (F) 0.14% 0.28%
A (™) 1.17% 0.58% A ()] 0.15% 0.31%

“Results from Meyer et al. [14] using multireference singly and
doubly excited configuration interaction that recovers 93.7% of the
total correlation energy.

p(0), = ——fr Vo) 4. (13)

rf’

1 —ar|
p0); ==~ f C V() - Pp(r)ldr,  (14)

r|
1 (e r - vp(r)
p(0)y= f -
Cam) WP LI
where a and 3 are arbitrary positive constants. If we particu-

larize for a spherical atom p(r)=p(r), these four identities
read

Bp(r)}dn (15)

p(0); =- f: [rp"(r) +2p"(r)]dr, (16)
p(0),=- f: p'(r)dr, (17)

p(0);=- fo ) e Trp"(r) +2p' (r) = &’rp(r)1dr,  (18)
p(0)y=- f: e Pp' (r) = Bp(r)]dr, (19)

where p’(r) and p”(r) indicate the first and second deriva-
tives of the density with respect to r.

Liu et al. [15] tested these identities using the HF densi-
ties of Clementi and Roetti [17] obtaining an excellent agree-
ment between values for these expressions and densities at
the nucleus. Our results show that this agreement is main-
tained (within our numerical accuracy) for scaled HF densi-
ties. This is not surprising since, as has been noted by Liu
et al. [16], Egs. (16) and (17) demonstrate that the density at
the origin p(0) is homogeneous of degree 3 with respect to
coordinate scaling, just like the electron density p(r) itself.

“Results from Meyer et al. [14] using multireference singly and
doubly excited configuration interaction that recovers 91.4% of the
total correlation energy.

This fact does not mean that our scaled densities at the origin
for the atoms studied are A3 times the HF ones (as can be
checked using the data in Tables II-V) because we have
modified the nuclear charge in order to recover the nonrela-
tivistic ionization potential of the neutral atom.

V. SUMMARY AND FUTURE DIRECTIONS

The main content of this work is the use of the HF
ground-state density pyr(Z’,N,r) as the starting point from
which to construct partially correlated densities p(Z=N,r)
for especially the rare gas atoms Ne and Ar. This is achieved
via two parameters. The first one is the nonintegral nuclear
charge Z' for chosen N (10 for Ne and 18 for Ar). Table I
shows that Z’ is slightly less than 10 and 18 for Ne and Ar,
respectively, The second one is a scaling parameter \ (very
near to unity in accord with the expectations of Mgller and
Plesset [1]). Choosing these parameters in order to reproduce
(a) the nonrelativistic ionization potential and (b) Kato’s
nuclear cusp condition [2] leads to a relationship between
them turning in fact our two-parameter model into a single
parameter one.

Comparison with the quantal simulation data [e.g., diffu-
sion quantum Monte Carlo (QMC)] supports the quality of
the partially correlated densities for Ne and Ar presented
here. However, the proposed density still needs some modest
refinement close to the nucleus and three methods will be
mentioned below which may prove useful for future studies.
Before that, we have thought it of interest to compare the
atoms Be and Mg, which as for Ne and Ar also have spheri-
cal electron densities, with the rare gas atoms. One interest-
ing difference is that the HF starting point, as seen in Table I,
is now from (slightly) positive ions (i.e., Z>4 for Be and
Z>12 for Mg) in contrast to the weak nonintegral negative
ions for Ne and Ar.

As to future directions, it seems important to refine the
method presented here for obtaining partially correlated den-
sities to improve the nonrelativistic electron density p(0) at
the (assumed) point nucleus. At least three approaches then
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offer promise. The first is associated with the Hiller-Sucher-
Feinberg (HSF) identity (see, for example, Cioslowski et al.
[18,19] and Holas and March [20], the latter work casting the
HSF study in the general context of density functional
theory). Particularly the work of Cioslowski et al. points to
the possible use of the HSF identity in refining p(0). The
other is the older study of “bounds” of p(0) by Hoffmann-
Ostenhof er al. [3,21]. The third and most recent study is that
of Liu [16] who has shown that the electron density of a
spherical atom must satisfy some integral rules that involve
the atomic number Z. Besides, analysis of the phase equation
of Hartree-Fock theory [22,23] could give some insight into
the differences between HF and scaled HF densities. Also,
for the future, generalizations of the present approach to
“rather spherical” molecules like SiH, and GeH, (see, e.g.,
the early work of March [24]) would seem worthwhile, es-

PHYSICAL REVIEW A 75, 052502 (2007)

pecially based on HF calculations on SiH, such as those of
Carter [25].
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