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We investigate two-way and one-way single-photon quantum key distribution �QKD� protocols in the pres-
ence of loss introduced by the quantum channel. Our analysis is based on a simple precondition for secure
QKD in each case. In particular, the legitimate users need to prove that there exists no separable state �in the
case of two-way QKD�, or that there exists no quantum state having a symmetric extension �one-way QKD�,
that is compatible with the available measurements results. We show that both criteria can be formulated as a
convex optimization problem known as a semidefinite program, which can be efficiently solved. Moreover, we
prove that the solution to the dual optimization corresponds to the evaluation of an optimal witness operator
that belongs to the minimal verification set of them for the given two-way �or one-way� QKD protocol. A
positive expectation value of this optimal witness operator states that no secret key can be distilled from the
available measurements results. We apply such analysis to several well-known single-photon QKD protocols
under losses.
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I. INTRODUCTION

Quantum key distribution �QKD� protocols typically in-
volve a two-step procedure in order to generate a secret key
�1,2�. First, the legitimate users �Alice and Bob� perform a
set of measurements on effective bipartite quantum states
that are distributed to them. As a result, they end up with a
classical joint probability distribution, that we shall denote as
p�ai ,bj�� pij, describing their outcomes. The second step
consists of a classical post-processing of the data pij. It re-
quires an authenticated classical channel, and it includes
post-selection of data, error-correction to reconcile the data,
and privacy amplification to decouple the data from a pos-
sible eavesdropper �Eve� �1,2�.

In order to create the correlated data pij, QKD schemes
usually require Alice to prepare some nonorthogonal quan-
tum states ��i� with a priori probabilities pi that are sent to
Bob. On the receiving side, Bob measures each received sig-
nal with a positive operator value measure �POVM� �Bj	.
Generalizing the ideas introduced by Bennett et al. in Ref.
�3�, the signal preparation process in this kind of scheme can
alternatively be thought of as follows: Alice produces first
bipartite states ��source�AB=
i

�pi��i�A��i�B and, afterwards,
she measures the first subsystem in the orthogonal basis ��i�A
corresponding to the measurement operators Ai= ��i�A��i�.
This action generates the signal states ��i� with a priori prob-
abilities pi. The reduced density matrix of Alice, �A
=TrB���source�AB��source��, depends only on the probabilities
pi and on the overlap of the signals states ��i�. This means, in
particular, that �A is always fixed by the preparation process
and cannot be modified by Eve. In order to include this in-
formation in the measurement process one can add to the
observables �Ai � Bj	, measured by Alice and Bob, other ob-
servables �Ck � 1	 such that the observables �Ck	 form a to-
mographic complete set of Alice’s Hilbert space �4�. From

now on, we will consider that the data pij and the POVM
�Ai � Bj	 include also the observables �Ck � 1	.

The classical post-processing of pij can involve either
two-way or one-way classical communication. Two-way
classical communication protocols can tolerate a higher error
rate than one-way communication techniques �5�. On the
other hand, one-way post-processing methods typically allow
us to derive simpler unconditional security proofs for QKD
than those based on two-way communication �6–9�. In this
last paradigm, two different cases can be considered: reverse
reconciliation �RR� refers to communication from Bob to
Alice, and direct reconciliation �DR� permits only commu-
nication from Alice to Bob. �See, for instance, Refs. �10,11�.�

An essential question in QKD is to determine whether the
correlated data pij allow Alice and Bob to generate a secret
key at all during the second phase of QKD. Here we consider
the so-called trusted device scenario, where Eve cannot
modify the actual detection devices employed by Alice and
Bob, as used in Refs. �12,13�. We assume that the legitimate
users have complete knowledge about their detection de-
vices, which are fixed by the actual experiment. The case of
two-way classical post-processing has been analyzed in Ref.
�13�, where it was proven that a necessary precondition for
secure two-way QKD is the provable presence of quantum
correlations in pij. That is, it must be possible to interpret pij,
together with the knowledge of the corresponding observ-
ables �Ai � Bj	, as coming exclusively from an entangled
state. Otherwise, no secret key can be distilled from pij. In
order to deliver this entanglement proof any separability cri-
teria �see, for instance, Ref. �14�, and references therein�
might be employed. The important question here is whether
the chosen criterion can provide a necessary and sufficient
condition to detect entanglement even when the knowledge
about the quantum state is not tomographic complete. It was
proven in Ref. �13� that entanglement witnesses �EWs� fulfill
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this condition. An EW is a Hermitian operator W with a
positive expectation value on all separable states �13,15–17�.
So, if a state �AB obeys Tr��ABW��0, the state �AB must be
entangled. With this separability criterion, Refs. �4,13� ana-
lyzed three well-known qubit-based QKD schemes, and pro-
vided a compact description of a minimal verification set of
EWs �i.e., one that does not contain any redundant EW� for
the four-state �18� and the six-state �19� QKD protocols, and
a reduced verification set of EWs �i.e., one which may still
include some redundant EWs� for the two-state �20� QKD
scheme, respectively. These verification sets of EWs allow a
systematic search for quantum correlations in pij. One nega-
tive expectation value of one EW in the set suffices to detect
entanglement. To guarantee that no verifiable entanglement
is present in pij, however, it is necessary to test all the mem-
bers of the set. Unfortunately, to find a minimal verification
set of EWs, even for ideal qubit-based QKD schemes, is not
always an easy task, and it seems to require a whole inde-
pendent analysis for each protocol, let alone for higher di-
mensional QKD schemes �4,13�. �See also Ref. �21�.� Also,
one would like to include in the analysis the attenuation in-
troduced by the quantum channel, not considered in Refs.
�4,13�, and which represents one of the main limitations for
optical realizations of QKD.

One central observation of this paper is very simple, yet
potentially very useful: given any qubit-based two-way QKD
scheme, one can search for quantum correlations in pij by
just applying the positive partial transposition �PPT� crite-
rion �15,22� adapted to the case of a quantum state that can-
not be completely reconstructed. This criterion provides a
necessary and sufficient entanglement verification condition
for any qubit-based QKD protocol even in the presence of
loss introduced by the channel, since, in this scenario, only
nonpositive partial transposed �NPT� entangled states exist.
Moreover, it is rather simple to evaluate in general since it
can be cast into the form of a convex optimization problem
known as semidefinite program �SDP� �23,24�. Such in-
stances of convex optimization problems can be solved effi-
ciently, for example by means of interior-point methods
�23,24�. This means, in particular, that this criterion can be
applied to any qubit-based QKD scheme in a completely
systematic way.

One-way QKD schemes can be analyzed as well with
SDP techniques. It was shown in Ref. �25� that a necessary
precondition for one-way QKD with RR �DR� is that Alice
and Bob can prove that there exists no quantum state having
a symmetric extension to two copies of system A �system B�
that is compatible with the observed data pij. These kinds of
states �with symmetric extensions� have been analyzed in
detail in Refs. �26–28�, where it was proven that the search
for symmetric extensions for a given quantum state can be
stated as a SDP. �See also Refs. �29,30�.� Here we complete
the results contained in Ref. �25�, now presenting specifically
the analysis for the case of a lossy channel.

Both QKD verification criteria mentioned above, based on
SDP techniques, also provide a means to search for witness
operators for a given two-way or one-way QKD protocol in a
similar spirit as in Refs. �4,13�. Any SDP has an associated
dual problem that represents also a SDP �23,24�. This dual
problem can be used to obtain a certificate of infeasibility

whenever the primal problem is actually infeasible. Most im-
portantly, it can be proven that the solution to this dual prob-
lem corresponds to the evaluation of an optimal witness op-
erator, that belongs to the minimal verification set of them
for the given protocol, on the observed data pij. A positive
expectation value of this optimal witness operator indicates
that no secret key can be distilled from the observed data pij.

The paper is organized as follows. In Sec. II we introduce
the QKD verification criteria for two-way and one-way QKD
in more detail, and we show how to cast them as primal
SDPs. Then, in Sec. III, we present the dual problems asso-
ciated to these primal SDPs, and we show that the solution to
these dual problems corresponds to evaluating an optimal
witness operator on the observed data pij for the given pro-
tocol. These results are then illustrated in Sec. IV, where we
investigate in detail the two-state QKD protocol �20� in the
presence of loss. The analysis for other qubit-based QKD
schemes is completely analogous, and we include very
briefly the results of our investigations on other QKD proto-
cols in Appendix B. Finally, Sec. V concludes the paper with
a summary.

II. QKD VERIFICATION CRITERIA

Our starting point is the observed joint probability distri-
bution pij obtained by Alice and Bob after their measure-
ments �Ai � Bj	. This probability distribution defines an
equivalence class S of quantum states that are compatible
with it,

S = ��AB�Tr�Ai � Bj�AB� = pij, ∀ i, j	 . �1�

By definition, every �AB�S can represent the state shared by
Alice and Bob before their measurements.

In single-photon QKD schemes in the presence of loss,
any state �AB�S can be described on a Hilbert space H2

A

� H3
B, with H2

A and H3
B denoting, respectively, Alice’s and

Bob’s Hilbert spaces, and where the subscript indicates the
dimension of the corresponding Hilbert space. To see this,
we follow the signal preparation model introduced previ-
ously, where Alice prepares states ��source�AB

=
i=0
N−1�pi��i�A��i�B�HN

A
� H2

B, and, afterwards, she mea-
sures the first subsystem in the orthogonal basis ��i�A. Using
Neumark’s theorem �31,32�, we can alternatively describe
the preparation process as Alice producing first bipartite
states on H2

A
� H2

B and, afterwards, she measures the first
subsystem with a POVM �Ai	i=0

N−1. �See also Ref. �33�.� To
include the loss of a photon in the quantum channel, we
simply enlarge Bob’s Hilbert space from H2

B to H3
B by adding

the vacuum state �vac�B.

A. Two-way QKD

Let us now consider two-way QKD protocols. Whenever
the observed joint probability distribution pij, together with
the knowledge of the corresponding measurements per-
formed by Alice and Bob, can be interpreted as coming from
a separable state �sep then no secret key can be distilled from
the observed data �13�. In H2

A
� H3

B only NPT entangled
states exist and therefore a simple necessary and sufficient
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criterion to detect entanglement in this scenario is given by
the PPT criterion �15,22�: a state �AB�H2

A
� H3

B is separable
if and only if its partial transpose �AB

� is a positive operator.
Partial transpose means a transpose with respect to one of the
subsystems �34�. Such a result is generally not true in higher
dimensions.

Observation 1. Consider a qubit-based QKD scheme in
the presence of loss where Alice and Bob perform local mea-
surements with POVM elements Ai and Bj, respectively, to
obtain the joint probability distribution of the outcomes pij.
Then, the correlations pij can originate from a separable state
if and only if there exists �AB�S such as �AB

� �0.
Proof. If pij can originate from a separable state, then

there exists �sep such as �sep�S. Moreover, we have that
any separable state satisfies �sep

� �0. To prove the other di-
rection, note that if there exists �AB�S such that �AB

� �0
then, since �AB�H2

A
� H3

B, we find that �AB must be sepa-
rable �15,22�. �

To determine whether there exists �AB�S such as �AB
�

�0 can be solved by means of a primal semidefinite pro-
gram �SDP�. This is a convex optimization problem of the
following form:

minimize cTx

subject to F�x� = F0 + 

i

xiFi � 0, �2�

where the vector x= �x1 , . . . ,xt�T represents the objective
variable, the vector c is fixed by the particular optimization
problem, and where the matrices F0 and Fi are Hermitian
matrices. The goal is to minimize the linear function cTx
subjected to the linear matrix inequality �LMI� constraint
F�x��0 �23,24�. If the vector c=0, then the optimization
problem given by Eq. �2� reduces to find whether the LMI
constraint can be satisfied for some value of the vector x or
not. In this case, the SDP is called a feasibility problem.
Remarkably, SDPs can be solved with arbitrary accuracy in
polynomial time, for example by means of interior-point
methods �23,24�.

According to Observation 1, we can find whether there
exists a separable state that belongs to the equivalence class
S just by solving the following feasibility problem �35�:

minimize 0

subject to �AB�x� � S ,

�AB�x� � 0,

�AB
� �x� � 0, �3�

where the objective variable x is used to parametrize the
density operators �AB. The method used to parametrize �AB is
discussed in detail in Sec. II C.

B. One-way QKD

One-way RR �DR� QKD schemes require from Alice and
Bob to show that there exists no quantum state �AB�S with

a symmetric extension to two copies of system A �system B�
�25�. A state �AB is said to have a symmetric extension to two
copies of system A if and only if there exists a tripartite state
�ABA��0, with Tr��ABA��=1, and where HAHA�, such that
�26�

TrA���ABA�� = �AB, �4�

P�ABA�P = �ABA�, �5�

where the swap operator P satisfies P�ijk�ABA�= �kji�ABA�.
This definition can be easily extended to cover also the case
of symmetric extensions of �AB to two copies of system B,
and also of extensions of �AB to more than two copies of
system A or of system B �26�.

To find whether �AB�S has a symmetric extension to two
copies of system A can be solved with the following feasi-
bility problem:

minimize 0

subject to �AB�x� � S ,

P�ABA��x�P = �ABA��x� ,

TrA���ABA��x�� = �AB�x� ,

�ABA��x� � 0. �6�

Note that this SDP does not include the constraint �AB�x�
�0 because non-negativity of the extension �ABA��x�, to-
gether with the condition TrA���ABA��x��=�AB�x�, already im-
plies non-negativity of �AB�x�. The SDP for one-way QKD
with DR can be obtained in a similar way.

C. Parametrization of the SDPs

To actually implement the SDPs given by Eqs. �3� and
�6�, one can parametrize �AB and �ABA� such that some con-
straints are automatically fulfilled.

In particular, one can choose an operator basis of Hermit-
ian matrices ��0 , . . . ,�d2−1	 for each Hilbert space Hd. These
matrices �i can be taken such as they satisfy the following
two conditions: Tr��i�=d�0i, and Tr��i� j�=d�ij. In the case
of qubit systems, the Pauli matrices ��0 ,�x ,�y ,�z	 can be
selected, where the matrix �0 denotes the identity operator 1.
For systems on H3, we can use the Gell-Mann operators, that
we shall denote as ��i	i=0

8 . With this representation, a general
state �AB�H2

A
� H3

B can be written as

�AB =
1

6 

k=�0,x,y,z	
l=0,. . .,8

xklSkl, �7�

where the operators Skl=�k
A

� �l
B, the coefficients xkl are

given by xkl=Tr�Skl�AB�, and x00=Tr��AB�=1 because of nor-
malization. Equation �7� allows us to describe any bipartite
density operator in terms of a fixed number of real param-
eters xkl.
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The knowledge of Alice and Bob’s POVMs �Ai	 and �Bj	,
respectively, together with the observed probability distribu-
tion pij determines the equivalence class of compatible states
S. Each POVM element Ai and Bj can also be expanded in
the appropriate operator basis as Ai=
k=�0,x,y,z	aik�k

A, and Bj

=
l=0,. . .,8bjl�l
B, for some coefficients aik and bjl, respectively.

According to Eq. �1�, to guarantee that �AB�S �first con-
straint in Eq. �3� and in Eq. �6��, we obtain that the coeffi-
cients xkl must satisfy the following conditions:



kl

aikbjlxkl = pij ∀ i, j . �8�

That is, some coefficients xkl are fixed by the known param-
eters aik, bjl, and pij. Any operator �AB�S can then always
be written in the following way �36�:

�AB�x� = �fix + 

kl�I

xklSkl, �9�

where �fix corresponds to the part of �AB�x� that is com-
pletely determined by the parameters aik, bjl, and pij. It can
be expressed as

�fix = 

kl�I

xklSkl, �10�

where I denotes a multi-index set labeling those combina-
tions of the indexes k= �0,x ,y ,z	 and l= �0, . . . ,8	 such that
xkl is fixed by Eq. �8�. �See also Ref. �37�.�

With this representation for �AB�x�, the SDP given by Eq.
�3� can now be written as �35�

minimize 0

subject to �AB�x� � �AB
� �x� � 0, �11�

where the symbol � denotes direct sum. Let us compare the
second part of Eq. �2� with the second part of Eq. �11�. The
objective variables xi are now given by the coefficients xkl of
�AB�x�, with kl� I, the matrix F0 is given by �fix � �fix

� , and
the matrices Fi are those operators Skl � Skl

� with kl� I.
In the SDP given by Eq. �6� we need to parametrize as

well the quantum state �ABA�. The second constraint in Eq.
�6� imposes that �ABA� must remain invariant under permuta-
tion of systems A and A�. This can be done with the follow-
ing parametrization �26–28�:

�ABA� =
1

12� 

l

k	m

fklm��k
A

� �l
B

� �m
A� + �m

A
� �l

B
� �k

A��

+ 

kl

fklk�k
A

� �l
B

� �k
A�� , �12�

with k ,m= �0,x ,y ,z	 and l=0, . . . ,8.
To guarantee that TrA���ABA��=�AB �third constraint in Eq.

�6��, the state coefficients of �AB and �ABA� need to fulfill the
following conditions:

fkl0 = xkl ∀ k,l . �13�

That is, some of the state parameters of �ABA� are already
fixed by the coefficients of �AB.

To simplify the notation used later on, we shall collect the
objective variables of the SDP given by Eq. �6� within two
different groups of them: The vector x contains those coef-
ficients xkl of �AB not fixed by Eq. �8�, and the vector y
contains those coefficients fklm of �ABA� not fixed by Eq. �13�.
With this parametrization, the first three constraints in Eq. �6�
are fulfilled automatically and the SDP given by Eq. �6� can
be reduced to solve the following one:

minimize 0

subject to �ABA��x,y� � 0. �14�

III. WITNESS OPERATORS FOR TWO-WAY
AND ONE-WAY QKD

In this section we show how to rephrase the QKD verifi-
cation criteria introduced in the previous section into a
search for appropriate witness operators. In order to do this,
we use the dual problems associated with the primal SDPs
given by Eqs. �11� and �14�, respectively. In particular, we
prove that the solutions to these dual problems correspond to
the evaluation of an optimal witness operator, that belongs to
the minimal verification set of them for the given two-way or
one-way QKD protocol, on the observed data pij. A positive
expectation value of this optimal witness operator states that
no secret key can be distilled from the observed data pij. This
approach has already been considered for the symmetric ex-
tension case in Ref. �27�, and also for a slightly different
scenario in Ref. �38�. Our main motivation here is to show
specifically that this relationship still holds even if we restrict
ourselves to partial information about the quantum state. A
detailed discussion on some duality properties that guarantee
that the solution to these dual problems can actually be as-
sociated with a witness operator is included in Appendix A.

Let us first introduce the dual problem associated to the
primal SDP given by Eq. �2�. It has the following form
�23,24�:

maximize − Tr�F0Z�

subject to Z � 0

Tr�FiZ� = ci ∀ i , �15�

where the Hermitian matrix Z is now the objective variable.
This matrix is positive semidefinite Z�0 and is subjected to
several linear constraints of the form Tr�ZFi�=ci ∀ i.

A. Two-way QKD

In this section we show that the solution to the dual prob-
lem associated with the SDP given by Eq. �11� corresponds
to the evaluation of an optimal decomposable EW �DEW�
�17,39� on the observed data pij. �See also Ref. �40�.� An EW
W is called decomposable if and only if there exist two posi-
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tive operators P ,Q�0, and a real parameter 
� �0,1�, such
that W=
P+ �1−
�Q� �17,39�. In H2

A
� H3

B all EWs are
DEWs. In what follows, we establish this connection explic-
itly via the dual problem.

The SDP given by Eq. �11� can be transformed into a
slightly different, but completely equivalent, form as follows
�see Appendix A�:

minimize t

subject to �AB�x� � �AB
� �x� + t1 � 0, �16�

where t denotes an auxiliary objective variable. According to
Eq. �15�, the dual problem associated with Eq. �16� can be
written as

maximize − Tr���fix � �fix
� �Z�

subject to Z � 0

Tr�Z� = 1

Tr��Skl � Skl
� �Z� = 0 ∀ kl � I . �17�

The structure of all the matrices which appear in this dual
problem is the direct sum of two different matrices. Then,
without loss of generality, we can assume that the same
block structure is satisfied for Z, i.e., Z=Z1 � Z2. This means,
in particular, that the objective function in Eq. �17� can now
be re-expressed as

Tr���fix � �fix
� ��Z1 � Z2��

= Tr��Z1 + Z2
���fix�

� Tr�W�fix� , �18�

where we have used the property Tr�Z2�fix
� �=Tr�Z2

��fix� and,
in the last equality, we defined the operator W�Z1+Z2

�. Next
we show that W is a DEW. For that, note that the semidefi-
nite constraint Z�0 implies Z1 ,Z2�0. Moreover, the wit-
ness is normalized, since Tr�Z�=1 implies Tr�W�=Tr�Z1

+Z2
��=1.
To conclude, we use the remaining equality constraints,

Tr��Skl � Skl
� �Z�=0 ∀kl� I, to show that to evaluate the ex-

pectation value of W one only needs to consider �fix. That is,
W belongs to the minimal verification set of EWs for the
given QKD protocol, and its expectation value can be ob-
tained from the observed data pij only �4�. Using the ansatz
Z1=
klzkl

1 Skl, and Z2
�=
klzkl

2 Skl, the equality constraints
impose zkl

1 +zkl
2 =0 ∀kl� I. Hence the DEW W has the fol-

lowing structure:

W = 

kl�I

�zkl
1 + zkl

2 �Skl � 

kl�I

wklSkl, �19�

with wkl=zkl
1 +zkl

2 . Combining Eqs. �9� and �19�, we obtain
Tr�W�AB�x��=Tr�W�fix�=
kl�Iwklxkl.

Whenever the solution to the dual problem given by Eq.
�17� delivers Tr���fix � �fix

� �Z��Tr�W�fix��0 then no secret
key can be distilled from the observed data pij with two-way
classical communication. To see this, note that, by definition,

Eq. �17� guarantees that there exists no other DEW W�, that
belongs to a verification set of them for the given QKD pro-
tocol, such that Tr�W��fix��Tr�W�fix�.

B. One-way QKD

In this part we use the dual problem associated with the
SDP given by Eq. �14� to show that its solution corresponds
to the evaluation of an optimal witness operator for the case
of states with symmetric extensions. We shall follow the
method introduced in Ref. �27�, but now we will consider
specifically the case of partial knowledge about the quantum
state. �See also Ref. �40�.�

Like in the previous section, the feasibility problem given
by Eq. �14� can be transformed as follows �see Appendix A�:

minimize t

subject to �ABA��x,y� + t1/dA � 0, �20�

with dA=dim�HA�, e.g., in our case dA=2. The inclusion of
the factor dA in Eq. �20� does not alter its result and, as we
will see at the end of this section, it gives the correct nor-
malization for the witnesses.

For convenience, we will express the state �ABA��x ,y� in

terms of a map � :HdA

A
� HdB

B →HdA

A
� HdB

B
� HdA

A� that takes
an arbitrary Hermitian operator A=1/ �dAdB�
klaklSkl�HdA

A

� HdB

B , with dB=dim�HB�, to the Hermitian operator

��A� =
1

dA
2dB� 


l=�0,. . .,dB
2−1	

k=�1,. . .,dA
2−1	

akl��k
A

� �l
B

� 1A� + 1A
� �l

B

� �k
A�� + 


l=�0,. . .,dB
2−1	

a0l1
A

� �l
B

� 1A�� . �21�

Let �fix be again the part of �AB�S that is fixed by the
parameters aik, bjl, and pij. Without loss of generality,
we consider the following structure for �fix: �fix
=1/ �dAdB�
kl�IxklSkl, where the multi-index I has the same
meaning as before, i.e., it labels those combinations of the
indexes k= �0, . . . ,dA

2 −1	 and l= �0, . . . ,dB
2 −1	 such that xkl

is fixed by Eq. �8�.
Using Eq. �21�, we can rewrite �ABA��x ,y� in the follow-

ing compact way:

�ABA��x,y� = ���fix� + 

kl�I

xkl��Skl� + 

J

yJGJ, �22�

where the Hermitian matrices GJ can be grouped into two
different sets,

Gklk = �k
A

� �l
B

� �k
A� ∀ l, ∀ k � 1,

Gmlk = �m
A

� �l
B

� �k
A� + �k

A
� �l

B
� �m

A� ∀ l, ∀ k 	 m � 1,

�23�

and where the multi-index J is used to label both different
combinations of the indices k, l, and m.
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The dual problem associated with Eq. �20� can now be
written as

maximize − Tr�Z���fix��

subject to Z � 0

Tr�Z� = dA

Tr�Z��Skl�� = 0 ∀ kl � I

Tr�ZGJ� = 0 ∀ J . �24�

Next we search for the most general form of a possible
solution Z for this dual problem. It will enable us to extract
the most compact form of a witness operator for the symmet-
ric extendibility problem.

All the linear constraints on the operator Z contained in
Eq. �24�, as well as the objective function itself, are invariant
under the swap operator P, which exchanges the first and the
third subsystem. Moreover, the positive semidefinite con-

straint Z̄= PZP�0 is also satisfied since P is a unitary op-
erator, i.e., P2=1. This means that, if Z is a solution for the

dual problem, the operator Z̄ is also a possible solution for it,
since it fulfills all the constraints and it gives exactly the
same expectation value. Following a similar argumentation,

also the equal mixture of Z and Z̄, i.e., Z̃=1/2�Z+ Z̄�, is as
well a possible solution. Therefore, without loss of general-
ity, we can consider that Z is invariant under the swap op-
erator P. Under this assumption, it turns out that Z can be
decomposed as follows:

Z =
1

dA
2dB� 


l

k	m

zmlk��m
A

� �l
B

� �k
A� + �k

A
� �l

B
� �m

A��

+ 

kl

zklk�k
A

� l
B

� �k
A�� . �25�

Let us now analyze in more detail the linear constraints on Z
given in Eq. �24�. Each linear constraint cancels one of the
coefficients zmlk. For instance, the constraint Tr�ZGiji� im-
poses ziji=0. Then, we can remove all these linear con-
straints, except the normalization condition Tr�Z�=dA, by
just making the proper coefficients zmlk in Eq. �25� equal to
zero. This way we arrive at the following form for the vari-
able Z, which we shall denote by Z*:

Z* =
1

dA
2dB� 


l;k�1

kl�I

zkl0��k
A

� �l
B

� 1A� + 1A
� �l

B
� �k

A��

+ 

l

0l�I

z0l01
A

� �l
B

� 1A�� . �26�

That is, if we assume the form Z* for the variable Z in the
dual problem given by Eq. �24�, then the linear constraints
are fulfilled automatically. Substituting the variable Z with Z*

in Eq. �24� we obtain the following shorter form for the dual
problem:

maximize − Tr�Z*���fix��

subject to Z* � 0

Tr�Z*� = dA. �27�

Now, in order to extract a witness operator from the Hermit-
ian operator Z*, we follow the method proposed in Ref. �27�.
In particular, every map � :HdA

A
� HdB

B →HdA

A
� HdB

B
� HdA

A�

has associated an adjoint map �† :HdA

A
� HdB

B
� HdA

A�→HdA

A

� HdB

B defined as Tr�U��V��=Tr��†�U�V� for any Hermitian

operators V�HdA

A
� HdB

B , and U�HdA

A
� HdB

B
� HdA

A�. With
this definition, we can rewrite the objective function in Eq.
�27� as

Tr�Z*���fix�� = Tr��†�Z*��fix� � Tr�Wsym�fix� , �28�

where we defined Wsym��†�Z*� as the desired witness op-
erator for the symmetric extendibility problem. In the re-
maining part of this section, we obtain the general structure
of the witness operator Wsym. For that, we simply apply the
adjoint map �† to the operator Z*, set the resulting operator
equal to an operator of arbitrary form W*, solve the equality
constraint, and, finally, formulate the dual problem in terms
of this new operator W*.

The map �† can be written as �27�

�†�Z� =
1

dA
�TrA��Z� + TrA��PZP� −

1

dA
1A

� TrAA��Z�� .

�29�

Setting �†�Z*� equal to an arbitrary Hermitian operator W*

=1/ �dAdB�
klwklSkl we obtain the following equality con-
straint:



kl

wklSkl = 

l;k�1

kl�I

2zkl0

dA
Skl + 


l

0l�I

z0l0S0l. �30�

Since we have expressed every operator in terms of an op-
erator basis, the equality constraint can only be fulfilled if the
coefficients zklm of Z* and the coefficients wkl of W* are
related via

wkl = 2zkl0/dA ∀ l, ∀ k � 1,kl � I ,

w0l = z0l0/dA ∀ l,0l � I ,

wkl = 0 kl � I . �31�

Now, instead of considering the matrix Z* as the objective
variable of the dual problem, we can equivalently consider
the matrix W* as the free variable. In order to do so, we only
need to translate the positive semidefinite constraint Z*�0
together with the normalization condition Tr�Z*�=dA in-
cluded in Eq. �27� into new constraints on W*. This can be
done by using Eq. �31�. This way, we arrive at the following
form for the dual problem:
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maximize − Tr�W*�fix�

subject to W*
� 1A� + P�W*

� 1A��P � 0

Tr�W*� = 1, �32�

where the variable W* represents a witness operator for the
symmetric extendibility problem. Moreover, from Eq. �31�
we obtain that W* can always be expressed as

W* =
1

dAdB


kl�I

wklSkl. �33�

That is, W* belongs to the minimal verification set of wit-
nesses for the given one-way �RR� QKD protocol. Like in
the previous section, whenever the solution to the dual prob-
lem given by Eq. �32� delivers Tr�W*�fix��0 then no secret
key can be distilled from the observed data pij with one-way
RR. The case of one-way QKD with DR can be analyzed in
a similar way.

IV. EVALUATION

In this section we study the two-state QKD protocol �20�,
both for the case of two-way and one-way classical commu-
nication. The analysis for other qubit-based QKD schemes is
completely analogous, and we include very briefly the results
of our investigations on other well-known QKD protocols in
Appendix B. We refer here to single-photon implementations
of the qubit. The state of the qubit is described, for instance,
by some degree of freedom in the polarization of the photon.
In our calculations we follow the approach introduced in
Sec. II, although similar results could also be obtained using
the witness approach presented in Sec. III. The numerical
evaluations are performed with the freely available SDP
solver SDPT3-3.02 �41�, together with the input tool
YALMIP �42�.

We shall consider that the observed joint probability dis-
tribution pij originates from Alice and Bob measuring the
following quantum state:

�AB = �1 − p���1 − e�1A
� UB������AB���1A

� UB†���

+
e

2
�A � 1̃B� + p�A � �vac�B�vac� , �34�

where p� �0,1� denotes the probability that Bob receives the
vacuum state �vac�B, e� �0,1� represents an error parameter
�or depolarizing rate� of the channel, 1A is the identity opera-
tor on Alice’s Hilbert space, UB��� represents a unitary op-
erator acting on Bob’s system, ���AB denotes the effective
bipartite state initially prepared by Alice in the given QKD
protocol, �A represents Alice’s reduced density matrix �i.e.,

�A=TrB����AB�����, and the operator 1̃B is given by 1̃B=1B

− �vac�B�vac�.
The quantum state given by Eq. �34� defines one possible

eavesdropping interaction. But our analysis can straightfor-
wardly be applied to other quantum channels, as it depends

only on the probability distribution pij that characterizes the
results of Alice’s and Bob’s measurements. We include the
operator UB��� in Eq. �34� to model the collective noise �or
correlated noise� introduced by the quantum channel �e.g,
optical fiber� �43,44�. This noise arises from the fluctuation
of the birefringence of the optical fiber which alters the po-
larization state of the photons. When this fluctuation is slow
in time, its effect can be described with a unitary operation
�43,44�. For simplicity, we shall consider that UB��� is
parametrized only with one real parameter �. In partic-
ular, we choose UB���=cos ��0��0�−sin ��0��1�+sin ��1��0�
+cos ��1��1�+ �vac��vac� with �� �0, /4�. If �=0 no collec-
tive noise is present and Eq. �34� describes a depolarizing
channel with loss.

In order to illustrate our results, we calculate an upper
bound on the tolerable depolarizing rate e as a function of the
photon loss probability p� �0,1�. Moreover, for simplicity,
we take only two different values of the angle �. For in-
stance, we choose �=0 and �= /8. These three parameters,
e, p, and �, allow us to evaluate the performance of a QKD
protocol when the quantum channel is described by Eq. �34�.
One could also select other figures of merit in order to evalu-
ate a protocol, such as the quantum bit error rate �QBER�.
This is the rate of events where Alice and Bob obtain differ-
ent results. It refers to the sifted key, i.e., it considers only
those events where the signal preparation and detection
methods employ the same polarization basis. We include as
well an analytic expression for the QBER for the given QKD
protocol.

A. Two-state protocol

The two-state protocol �20� is one of the simplest QKD
protocols. It is based on the random transmission of only two
nonorthogonal states, ��0� and ��1�. Alice chooses, at random
and independently every time, a bit value i, and prepares a
qubit in the state ��i�=��0�+ �−1�i��1�, with 0���1/�2
and �=�1−�2, that is sent to Bob. On the receiving side,
Bob measures the qubit he receives in a basis chosen at ran-
dom within the set {���0� , ��0

��	 , ���1� , ��1
��	}, with

���i ��i
���=0. The loss of a photon corresponds to a projec-

tion onto the vacuum state �vac�. Bob could also employ a
different detection method defined by a POVM with the fol-
lowing operators: Bj =1/ �2�2���1−j

� ���1−j
� � with j=0,1, Bnull

= �0��0�+ �1��1�−
 jBj, and Bvac= �vac��vac�. In this last case,
Alice’s bit value i is associated with the operator Bi, while
the operator Bnull represents an inconclusive result. This is
the approach that we shall consider here.

The preparation process can be thought of as Alice pre-
pares first the bipartite signal state ���AB=1/�2��0�A��0�B

+ �1�A��1�B�, and then she measures her first subsystem with
the POVM operators Ai= �i��i� with i=0,1. The fact that the
reduced density matrix of Alice is fixed and cannot be modi-
fied by Eve is vital to guarantee the security of this scheme.
Otherwise, the joint probability distribution pij alone does
not allow Alice and Bob to distinguish between the entangled
state ���AB and the separable one �AB=1/2
i=0

1 �i�A�i�
� ��i�B��i� �4,13�. We need to add then to the observables
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given above also the operators �x � �0 and �y � �0 such as
Alice has complete tomographic knowledge of �A.

Following the approach introduced in Sec. II, in Fig. 1 we
present an upper bound on the tolerable depolarizing rate e
as a function of the photon loss probability p for two differ-
ent values of the parameter �. It states that no secret key can
be distilled from the correlations established by the users. In
this example, the results obtained coincide when �=0 and
�= /8. To obtain an upper bound on the tolerable QBER
one can use the following expression:

QBER =
2 sin2 � + �1 − 2 sin2 ��e

2�2�2 + ��2 − �2��� + �1 − ��e�	
, �35�

with �=2��2 sin2 �+�2 cos2 ��. In particular, for given val-
ues of the parameters �, �, and �, one only needs to substi-
tute in Eq. �35� the value of e given in Fig. 1 as a function of
the parameter p.

Remarkably, the cutoff point for two-way QKD presented
in Fig. 1, i.e., the value of the photon loss probability p that
makes e=0 and also QBER=0, coincides with the limit im-
posed by the unambiguous state discrimination attack
�45–49�. In the two-state protocol this limit is given by p
=1−2�2. �See also Ref. �50�.� Figure 1 also shows a differ-
ence between one-way classical post-processing with RR and
with DR as a function of the parameter p. The reason behind
this effect is beyond the scope of this paper and needs further
investigation.

V. CONCLUSION

A fundamental question in quantum key distribution
�QKD� is to determine whether the legitimate users of the
system can use their available measurement results to gener-
ate a secret key via two-way or one-way classical post-
processing of the observed data. In this paper we have inves-
tigated single-photon QKD protocols in the presence of loss
introduced by the quantum channel. Our results are based on
a simple precondition for secure QKD for two-way and one-
way classical communication. In particular, the legitimate
users need to prove that there exists no separable state �in the
case of two-way QKD�, or that there exists no quantum state
having a symmetric extension �one-way QKD�, that is com-
patible with the available measurements results.

We have shown that both criteria can be formulated as a
convex optimization problem known as a primal semidefinite
program �SDP�. Such instances of convex optimization prob-
lems can be solved efficiently, for example by means of
interior-point methods. Moreover, these SDP techniques al-
low us to evaluate these criteria for any single-photon QKD
protocol in a completely systematic way. A similar approach
was already used in Ref. �25� for the case of one-way QKD
without losses. Here we complete these results, now present-
ing specifically the analysis for the case of a lossy channel.
Furthermore, we have shown that these QKD verification
criteria based on SDP provide also a means to search for
witness operators for a given two-way or one-way QKD pro-
tocol. Any SDP has an associated dual problem that repre-
sents also a SDP. We have demonstrated that the solution to
this dual problem corresponds to the evaluation of an optimal
witness operator that belongs to the minimal verification set
of them for the given two-way �or one-way� QKD protocol.
Most importantly, a positive expectation value of this opti-
mal witness operator guarantees that no secret key can be
distilled from the available measurements results. Finally, we
have illustrated our results by analyzing the performance of
several well-known qubit-based QKD protocols for a given
channel model.
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FIG. 1. Upper bound on the depolarizing rate e as a function of
the photon loss probability p for the two-state QKD protocol with
parameter �=0.2 and �=0.4. The equivalence class of states S is
fixed by the observed data pij, which are generated via measure-
ments onto the state given by Eq. �34�. Two-way classical post-
processing is illustrated with a solid line. One-way classical post-
processing is represented with a dashed line for RR, and with a
dotted line for DR. The cases �=0 and �= /8 provide the same
results. It states that no secret key can be obtained from the corre-
lations established by the users.
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APPENDIX A: SOME DUALITY PROPERTIES

In this appendix we present some duality properties of a
general SDP �23,24� that guarantee that the solution to the
dual problems introduced in Sec. III can be associated with a
witness operator.

The primal problem given by Eq. �2� is called feasible
�strictly feasible� if there exists x such as F�x��0�F�x�
	0�. Similarly, the dual problem given by Eq. �15� is called
feasible (strictly feasible) if there exists a matrix Z�0 �Z
	0� which fulfills all the desired constraints.

The weak duality condition, illustrated in Eq. �A1�, allows
us to derive simple upper and lower bounds for the solution
of either the primal or dual problem. In particular, for every
feasible solution x of the primal problem and for every fea-
sible solution Z of the dual problem, the following relation
holds:

cTx + Tr�ZF0� = Tr�ZF�x�� � 0. �A1�

The strong duality condition certifies whether the optimal
solution to the primal and dual problem, that we shall denote
as p* and d*, respectively, are equal. More precisely, p*=d* if
�i� the primal problem is strictly feasible, or �ii� the dual
problem is strictly feasible. Moreover, if both conditions are
satisfied simultaneously then it is guaranteed that there is a
feasible pair �xopt ,Zopt� achieving the optimal values p*=d*.
This last condition is known as the complementary slackness
condition.

The SDP given by Eq. �2�, when c=0, can always be
transformed as follows �23,24�:

minimize t

subject to F�x,t� = F�x� + t1 � 0. �A2�

This SDP is always strictly feasible. To see this, note that if
x=0 and t	 �mini �i�F0��, where �i�F0� denote the eigenval-
ues of the matrix F0, then F�x , t�	0. Moreover, it can be
shown that Eq. �A2� is equivalent to the original SDP. Let t*

be the solution to Eq. �A2�. If t*	0, the original problem is
infeasible since F�x��0 ∀ x. On the other hand, if t*�0
there exists x̄ such that F�x̄��0, stating that the original
problem is feasible. That is, the solution t* of the SDP given
by Eq. �A2� certifies whether the original problem is indeed
feasible or not.

The dual problem associated with Eq. �A2� is given by

maximize − Tr�F0Z�

subject to Z � 0

Tr�FiZ� = 0 ∀ i

Tr�Z� = 1. �A3�

If all the matrices Fi are traceless, i.e., Tr�Fi�=0, this dual
problem is also always strictly feasible. A trivial strictly fea-
sible solution to this problem is given by Z=1 /d	0, where d
denotes the dimension of Fi.

If we apply the three duality conditions mentioned above
to the SDPs given by Eqs. �A2� and �A3� we find that, if Eq.
�A2� delivers an infeasible solution t*	0,

Tr�F0Zopt� = − d* = − t* � 0. �A4�

This arises from the fact that the strong duality relation guar-
antees that d*= t*, and the complementary slackness condi-
tion certifies that there is a Zopt that achieves the optimal
value d*. When t*�0 the weak duality condition assures that

Tr�F0Z� � − t* � 0 �A5�

for every feasible solution Z of the dual problem. Both re-
sults together show that the solution to the dual problem
given by Eq. �A3� can be associated to a witness operator W.
In particular, the ability of W to detect, at least, one state, i.e.,
∃ � such as Tr�W���0, can be related with Eq. �A4�. On the
other hand, the requirement that W is positive on all states
belonging to a given set of them can be related with Eq.
�A5�. To achieve the desired equivalence, however, the dual
problem must be strictly feasible, otherwise the complemen-
tary slackness condition does not hold and the existence of
an appropriate witness is not guaranteed. It turns out that all
the linear constraints included in the dual problems consid-
ered in Sec. III have traceless matrices Fi, such that these
dual problems are always strictly feasible.

APPENDIX B: MORE QUBIT-BASED QKD SCHEMES

In this appendix we include very briefly the results of our
investigations on other well-known qubit-based QKD proto-
cols. Like in Sec. IV, we shall consider that the observed data
pij are generated via measurements onto the state given by
Eq. �34�.

1. Six-state protocol

In this scheme, Alice prepares a qubit in one of the fol-

lowing six quantum states: ��0� , �1� , �± �=1/�2��0�± �1�� , �±̃�
=1/�2��0�± i�1��	, and sends it to Bob �19�. On the receiving
side, Bob measures each incoming signal by projecting it
onto one of the three possible bases. The loss of a photon in
the channel is characterized by a projection onto the vacuum
state �vac�.

The resulting upper bound on the tolerable depolarizing
rate e is illustrated in Fig. 2. The QBER is given by
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QBER =
1

6
�4 sin2 � + �3 − 4 sin2 ��e� . �B1�

For �=0 we find, as expected, that whenever QBER�33%
�corresponding to a value of e=0.66� no secret key can be
distilled by two-way classical post-processing �19,51�. In the
case of one-way classical post-processing �both for RR and
DR�, and assuming �=0 and p=0, we obtain that secure
QKD might only be possible for a QBER�1/6 �e=0.33�. A
possible eavesdropping strategy to attain this cutoff point is,
for instance, to use a universal cloning machine to clone
every signal sent by Alice such as the fidelities of Eve’s and
Bob’s clones coincide �52�. �See also Ref. �25�.�

2. Four-state protocol

The four-state protocol �18� is similar to the six-state pro-
tocol, but now Alice sends one of four possible signal states
instead of one of six. In particular, she chooses one state
within the set ��0� , �1� , �± �	 and sends it Bob. Each received
signal is projected by Bob onto one of the two possible
bases, together with a projection onto the vacuum state �vac�
corresponding to the loss of a photon.

The resulting upper bound on the depolarizing rate e is
illustrated in Fig. 3.

The QBER is now given by

QBER = sin2 � +
�1 − 2 sin2 ��e

2
. �B2�

If �=0 we obtain the well-known result stating that when-
ever QBER�25% �corresponding to a value of e=0.5� no
secret key can be distilled by two-way classical post-
processing �51�. Similarly, for the case of one-way classical
post-processing, and assuming �=0 and p=0, we find that
the QBER must be lower than 14,6% �e=0.292�. This last

result coincides with the value of the QBER produced by an
eavesdropping strategy where Eve’s and Bob’s Shannon in-
formation are equal �54,55�.

3. Qubit-based four-plus-two-state protocol

This scheme can be seen as a combination of two two-
state QKD protocols �56,57�. More precisely, Alice selects,
at random and independently each time, one of the follow-
ing four signal states: ���k�=��0�+ �−1�k��1� , ��k̄�=��0�
+ i�−1�k��1�	 with k=0,1, and sends it to Bob. On the receiv-
ing side, Bob measures each incoming signal by choosing, at
random and independently for each signal, one of two pos-
sible POVMs. Each POVM corresponds to the one used
in the two-state protocol �see Sec. IV A� for the signal
states ��k�=��0�+ �−1�k��1�, with k=0,1, and ��k̄�=��0�
+ i�−1�k��1�, with k=0,1, respectively.

The resulting upper bound on the depolarizing rate e is
illustrated in Fig. 4 for the cases �=0.2 and �=0.4. The
QBER is given by

QBER =
e + �1 − e��1 + ��2 − �2�2�sin2 �

2�e + �1 − e��2��4 + �4�sin2 � + 4�2�2 cos2 ��	
.

�B3�

In the case of two-way classical post-processing, the maxi-
mum tolerable value of e shown in Fig. 4 starts decreasing as
the losses in the channel increase, and, at some point, it
becomes constant independently of p. Interestingly, the value
of p where this inflexion occurs corresponds to the point
where Eve can discriminate unambiguously between the two
states in the set ���k�	, with k=0,1, or between those states
in the set ���k̄�	, with k=0,1. This happens when p=1
−2�2.
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FIG. 2. Upper bound on the depolarizing rate e as a function of
the photon loss probability p for the six-state QKD protocol. Two-
way classical post-processing is illustrated with a solid line, while
one-way classical post-processing is represented with a dashed line
for RR, and with a dotted line for DR. The cases �=0 and �
= /8 provide the same results in this case.
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FIG. 3. Upper bound on the depolarizing rate e as a function of
the photon loss probability p for the four-state QKD protocol. Two-
way classical post-processing is illustrated with a solid line, while
one-way classical post-processing is represented with a dashed line
for RR, and with a dotted line for DR. The cases �=0 and �
= /8 provide the same results in this case. This upper bound also
coincides for the case of the trine protocol and for the QKD scheme
proposed in Ref. �53� when �=0.

MARCOS CURTY AND TOBIAS MORODER PHYSICAL REVIEW A 75, 052336 �2007�

052336-10



4. Three-state protocol

This QKD scheme requires Alice sending to Bob one of
the following three quantum states: �0�, �1�, and ��� �58–61�.
On the receiving side, Bob projects each incoming signal
onto one of the two possible bases used in the four-state
protocol �see Appendix B 2�, together with a projection onto
the vacuum state �vac�.

The resulting upper bound on the depolarizing rate e is
illustrated in Fig. 5. The QBER has now the following form:

QBER =
1

2
�1 + �1 − e��sin2 � − cos2 ��� . �B4�

For the quantum channel given by Eq. �34�, and assuming
�=0 or �= /8, the maximum value of e tolerated by the
three-state protocol coincides with the four-state protocol for
the cases of two-way and one-way post-processing with DR.

5. Trine protocol

In the trine protocol �62�, Alice selects, at random and
independently each time, a qubit in one of the following
three states: �0�, 1 /2�0�+�3/2�1�, and 1/2�0�−�3/2�1�, and
sends it to Bob. Each received signal is measured by Bob
with a POVM defined by the following operators: B0
=2/3�1��1�, Bi=2/3��i���i�, with i=1,2, and where ��i�
=�3/2�0�+ �−1�i1/2�1�, and Bvac= �vac��vac�.

For the quantum channel given by Eq. �34�, and assuming
�=0 or �= /8, it turns out that the maximum value of e
tolerated by this scheme, both for two-way and one-way
post-processing, coincides with the four-state protocol �see
Fig. 3�. The QBER, however, is given by
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FIG. 6. Upper bound on the depolarizing rate e as a function of
the photon loss probability p for the QKD protocol in Ref. �53�
when �= /8. Two-way classical post-processing is illustrated with
a solid line, while one-way classical post-processing is represented
with a dashed line for RR, and with a dotted line for DR.
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FIG. 4. Upper bound on the depolarizing rate e as a function of
the photon loss probability p for the qubit-based four-plus-two-state
QKD protocol for parameter �=0.2 and �=0.4. Two-way classical
post-processing is illustrated with a solid line, while one-way clas-
sical post-processing is represented with a dashed line for RR, and
with a dotted line for DR. The cases �=0 and �= /8 provide the
same results.
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FIG. 5. Upper bound on the depolarizing rate e as a function of
the photon loss probability p for the three-state QKD protocol.
Two-way classical post-processing is illustrated with a solid line,
while one-way classical post-processing is represented with a
dashed line for RR, and with a dotted line for DR. The cases �=0
and �= /8 provide the same results.
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QBER =
2e + 4�1 − e�sin2 �

3 + e + 2�1 − e�sin2 �
. �B5�

6. Acín-Massar-Pironio protocol

In this scheme, Alice sends to Bob one of the following
six states: ���, ���, 1 /�2��0�± i�1��, and 1/�2�0�± �1
− i� /2�1� �53,63�. On the receiving side, Bob measures each
incoming signal with one of two possible measurements cor-
responding to the bases 1/�2��0�±e−i��1�� with �= � /4 ,

− /4	, that he selects at random and independently for each
signal, together with a projection onto the vacuum state
�vac�.

When �=0, the maximum value of e tolerated by this
protocol, both for two-way and one-way post-processing, co-
incides with the four-state protocol �see Fig. 3�. The case �
= /8 is illustrated in Fig. 6. The QBER is now given by

QBER =
1

2
��1 − e�sin2 � + e� . �B6�
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