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We present a control-theoretic analysis of a system consisting of a two-level atom coupled with a quantum
harmonic oscillator. We show that, by applying external fields with just two resonant frequencies, any desired
unitary operator can be generated.
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I. INTRODUCTION

In this paper, we apply theoretical concepts of quantum
control to the joint system consisting of a two-state system
coupled with a quantum harmonic oscillator. Such systems
are ubiquitous in Nature. For example, coupled atom-
oscillator systems form the basis for the ion trap quantum
computer �1�. Other examples include a single atom in a
cavity �2�, a superconducting qubit in a cavity �3�, and con-
trol of single-atom lasers �4,5�. In �6�, Law and Eberly
showed that arbitrary states can be synthesized by using just
two resonant frequencies, a result experimentally verified in
�7�, and �8� showed that the two-level atom-oscillator system
could be controlled by fine tuning the Lamb-Dicke param-
eter. Here we prove that the dynamics of such systems is
controllable without any fine tuning or special state prepara-
tion: with the proper sequence of pulses, it is possible to
perform any desired unitary transformation on the Hilbert
space spanned by the atomic states together with the lowest n
energy levels of the oscillator.

In this paper, we will use the ion trap as our model sys-
tem. An ion trap quantum computer can be modeled as a
collection of N particles with spin 1

2 in a one-dimensional
harmonic potential. Laser pulses incident on the ions can be
tuned to simultaneously cause internal spin transitions and
vibrational �phonon� excitations, thus allowing local internal
states to be mapped into shared phonon states. The compu-
tational qubits are encoded by two internal states of each ion
and the collective vibration of the trapped ions acts as the
information bus. In this manner, quantum information can be
communicated between any pair of ions and logic gates can
be performed. Several key features of the original proposal in
�1�, including the production of entangled states and the
implementation of quantum controlled operations between a
pair of trapped ions, have already been experimentally dem-
onstrated �see, e.g., �9–12��. Meanwhile, several alternative
theoretical schemes �see, e.g., �8,13–17�� have also been de-
veloped for overcoming various difficulties in realizing a
practical ion-trap quantum information processor. All these
proposals require either fine-tuning of the Lamb-Dicke pa-
rameter or an initial eigenstate of the vibration motion. Here
we present a control theoretical analysis and show that, in the

Lamb-Dicke regime by using two resonant frequencies, any
unitary transformation within a finite level of the harmonic
oscillator can be generated. Unlike in, e.g., �8�, no fine tun-
ing of the Lamb-Dicke parameter is required to obtain com-
plete control. While the proof of controllability is somewhat
involved, because of the fundamental nature of the system to
be controlled and because of the wide range of potential
application, we present this proof in detail. As will be seen
below, the difficulty of the proof arises because, in the ab-
sence of controllability of the Lamb-Dicke parameter, one
must combine discrete and continuous control-theoretic tech-
niques. The current proof can be regarded as extending the
techniques of the papers �17,18� from controlling four states
to controlling m states, where m can be arbitrarily large. We
begin in Sec. II by presenting the usual Jaynes-Cumming
model for spin boson interactions. We then make the control-
lability analysis of the system in Sec. III.

II. LASER-ION INTERACTION MODEL

The physical situation we consider is a two-state atom
�frequency �c� coupled to a harmonic oscillator �transition
frequency �z�, driven additionally by an external field �fre-
quency �� as shown in Fig. 1. We will follow the ion trap
model �19,17�. The free Hamiltonian of this system is H0
=��c�z /2+��za

†a, where �z is a Pauli spin operator and a
annihilates a phonon. Turning on the electromagnetic field of
a laser gives an interaction Hamiltonian
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FIG. 1. Graphical representation of the quantum harmonic os-
cillator driven by sinusoidal resonant field fields �c and �r=�c

−�z as shown. The strengths of the �c transition couplings are
independent of the harmonic oscillator quantum number n, whereas
the strength of the �r transition couplings increases as the square
root of the quantum number n.
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HI = − �� · B� , �1�

where �� =��� /2 is the magnetic moment of the ion and B�

=Bx̂ cos�kz−�t+�� is the magnetic field produced by the
laser. Here z=z0�a+a†�, where z0=�� /2Nm�z is a character-
istic length scale for the motional wave functions and m is
the mass of an ion.

We consider the regime in which ��kz0�1. In this re-
gime, we may determine the effect of a laser pulse at a spe-
cific frequency � by expanding Eq. �1� in powers of � and
neglecting rapidly rotating terms. Then pulsing on resonance
��=�c� allows one to perform the transformation

R��,	� = exp�i��ei	�+ + e−i	�−�� , �2�

and pulsing at the red sideband frequency ��=�c−�z� gives

R−��,	� = exp�i��ei	�+a† + e−i	�−a�� . �3�

In each case, the parameter � depends on the strength and
duration of the pulse and 	 depends on its phase. In the next
section, we show that by just using these two frequencies any
unitary operator can be generated. The basic idea in proving
controllability is an extension of �17,18�. Using the feature
that the transition frequencies increase as the square root of
the quantum number, we apply only pulses that leave the
system confined within the Hilbert space spanned by the first
n oscillator levels. This requirement means that only a dis-
crete set of pulses can be applied at the red sideband fre-
quency. Meanwhile, a continuous set of pulses can be ap-
plied at the resonance frequency. As a result of the use of
both discrete and continuous controls, the resulting control
problem is technically somewhat involved. Nonetheless, it
can be solved completely, as we now show.

III. CONTROLLABILITY ANALYSIS

We denote as Epq the matrix that has all the entries equal
to zero except the pq entry, which equals 1. It is easy to
check that EpqErs=
q

rEps.
The Hamiltonian, after absorbing the imaginary number i,

can be represented as skew-Hermitian matrices. If we take
the eigenstate of the free Hamiltonian as the basis, then, after
rescaling the time unit, the various Hamiltonians in the in-
teraction frame can be represented as

�1� �=�c, 	=0,

H1 = i�
k=0

�

E�2k+1��2k+2� + E�2k+2��2k+1�

= i�
0 1 0 0 0 0 . . .

1 0 0 0 0 0 . . .

0 0 0 1 0 0 . . .

0 0 1 0 0 0 . . .

0 0 0 0 0 1 . . .

0 0 0 0 1 0 . . .

	 	 	 	 	 	 	


 , �4�

�2� �=�c, 	=� /2,

H2 = �
k=0

�

E�2k+1��2k+2� − E�2k+2��2k+1�

= �
0 1 0 0 0 0 . . .

− 1 0 0 0 0 0 . . .

0 0 0 1 0 0 . . .

0 0 − 1 0 0 0 . . .

0 0 0 0 0 1 . . .

0 0 0 0 − 1 0 . . .

	 	 	 	 	 	 	


 ,

�5�

�3� �=�c−�z, 	=0,

H3 = i�
k=1

�

�k�E�2k��2k+1� + E�2k+1��2k��

= i�
0 0 0 0 0 0 . . .

0 0 1 0 0 0 . . .

0 1 0 0 0 0 . . .

0 0 0 0 �2 0 . . .

0 0 0 �2 0 0 . . .

0 0 0 0 0 0 . . .

	 	 	 	 	 	 	


 , �6�

and �4� �=�c−�z, 	=� /2,

H4 = �
k=1

�

�k�E�2k��2k+1� − E�2k+1��2k��

= �
0 0 0 0 0 0 . . .

0 0 1 0 0 0 . . .

0 − 1 0 0 0 0 . . .

0 0 0 0 �2 0 . . .

0 0 0 − �2 0 0 . . .

0 0 0 0 0 0 . . .

	 	 	 	 	 	 	


 .

�7�
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When the Hamiltonian H3 or H4 is applied, �↑ � �m� is
connected to �↓ � �m+1�. We restrict the evolution time T un-
der these two Hamiltonians to satisfy T�m=k�, while k is
integer, so the subspace of states spanned by 
�↓ , ↑ � � j� � j

m� is preserved. We show that under these restrictions any
unitary matrix within any finite harmonic level can still be
generated.

A. SU„4…

Let us first work out the case of m=1, showing that we
can generate SU�4� on the subspace spanned by states

�↓��0�, �↑��0�, �↓��1�, �↑��1� .

Restricted to this subspace,

H1 = i�
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

,

H2 = �
0 1 0 0

− 1 0 0 0

0 0 0 1

0 0 − 1 0

 ,

and the unitary operators we can generate using H3 and H4
are

R−� k�

�2
,0� = exp� k�

�2
H3� = �

1 0 0 0

0 cos�k�/�2� i sin�k�/�2� 0

0 i sin�k�/�2� cos�k�/�2�0 0

0 0 0 �− 1�k

 , �8�

R−� k�

�2
,
�

2 � = exp� k�

�2
H4� = �

1 0 0 0

0 cos�k�/�2� sin�k�/�2� 0

0 − sin�k�/�2� cos�k�/�2� 0

0 0 0 �− 1�k

 . �9�

Choosing k=2p and varying p, R−�k� /�2,� /2� forms a
dense subset of the one-parameter group

exp�t�
0 0 0 0

0 0 1 0

0 − 1 0 0

0 0 0 0

� .

Thus we have the generator

�
0 0 0 0

0 0 1 0

0 − 1 0 0

0 0 0 0

 .

Adding it to H2, we get

H5 = �
0 1 0 0

− 1 0 1 0

0 − 1 0 1

0 0 − 1 0

 .

Choosing k=2p+1, we have

U1 = R−� k�

�2
,
�

2 �

= �
1 0 0 0

0 cos�k�/�2� sin�k�/�2� 0

0 − sin�k�/�2� cos�k�/�2� 0

0 0 0 − 1

 .

�10�

Since U�4� is compact, the infinite sequence

U1 ,U1

2 ,U1
3 ,U1

4 , . . . � has a convergent subsequence, i.e., there
exists p1� p2�N such that U1

p1 −U1
p2 is arbitrarily close to

zero. When this is true then U1
p1−p2−1 is arbitrarily close to

U1
−1, i.e., U1

−1 can be approximately generated to arbitrary
accuracy. But
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U1
−1H1U1 = i�

0 cos�k�/�2� sin�k�/�2� 0

cos�k�/�2� 0 0 sin�k�/�2�

sin�k�/�2� 0 0 − cos�k�/�2�
0 sin�k�/�2� − cos�k�/�2� 0


 . �11�

Choosing k such that k /�2 is arbitrarily close to an integer,
we can get the transformation

i�
0 1 0 0

1 0 0 0

0 0 0 − 1

0 0 − 1 0

 .

Subtracting this from H1 and dividing by a factor 2 yields

H6 = i�
0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 .

Similarly, by using H2 and U1, we can get

H7 = �
0 0 0 0

0 0 0 0

0 0 0 1

0 0 − 1 0

 .

We now show that 
H5 ,H6 ,H7� generate all the skew-
Hermitian matrices on the subspace.

First,

H8 = H5 − H7 = �
k=1

N−2

Ek�k+1� − E�k+1�k.

Here N=4. We will do the following computation using the
general N, as this will be used for the proof of the general
case. Now,

H7 = E�N−1�N − EN�N−1�.

We first show that H7 and H8 generate all the real skew-
symmetric matrices of size N�N �20,21�. Let

MN−1 = H7 = E�N−1�N − EN�N−1�,

MN−2 = �H8,MN−1� = E�N−2�N − EN�N−2�,

MN−3 = �H8,MN−2� + MN−1 = E�N−3�N − EN�N−3�,

MN−4 = �H8,MN−3� + MN−2 = E�N−4�N − EN�N−4�,

	

M1 = �H8,M2� + M3 = E1N − EN1,

and �Mp ,Mq�=Eqp−Epq, ∀ p�q� 
1,2 , . . . ,N−1�. Thus we
can generate the complete basis for skew-symmetric matri-
ces. Similarly,

JN−1 = H6 = i�E�N−1�N + EN�N−1�� ,

JN−2 = �H8,JN−1� = i�E�N−2�N + EN�N−2�� ,

JN−3 = �H8,JN−2� + JN−1 = i�E�N−3�N + EN�N−3�� ,

	

J1 = �H8,J2� + J3 = i�E1N + EN1� ,

and

�Mq,Jp� = i�Eqp + Epq�,

�i�Eqp + Epq�,Eqp − Epq� = 2i�Epp − Eqq�

∀ p�q� 
1,2 , . . . ,N−1�. So we can generate a full basis for
all N�N skew-Hermitian matrices. This proves the SU�4�
case.

B. General case

Now we generalize our proof to controllability on SU�n�
for any n. It is not necessary to check the case for each n; as
SU�n1� is a subgroup of SU�n2�, for n1�n2, the controllabil-
ity on SU�n2� implies controllability on SU�n1�. It is suffi-
cient to prove the result for infinitely many ni as ni→�.

Take the subspace up to harmonic level m, i.e.,


�↓��0�, �↑��0�, �↓��1�, �↑��1�, . . . , �↓��m�, �↑��m�� ,

where �m−1,m+1� are both prime. We shall prove the con-
trollability on this subspace. The twin-prime conjecture
claims that there exist infinitely many such primes. If the
twin-prime conjecture is false, then the following proof
works only up to n=2m+2, where m is the largest known
twin prime. As of 2006, the largest known twin prime is
100 314 512 544 015�2171960±1, which is large enough for
most physical systems. Below, we generalize the twin-prime
proof to show controllability for all n.

If we restrict the evolution time T for H4 to satisfy
T�m+1=k�, where k is an integer, then the angle rotated
between �↑ � � p−1� and �↓ � � p� is �pT=k�p / �m+1��. We di-
vide the numbers 
1,2 , . . . ,m� into groups Gi, i=1,2 , . . .,
such that in the same group Gi the angles rotated under the
above evolution are rationally related to each other, i.e.,
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p1 , p2 are in the same group if and only if �p1 / p2 is a rational
number. For example, 
1,1�22 ,1�32 , . . . ,1� p1

2� forms a
group, where p1

2
m, �p1+1�2�m; similarly other groups are

2,2�22 ,2�32 , . . . ,2� p2

2�, 
3,3�22 ,3�32 , . . . ,3
� p2

2� , . . .; in particular, 
m−1� itself forms a group.
As m+1 is a prime number, k�p / �m+1� �mod 2� are irra-

tional numbers for all p
m. Accordingly, we can vary k
such that, except for the angles related to one group Gi, all
the other angles are arbitrarily close to zero. In this way we
can construct the generator

Ĥi = �
j�Gi

�j�E2j�2j+1� − E�2j+1�2j� .

Adding all Ĥi to H2, we get a matrix similar to H5 in the
SU�4� section, with only nonzero entries on the first off di-

agonal. Denote this matrix by H̃5.
To prove controllability, we just need to show that we can

also generate matrices similar to H6 and H7, i.e.,

E�N−1�N − EN�N−1�

and

i�E�N−1�N + EN�N−1��;

here N=2m+2.
As 
m−1� itself forms a group, say Gj, we can generate

S1 =
1

�m − 1
Ĥj = E�2m−2��2m−1� − E�2m−1��2m−2�.

Bracketing it with H2=�k=0
m E�2k+1��2k+2�−E�2k+2��2k+1�, we can

get

S2 = �H2,S1� = E�2m−3��2m−1� − E�2m−1��2m−3� + E2m�2m−2�

− E�2m−2�2m.

Then bracketing S2 with S1,

S3 = �S1,S2� = E�2m−3��2m−2� − E�2m−2��2m−3� + E�2m−1�2m

− E2m�2m−1�,

we see that S3 is nothing but the restriction of H2 on the
subspace spanned by

�↓��m − 2�, �↑��m − 2�, �↓��m − 1�, �↑��m − 1� .

Similarly, H1 can also be restricted to this subspace. From
the SU�4� case, we know we can generate any skew-
Hermitian matrix on this subspace; specifically we can have
S4=E�2m−1�2m−E2m�2m−1�.

Now pick the group Gp to which m belongs. We get

Ĥp = �
j�Gp

�j�E2j�2j+1� − E�2j+1�2j� = E2m�2m+1� − E�2m+1�2m

+ �
j�m�Gp

�j�E2j�2j+1� − E�2j+1�2j� . �12�

Bracketing S4 with Ĥp, since all the numbers in Gp have the
form m /q2, the second term in the right side of the above
equation commutes with S4. Accordingly we obtain

S5 = �S4,Ĥp� = E�2m−1��2m+1� − E�2m+1��2m−1�.

Now, bracketing S5 with S4,

S6 = �S5,S4� = E2m�2m+1� − E�2m+1�2m.

Comparing with S1, we see that we just moved one block
down. Repeating what we did with S1 to S6, we can get

S7 = E�2m+1��2m+2� − E�2m+2��2m−1� = E�N−1�N − EN�N−1�.

�13�

This is the matrix we need to generalize our proof of con-
trollability on SU�4�. Similarly, we can get

i�E�N−1�N + EN�N−1�� .

Together with H̃5, we are able to generate all the skew-
Hermitian matrices of size N�N, which proves the control-
lability on SU�N�. This completes the proof: Driving the fun-
damental frequency and the red sideband suffices to control
the two-level atom coupled to a harmonic oscillator.

Remark 1. From the proof we see that the only two prop-
erties of the pair �m−1,m+1� we used are �1� �p / �m+1� are
irrational for all p
m; and �2� there exists one group con-
sisting of only one number. It is convenient to pick twin
primes, but there exist other choices. For example, we can
choose m+1=2q, where q is an odd prime. Under this choice
condition 1 still holds, and q itself forms a group. So our
proof, while expressed in terms of the twin-prime conjecture,
actually holds for all n.

IV. DISCUSSION

We have proved the controllability of the dynamics of a
coupled two-level system and harmonic oscillator. Because
of the discrete nature of the controls, the proof was some-
what involved. In addition, the system is fully controllable
only in the limit that the number of control pulses goes to
infinity. In any realistic setting we will have only a finite time
and a finite number of pulses that we can apply. The question
of the rate of convergence of such discrete schemes is an
important open question in control theory and in quantum
information, and will be investigated elsewhere. For the mo-
ment, we note only that accurate generation of arbitary mem-
bers of SU�4� and SU�n� for n
10 or so via the techniques
described here is well within the reach of current experiment.
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