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I consider the deterministic distinguishability of a set of orthogonal, bipartite states when only a single copy
is available and the parties are restricted to local operations and classical communication, but with the addi-
tional requirement that entanglement must be preserved in the process. Several general theorems aimed at
characterizing sets of states with which the parties can succeed in such a task are proven. These include �i� a
maximum for the number of states when the Schmidt rank of every outcome must be at least a given minimum,
�ii� an upper bound �equal to the dimension of Hilbert space if entanglement need not be preserved� for the sum
over Schmidt ranks of the initial states when only one-way classical communication is allowed, and �iii�
separately, a necessary and a sufficient condition on the states such that their original Schmidt ranks can always
be preserved. Two additional theorems explicitly demonstrate a trade-off between the extent to which the set of
states fill Hilbert space, as measured by their Schmidt ranks, and how refined the parties must make their
measurements, an important factor in determining the Schmidt rank the state can retain after it has been
identified. It is shown that our bound on the sum of Schmidt ranks can be exceeded if two-way communication
is permitted, and this includes the case that entanglement need not be preserved, so that this sum can exceed
the dimension of Hilbert space. Such questions, concerning how the various results are affected by the re-
sources used by the parties �amount of classical communication and types of local operations�, are addressed
for each theorem. This subject is closely related to the problem of locally purifying an entangled state from a
mixed state, which is of direct relevance to teleportation and dense coding using a mixed-state resource. In an
appendix, I give an extremely simple and transparent proof of “nonlocality without entanglement,” a phenom-
enon originally discussed by Bennett and co-workers several years ago.
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I. INTRODUCTION

Many of the most interesting problems in quantum infor-
mation involve two physically separated parties each acting
on their part of a shared, entangled �bipartite� state. Due to
their separation, it may not be practicable to bring the parts
together to perform global operations on the entire system,
though the parties may have the means by which to commu-
nicate classically with each other, perhaps to share informa-
tion about outcomes of measurements. Thus, the parties may
perform local operations and classical communication,
LOCC as it is widely known in the literature. It is a reason-
able expectation that the separated parties are generally able
to accomplish less with LOCC than they could if they
brought the parts of the entangled system together. One ex-
ample adhering to such an intuition is that only if the parts
are brought together is it possible to increase the entangle-
ment of the system on average �1�.

As is often the case in discussions of entangled systems,
however, there have been surprises in store for us. One such
surprise was provided by Walgate and co-workers �2�, who
showed that it is not necessary to use global operations in
order to distinguish between two orthogonal, multipartite
pure states. That is, if the parties are given a system that is in
one of two possible orthogonal states, they can with certainty
determine which state their shared system is in by means of
LOCC alone. If the two states to be distinguished are product

states, with an absence of quantum correlations between the
parts, there is of course no reason to have expected other-
wise. However, when the parts are correlated through quan-
tum entanglement, one might have expected a need for glo-
bal operations to learn about the differing correlations
present in the two states to be distinguished.

To accomplish the task of distinguishing, it was shown in
�2� that for any two orthogonal states, the parties simply need
perform standard, projective measurements on their separate
parts, with one party’s measurement conditioned on the other
party’s outcome, communicated to the former by means of a
classical channel. By standard, here I mean that the measure-
ments involve projections onto one-dimensional subspaces
�pure states� of the Hilbert space describing states of each
local system. Thus, although the parties have succeeded in
determining the state they were given, the state they now
share is, with certainty, a product state. Hence, this means of
determining the state leads, necessarily, to a concomitant de-
struction of entanglement.

It is by now well understood that entanglement is an im-
portant resource, examples provided by its use in quantum
communication protocols such as teleportation �3� and dense
coding �4�. Therefore, along with a desire by the two sepa-
rated parties to discover which of the two �or more� states
they share, they may also wish to preserve at least a portion
of the entanglement inherent in those states. For example,
suppose that Alice wishes to use teleportation to convey to
Bob quantum information in the form of a quantum state.
Suppose also that they share an entangled two-qubit system,
described by a rank-2 mixed state, such that the two qubits
may be viewed as being in one of two orthogonal maximally*Electronic address: cohensm@duq.edu
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entangled states, but it is not known which one of these
states they are in. Before teleportation may be accomplished,
the parties must determine which state actually describes
their pair of qubits.

For the above example of entangled qubits, we will see
that it is in fact not possible to determine which state the
qubits are in, while at the same time preserving entangle-
ment. However, for higher-dimensional systems, there are
conditions under which both tasks may be accomplished si-
multaneously. This is the question we wish to study: When
can a set of orthogonal, bipartite states be distinguished by
LOCC while preserving some part of the original entangle-
ment present in those states? In the next section, I will argue
that Schmidt ranks of the states provide a useful character-
ization of these sets, as well as insight into ways of thinking
about this problem. Most of our results will be stated in these
terms.

Throughout the paper, consideration will be restricted to
cases where there is only a single copy of the given state
available to the parties. An LOCC protocol should be under-
stood to mean that the parties perform a sequence of mea-
surements with each outcome communicated to the other
party, who may then use that information in choosing the
next measurement in the sequence. The final outcome is rep-
resented by an operator A � B, with A and B each equal to
�ordered� products of Kraus operators �5� �Al

���� or �Bm
����

corresponding to individual outcomes �l ,m� in the sequence
of measurements �here labeled by � ,��.

In this paper, we will mainly be concerned with determin-
istic distinguishing, whereby the parties are always able to
determine which state they have. Unless explicitly indicated
otherwise, the term “distinguishing” should be understood in
this sense. In this case, the requirement of completeness may
be imposed; for example,

�
l

Al
���†Al

��� = IA, �1�

with IA the identity operator on Alice’s Hilbert space HA. By
the statement that the state �� j	 is identified �or distin-
guished� by outcome A � B while preserving Schmidt rank
rj, we will mean that the Schmidt rank of the residual state
�A � B� �� j	 is rj and that �A � B� ��k	=0,∀k�j.

The paper is organized as follows: In the next section, a
simple example is given to illustrate the basic ideas, and then
it is argued that Schmidt ranks will be a useful quantity for
characterizing distinguishability with preservation of en-
tanglement. In Sec. III, a brief outline of the types of proto-
cols to be discussed is given. Section IV presents the main
theorems including �i� a maximum for the number of states
in the case that every outcome must preserve a fixed mini-
mum Schmidt rank, �ii� an upper bound for the sum over
Schmidt ranks of the initial states when only one-way clas-
sical communication is allowed, again assuming that every
outcome preserves a fixed minimum Schmidt rank, and �iii�
conditions on the states such that their original Schmidt
ranks can always be preserved. Two additional theorems are
given in Sec. V, explicitly demonstrating a trade-off between
the extent to which the set of states fill Hilbert space, as
measured by their Schmidt ranks, and how refined the parties

must make their measurements. In all cases, the effects of
restricting or expanding the resources available to the parties
�types of local operations and amount of classical communi-
cation� are discussed. In particular, various examples are
given where two-way communication allows the parties to
accomplish what our theorems show cannot be accomplished
with one-way communication alone. One of these examples
demonstrates that the sum of Schmidt ranks can exceed the
dimension of Hilbert space, yet the states can nonetheless be
deterministically distinguished. Other examples show that
when general separable operations are allowed, the parties
can do even better than they can using LOCC with two-way
communication. Several of the simpler proofs of these theo-
rems are included in this section, whereas the more lengthy
proofs are given in Appendix A. Then, in Sec. VI, I point out
the close correspondence of the present study to the impor-
tant question of using LOCC to obtain a pure entangled state
from a single copy of a mixed state. Extension to multipartite
systems for two of the theorems is also discussed. Finally, in
Sec. VII, I present a summary of the results. In one of the
appendixes, I include a very simple proof of nonlocality
without entanglement, using a transparent and intuitively
clear argument. The final appendix discusses LOCC proto-
cols where the parties are not allowed to communicate until
after they have completed their measurements.

II. CHARACTERIZATION BY SCHMIDT RANKS

In this section I argue that it will be useful, in character-
izing a set of states to be distinguished, to consider the
Schmidt ranks Rj of the states in that set. Let us begin with a
very simple example to illustrate the general idea of distin-
guishing and preserving entanglement �additional examples
will appear in the following sections as illustrations of the
theorems�. The example involves two states on a 4�4 sys-
tem �I omit normalization where it is unimportant�:

��1	 = �02	AB + �13	AB + �20	AB + �31	AB,

��2	 = �00	AB + �11	AB + �22	AB + �33	AB. �2�

Alice and Bob perform measurements, each with two out-
comes corresponding to projectors, which, with �=A or B,
are

P�1 = �0	�
0� + �1	�
1� ,

P�2 = �2	�
2� + �3	�
3� . �3�

If Alice obtains outcome 2, for example, then

��̃1	 = PA2��1 = �20	AB + �31	AB,

��̃2	 = PA2��2 = �22	AB + �33	AB, �4�

which leaves Bob with reduced density operators

��̃ j
B=TrA���̃ j	
�̃ j � �� proportional to PB1 or PB2, respectively.

Then, if he obtains outcome 1 and if they communicate their
results to each other, they will know that the state was ��1	
and, more importantly, that they now share the state ��̃1	.
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Any other pair of outcomes leads to the same sort of conclu-
sion: they know which state they had and also know the state
that remains, that being uniformly entangled across two-
dimensional subspaces. In this example, Bob was able to use
the same measurement regardless of Alice’s outcome, though
they still had to communicate classically in order to deter-
mine the state.

The representation of the original states in Fig. 1�a� pro-
vides intuition as to what can and cannot be accomplished. It
is apparent from this diagram that the two states each fill too
much of the space and are too intertwined �6� with each other
for it to be possible to distinguish and preserve Schmidt rank
of r=4 even for a single �LOCC� outcome. On the other
hand, it is quite clear that there is “room” enough for them to
be distinguished preserving r=2. Of course, since we are
dealing with quantum systems, an unlimited number of other
bases are available to us for representing these states. One
other choice is shown in Fig. 1�b�, in which the distinguish-
ability of the states is by no means clear, let alone the pos-
sibility of preserving entanglement in the process. In the lat-
ter depiction, it appears that each state by itself fills the
whole space. If we were dealing with classical probability
distributions, this conclusion would be correct and distin-
guishing the distributions would be impossible. For the case
we are considering, however, the existence of quantum su-
perpositions forces us to reexamine what is meant by the
notion of “filling space.” We need a way to measure how
much space a given state occupies and, if possible, to what
extent the states are intertwined with each other. The
Schmidt rank of the states provides such a description. When
a state is written in its Schmidt basis, the part of the space it
“occupies” is minimized and it is apparent in diagrams such
as Fig. 1�a� just where that region is. Furthermore, one can
see in this diagram the level of intertwining among the states,
and this would be true, at least qualitatively, even if the bases
used were the Schmidt bases for only one of the states. This
argument should at least make it plausible that consideration
of Schmidt ranks Rj of the original states will be an advan-
tageous approach, and this is what we shall do in the follow-
ing sections. We shall also find it useful to consider Schmidt
ranks rk of residual states, those remaining after the parties

complete their measurements. We will see in the various
theorems below that the ranks Rj and the amount of en-
tanglement that can be preserved, as measured in somewhat
qualitative terms by rk, are two closely related quantities.

The protocol described above succeeds in preserving en-
tanglement by partitioning the respective spaces into sub-
spaces that are larger than one dimensional. In contrast, the
approach of �2� utilized projections onto pure states, which is
clearly inadequate for the purpose of preserving entangle-
ment since it always leaves them with a product state. One
way of looking at this is that they have constricted the states
too much, squeezing out all of the entanglement. This diffi-
culty can be overcome by relaxing one’s grip, projecting
onto higher-dimensional subspaces in making measurements.
The trade-off is that more entanglement means less informa-
tion: the higher the dimensionality of the subspaces in the
partitions, the more entanglement can be preserved, but less
information about the state is obtained, making it more dif-
ficult to distinguish the states. So while it is always possible
to distinguish a pair of orthogonal states, the added require-
ment of preserving entanglement leads us to a very rich
structure with many challenging and interesting problems to
investigate. We begin such a study in the following sections.

III. TYPES OF PROTOCOLS

Our aim in this paper is to characterize sets of bipartite
states, S= ��� j	� j=1

N , which allow the parties to distinguish
while preserving entanglement. Such a characterization does
not depend solely on the properties of S, however, but also
on the tools that are available to the parties as they attempt to
accomplish this task. In general, we will restrict the parties to
LOCC, so there are two such tools we wish to consider: �i�
the types of local operations �LO� they are able to implement
and �ii� the amount of classical communication �CC� they are
allowed to share with each other. Whenever possible, exten-
sion to the class of separable operations �7� will be consid-
ered, with comments on how this might enlarge the class of
allowable sets S.

The two types of local operations to be discussed are or-
thogonal, projective measurements and generalized measure-
ments. As an illustration, suppose Alice performs a measure-
ment represented by the set of Kraus �5� operators Al, which
must obey the completeness relation, Eq. �1�. For a general-
ized measurement, this is the only constraint, while for a
projective measurement, we also have that AlAl�=Al�ll�. In
the latter case, the local Hilbert space is divided into mutu-
ally orthogonal subspaces by the operators Al, whereas in the
general case the Al may divide the space into subspaces that
overlap with each other to an arbitrary extent. For classical
communication, we will assume the parties have access to a
classical channel that can either carry information in only
one direction �one-way CC� or in both directions �two-way
CC�. In the former case, one party must measure first and
then communicate the outcome of their measurement to the
other party, who must then complete the protocol without
additional assistance from the first party. For two-way CC,
they can go back and forth, measuring and exchanging infor-
mation as many times as is needed, conditioning subsequent

|0〉B |1〉B |2〉B |3〉B

|3〉A
|2〉A
|1〉A
|0〉A

1 2

1 2

2 1

2 1

(a)

|0′〉B |1′〉B |2′〉B |3′〉B

|3′〉A
|2′〉A
|1′〉A
|0′〉A

1,2 1,2 1,2 1,2

1,2 1,2 1,2 1,2

1,2 1,2 1,2 1,2

1,2 1,2 1,2 1,2

(b)

FIG. 1. Representation of the set of states given in Eq. �2�.
Alice’s basis states are denoted along the left side of each grid,
Bob’s along the top. The numbers �j� inside the boxes indicate that
the state ��� j	� has the corresponding product state as a component.
�a� For the bases of Eq. �2�, it is easily seen that the states can be
distinguished by LOCC, preserving Schmidt rank of 2 for all out-
comes. �b� When viewed in other bases, the distinguishability may
be far from obvious.
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measurements on previous outcomes. We will also consider
protocols where the parties are only allowed to communicate
after they have completed their measurements.

Thus, we consider seven types of protocols.
�i� Orthogonal projectors with CC only after measure-

ments are completed �LOCC-P0�.
�ii� Generalized �Kraus� operations with CC only after

measurements are completed �LOCC-K0�.
�iii� Orthogonal projectors with one-way CC �LOCC-P1�.
�iv� Generalized �Kraus� operations with one-way CC

�LOCC-K1�.
�v� Orthogonal projectors with two-way CC �LOCC-P2�.
�vi� Generalized �Kraus� operations with two-way CC

�LOCC-K2�.
�vii� Separable operations �SEP�.
Since a projector is a Kraus operator �but not vice versa�

and since LOCC operations are a proper subset of SEP, there
is a trend toward more general protocols as one moves down
the list, as well as toward more sophistication in the re-
sources needed to implement them. Therefore, conditions on
S necessary and/or sufficient for one of these types of pro-
tocols have implications for other protocol types. Figure 2
illustrates the specific relationships. We will be interested in
characterizing the sets of states that allow distinguishing
with preservation of entanglement for each of the protocol
types. Ideally, one would like to have a complete character-
ization describing precisely which sets of states are allowable
in each case. Such a lofty goal must await further efforts, but
I hope, nonetheless, that the results presented below will be
of some interest to the reader.

IV. MAIN THEOREMS

Our main results are presented in this section in the form
of several theorems and corollaries aimed at characterizing
sets of states which allow two parties to distinguish while
preserving entanglement using LOCC. These results are dis-
cussed with particular attention to how these characteriza-
tions may be affected by a change in the specific type of
LOCC �or SEP� protocol used. For example, if a theorem
provides a bound on a certain quantity, such as the number of
states that can be included in the set, that bound, as well as

whether or not it is a tight bound, may depend on the proto-
col. Whenever possible, we provide comments on such ques-
tions. To aid the flow of the discussion, the longer proofs are
not presented here, but are given in an Appendix.

A. Maximum number of states

If the parties need not preserve entanglement, there is an
obvious upper bound N�DADB on the number of states that
can be distinguished by LOCC �or otherwise� if the space
has dimension DADB. The following theorem generalizes this
result to the case where entanglement must be preserved,
providing a relationship between the filling of Hilbert space
by the initial states and the entanglement �Schmidt ranks rk�
that can be preserved.

Theorem 1. Suppose the parties share a DA�DB system
and using LOCC-K2 are able to distinguish with certainty
among a set of N states while preserving Schmidt rank of at
least r for every outcome. Then,

N � �DA/r� �DB/r� � Nmax, �5�

where �x� is the largest integer not greater than x, and this
upper bound is achievable by LOCC-P0.

Thus, for each of the types of LOCC, the number of states
can be as large as Nmax and no larger. The idea of the proof,
presented in Appendix A 1, is to sequentially introduce divi-
sions of Hilbert space into orthogonal subspaces in a way
consistent with LOCC and such that after the final division,
no subspace has dimension larger than r on either party’s
side. The maximum number of states on the whole space is
then bounded above by the sum over maximum numbers of
states on the subspaces, which for this particular method of
division yields the upper bound given in the theorem. This
bound is tight for all �LOCC� protocol types, as there exist
sets of Nmax states that can be distinguished by LOCC-P0.
Such a set of states is depicted in Fig. 3, where each of the
numbered square blocks represents an r�r subspace.

If separable measurements are used, it is possible to have
N	Nmax. A specific example �8� of such a set in 3�3 with
r=2 is

��1	 = �00	 + �22	 ,

��2	 = �01	 + �12	 ,

��
��
SEP

��
��
K2����

����

��
��
P 2����

��
��
K1����

����

��
��
P 1����

��
��
K0

���

��
��
P 0

FIG. 2. Lattice diagram showing relationships between the vari-
ous types of protocols discussed in the text. A connected path up-
ward �downward� from one vertex, possibly passing through others,
to a second vertex indicates that a sufficient �necessary� condition
on the first implies the same for the second.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

FIG. 3. A set of states achieving the bound of theorem 1 using
LOCC-P0. Each numbered box represents an r�r subspace and
Nmax=25 with �DA /r�=5= �DB /r� in this example.
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��3	 = �10	 + �21	 . �6�

The separable positive operator-valued measure �POVM�
�Emn=Amn

† Amn � Bmn
† Bmn, with Amn, Bmn the corresponding

Kraus operators� which distinguishes this set is

E11 = ���0	A
0� + 
�2	A
2�� � ��0	B
0� + 
�2	B
2�� ,

E12 = ��
�0	A
0� + �2	A
2�� � �
�0	B
0� + �2	B
2�� ,

E21 = ���0	A
0� + 
�1	A
1�� � ��1	B
1� + 
�2	B
2�� ,

E22 = ��
�0	A
0� + �1	A
1�� � �
�1	B
1� + �2	B
2�� ,

E31 = ���1	A
1� + 
�2	A
2�� � ��0	B
0� + 
�1	B
1�� ,

E32 = ��
�1	A
1� + �2	A
2�� � �
�0	B
0� + �1	B
1�� , �7�

with �= �2−�3� /4, 
=2+�3, and �m,nEmn= IA � IB. Emn

identifies state ��m	 and preserves r=2 in all cases. Although
Nmax= �3/2� �3/2�=1, we here have three states in a set that is
deterministically distinguished by SEP preserving r=2.
These states are depicted in Fig. 4. It should be at least plau-
sible from this diagram that no LOCC protocol can succeed
at this task and that this remains true even if one of the three
states is removed, a view confirmed by the theorem.

B. Schmidt rank sum for one-way protocols

1. Upper bound for one-way CC

We now consider the sum over Schmidt ranks �Rj� of a set
of states ��� j	� which is perfectly distinguishable by LOCC
on DA�DB. There exist a number of interesting results in the
literature �9–13� that together suggest the following intu-
itively pleasing upper bound on this sum: � jRj �DADB
�there is no consideration of preserving entanglement in
these papers�. For example, �i� no more than D maximally
entangled states on a D�D system ��Rj �D2� can be per-
fectly distinguished �13� �see also �10,11��, and �ii� if a com-
plete basis is perfectly distinguishable, it must be a product
basis �12�. In these papers, the parties are allowed to use
two-way communication. The following theorem generalizes
this upper bound to the case where entanglement must be
preserved, but is proved only for a restriction to one-way

classical communication. In fact, I will show by means of
counterexamples in the next subsection that the bound in this
theorem can be exceeded when two-way communication is
allowed, and this includes the case that entanglement need
not be preserved �r=1 in the theorem�.

Theorem 2. If Alice goes first using LOCC-K1 and the
parties are always able to distinguish and preserve Schmidt
rank at least r; then, � jRj �DA�DB /r�.

The proof is given in Appendix A 2. Another rather obvi-
ous upper bound is DminNmax, where Nmax is given in theorem
1 and Dmin is the smaller of DA and DB. Clearly, the bound in
the theorem cannot be achieved if it is larger than DminNmax.
Assuming both dimensions are at least r �otherwise Nmax
=0�, this will only be the case when Dmin=DB�DA / �DA /r�
�2r so that Nmax= �DA /r�. In this case, DB�DA /r� is a tight
upper bound, realized by a set of �DA /r� rank-DB states
placed into orthogonal DB�DB subspaces. Then, the parties
can always preserve DB�r using LOCC-P0 �Bob need not
measure at all�. For all other cases, the bound in the theorem
is tight �for LOCC-K1�, as is also shown in Appendix A 2.

There are many cases where the bound of theorem 2 can
be reached when the parties can only use LOCC-P0. For
example, if DA is divisible by r, it is easy to construct a set of
states that will do this, such as can be visualized by deleting
the small rectangles along the bottom of Fig. 3. Nonetheless,
there are also cases where LOCC-P1 is not sufficient for the
parties to succeed unless the Schmidt rank sum is strictly less
than DA�DB /r�, and we do not have a tight bound that applies
in general for this type of protocol. An example is DA=2r
+1=DB, where the bound in the theorem is 4r+2. Suppose
the set contains the maximum of four states �other cases may
be analyzed in a similar way�. The best Alice can do with
orthogonal projectors is to divide her space into two sub-
spaces, one of dimension r and the second of dimension r
+1, and the same goes for Bob after he is informed of her
outcome. When Alice obtains the r-dimensional outcome, the
two states left �if Bob can then distinguish preserving r� must
be Schmidt rank Rj =r. If one of them has rank greater than
this, part of that state will lie in Alice’s other subspace,
meaning that when she obtains her �r+1�-dimensional out-
come, they will not be able to distinguish the other pair of
states from this one. On the other hand, when Alice gets her
larger outcome, one of the second pair of states could have
had rank Rj =r+1, but the other must have had rank r or else
it will not now be distinguishable from the first �to see this
apply the theorem, noting that now Bob is going first�.
Hence, three of the states must have started with rank r, the
fourth with rank r+1, and the sum of these ranks is 4r+1
�4r+2; the bound cannot be achieved.

2. Doing better with two-way CC

We will now see that the upper bound in theorem 2 does
not apply if two-way communication is allowed. An example
is given by the four states on a 5�5 system represented in
Fig. 5, with

��1	 = �00	AB + �11	AB,

��2	 = �02	AB + �13	AB + �24	AB,

|0〉B |1〉B |2〉B
|0〉A
|1〉A
|2〉A

1 2

3 2

3 1

FIG. 4. The three states of Eq. �6�, which can be distinguished
by the SEP POVM of Eq. �7� preserving Schmidt rank of r=2 for
all outcomes, a task that cannot be accomplished by any LOCC
protocol.
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��3	 = �20	AB + �31	AB + �42	AB,

��4	 = �04	AB + �22	AB + �33	AB + �40	AB. �8�

The sum of Schmidt ranks is now 12	DA�DB /r�=10, with
r=2. Alice starts with the following pair of measurement
operators:

A1 = �0	A
0� + �1	A
1� + �2	A
2� +
1
�2

�3	A
3� ,

A2 =
1
�2

�3	A
3� + �4	A
4� . �9�

If she gets outcome A1, Bob designs his measurement as

B1 = �0	B
0� + �1	B
1� ,

B2 = �2	B
2� +
1
�2

�3	B
3� ,

B3 =
1
�2

�3	B
3� + �4	B
4� , �10�

after which Alice can then distinguish and preserve r=2 in
all cases. If Alice gets outcome A2, then Bob can easily dis-
tinguish the remaining states and again preserve r=2.

Can this bound be exceeded when r=1 and the parties use
two-way communication? As stated above, several results
seem to suggest that the answer may well be negative �9–13�.
However, I now give a set of distinguishable states on 3
�3 for which the sum of Schmidt ranks is �Rj =10	9
=DADB. The states are

��1	 =
1
�2

��00	AB + �02	AB� + ��0	A + �1	A��1	B,

��2	 =
1
�2

��00	AB + �02	AB� − ��0	A + �2	A��1	B,

��3	 = �10	AB, ��5	 = �12	AB,

��4	 = �20	AB, ��6	 = �22	AB, �11�

with

�0	A =
1

3
��0	A + 2�1	A + 2�2	A� ,

�1	A =
1

3
�2�0	A + �1	A − 2�2	A� ,

�2	A =
1

3
�2�0	A − 2�1	A + �2	A� , �12�

forming an orthonormal basis. Bob starts with the following
pair of measurement operators:

B1 = �0	B
0� +
1
�2

�1	B
1� ,

B2 = �2	B
2� +
1
�2

�1	B
1� . �13�

If Bob obtains B1, ��5	 and ��6	 are excluded, ��3	 and ��4	
are unchanged, and �apart from unimportant normalization�

��1	 → �00	AB + ��0	A + �1	A��1	B,

��2	 → �00	AB − ��0	A + �2	A��1	B. �14�

Alice follows with a projective measurement onto the stan-
dard basis in her space. For each of her outcomes, only two
states remain and are still orthogonal, and Bob can then dis-
tinguish which one they have.

When Bob obtains B2, it turns out that the basic structure
of the remaining states is exactly the same as for B1, the only
difference being that Alice must now measure in the basis of
the orthogonal states, �k	A. This is easily seen by recogniz-
ing that

�0	A + �1	A = �0	A + �1	A,

�0	A + �2	A = �0	A + �2	A. �15�

In fact, the structure of the original states was also the same,
considered from the point of view of the �k	A basis as com-
pared to Alice’s standard basis. Hence, the parties can also
distinguish the states with certainty for B2, and the bound
�Rj �DADB has been exceeded. The generalization of this
construction to higher dimensions will be discussed else-
where �14�.

For a 3�3 system with r�2, Nmax=1, so the Schmidt
rank sum cannot exceed 3=DA�DB /r� even if LOCC-K2 is
employed. Separable operations, on the other hand, allow
this sum to be at least equal to 6, as has already been dem-
onstrated by the example of Eq. �6�. It would be useful to
have a �nontrivial� upper bound on the Schmidt rank sum for
general LOCC and for SEP, but we are unable to provide one
here.

C. Preserving the original Schmidt ranks

Given a set of states to be distinguished, perhaps the most
difficult task, and the ideal outcome, would be to distinguish
while preserving the original state intact. Failing this, it

|0〉B |1〉B |2〉B |3〉B |4〉B

|4〉A
|3〉A
|2〉A
|1〉A
|0〉A 1 2 4

1 2

3 4 2

3 4

4 3

FIG. 5. The states of Eq. �8�, having � jRj =12, exceeding the
�one-way� bound of theorem 2, � jRj �DA�DB /r�=10 with r=2. See
text for detailed two-way protocol.
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might nonetheless be possible to preserve the original
Schmidt ranks. Here, we consider this problem and give,
separately, a sufficient and then a necessary condition such a
set must satisfy.

There is a sufficient condition which is almost trivially
obvious: if all the reduced density operators are orthogonal
on one side or the other, then only one party need measure
and they can distinguish preserving Rj using LOCC-P0. A
less trivial sufficient condition is given below as theorem 3,
in which I use the notion of a “cascading sequence of parti-
tions,” defined as follows: starting with an arbitrary set of
states and considering their reduced density operators �� j

A�,
partition these into disjoint subsets such that each � j

A is or-
thogonal to all those �k

A corresponding to states in different
subsets, then partition each of these subsets into smaller sub-
sets in the same way except by considering �� j

B�, and so on
back and forth for as many steps as is possible. We will call
this partitioning “complete” if each final subset consists of a
single member.

Theorem 3. The set of states ��� j	� is perfectly distin-
guishable by LOCC while preserving Rj provided these
states can be completely partitioned by a cascading se-
quence, as defined above. Indeed, under these conditions, the
state may be preserved unchanged by LOCC-P2 �LOCC-P1
if there are only two levels to the sequence, one for Alice and
one for Bob�.

The proof of this theorem is quite simple. The parties
need just perform orthogonal measurements projecting onto
the union of the supports of the appropriate density operators
in each subset: the first measurement is chosen to correspond
to the first level of the partitioning sequence; the second
measurement is chosen to correspond to the subsets descend-
ing directly from that subset identified by the outcome of the
first measurement, etc. �

Given the reduced density operators of the states on both
sides, the condition may be checked in a fairly straightfor-
ward way. For the first level of partition, start by placing �1

A

in a first subset S1 and check to see if �2
A is orthogonal to it.

If not, also include the latter in S1; otherwise, put it into S2.
Now check �3

A: if it is orthogonal to both �1
A and �2

A, include
it in a new subset; otherwise, include it with the one it is not
orthogonal to. If it is orthogonal to neither, then they must all
be included in the same subset even if �1

A and �2
A are orthogo-

nal to each other. Continue in this way until all states are
partitioned into subsets. For subsequent levels of partition,
start with each subset appearing on the previous level and
partition that subset as described above for the first level. If
the previous level was partitioned according to Alice’s den-
sity operators, then for the next one use Bob’s, and vice
versa. If this process can be continued until all subsets con-
tain only a single state, then the states can be distinguished
without being altered. If not, then one should check again,
this time starting with Bob’s side instead of Alice’s. While
not exactly simple, it is nonetheless a relatively straightfor-
ward procedure, which could be readily coded as an algo-
rithm for numerical implementation.

This procedure is illustrated by the following set of states,
represented in Fig. 6. We have

��1	 = �00	AB + �11	AB,

��2	 = �02	AB + �13	AB,

��3	 = �2	A��0	B + �2	B� + �3	A��1	B + �3	B� ,

��4	 = �2	A��0	B − �2	B� + �3	A��1	B − �3	B� .

��5	 = �14	AB + �25	AB. �16�

Notice first that Alice cannot start the procedure, since her
density operators do not partition into two nonempty subsets
such that all those in one subset are orthogonal to all those in
the other. On the other hand, Bob can separate out ��5

B� since
it is orthogonal to all the others, after which Alice can divide
the remaining four into ��1

A ,�2
A� and ��3

A ,�4
A�. Then Bob can

complete the partitioning �his corresponding measurement
will depend on the outcome of Alice’s preceding one�.

This condition is not a necessary one. It is not satisfied by
the distinguishable set of product states �see Fig. 7�,

��1	 = ��0	A + �1	A��0	B,

��2	 = �2	A��0	B + �1	B� ,

|0〉B |1〉B |2〉B |3〉B |4〉B |5〉B
|0〉A
|1〉A
|2〉A
|3〉A

1 2

1 2 5

3,4 3,4 5

3,4 3,4

{1, 2, 3, 4, 5}↗Bob↘{ρB
5 }

{ρB
1 , ρB

2 , ρB
3 , ρB

4 }↗Alice↘

{ρA
1 , ρA

2 }

{ρA
3 , ρA

4 }

↗Bob↘
{ρB

1 }

{ρB
2 }

↗Bob↘
{ρB

3 }

{ρB
4 }

FIG. 6. Illustration of the procedure of cascading partitions for
testing theorem 3, described in the text �the states are given in Eq.
�16��. Bob can separate out ��5

B� since it is orthogonal to all the
others, after which Alice can divide the remaining four into ��1

A ,�2
A�

and ��3
A ,�4

A�. Then Bob can complete the partitioning.

|0〉B |1〉B |2〉B
|0〉A
|1〉A
|2〉A

1 3 3

1 4

2 2 4

FIG. 7. Demonstration that theorem 3 does not provide a nec-
essary condition. These product states can be distinguished �so Rj

=1 is preserved in all cases�, but they cannot be completely parti-
tioned by a cascading sequence. In fact, they cannot be partitioned
even once into two nonempty subsets where the reduced density
operators in one subset are orthogonal to all those in the other.
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��3	 = �0	A��1	B + �2	B� ,

��4	 = ��1	A + �2	A��2	B. �17�

Looking at Bob’s reduced density operators, for example, the
first is not orthogonal to the second, the second not to the
third, etc. Since the same argument holds on Alice’s side,
these states cannot be partitioned even once into two non-
empty subsets where the reduced density operators in one
subset are orthogonal to all those in the other. Nonetheless,
they can readily be distinguished by LOCC-P0 using projec-
tive measurements in the standard basis on both sides.

A necessary condition is given in the next theorem, stated
in terms of a set of density operators defined as

�̂ j = � j
A

� � j
B. �18�

Theorem 4. If a set of states ��� j	� is perfectly distinguish-
able by LOCC while preserving Rj, then the density opera-
tors ��̂ j� form a mutually orthogonal set.

The proof of this theorem is presented in Appendix A 3.
The idea behind the proof can be seen from the following
discussion. If �̂2�̂1�0, there are two possible ways this may
come about, as indicated in parts �a� and �b� of Fig. 8. The
idea is that the two states are too closely intertwined in each
case for them to be separated without significant distortion
�that is, without a decrease in Schmidt rank�. The first pos-
sibility is shown in part �a� of the figure, in which a compo-
nent of ��2	 lies within the R1�R1 box representing the
region of Hilbert space that is fully �at least according to the
reduced density operators� occupied by ��1	. As is shown for
this case in Appendix A 3, neither party can “remove” ��2	
from the ��1	 box by any complete LOCC measurement
without reducing the Schmidt rank of one or the other of the
states. Therefore, the picture shown in the figure persists
throughout their protocol, no matter how many rounds of
measurements they make. This means they can never elimi-
nate ��2	 while preserving ��1	 and must fail to distinguish.
The second case, illustrated in Fig. 8�b�, is argued in essen-
tially the same way. Note that it may be possible for the
parties to implement individual measurement operators that
separate the states and preserve Rj, but it is not possible for
them to do so for every outcome of a complete measurement.

Every set of orthogonal product states satisfies the condi-
tions of this theorem, but it is well known not every such set
can be distinguished by LOCC, demonstrating that the con-
dition of the theorem is not a sufficient one. The best known
example of such a set of product states was provided by
Bennett and co-workers �15� in their discussion of “nonlo-
cality without entanglement.” Other proofs of this phenom-
enon, simplifying that of the original paper, have appeared in
the literature �16,17�. However, it does not appear to this
author that any of these proofs is particularly transparent or
intuitive. In Appendix B, I supply such a proof, where it is
shown in a very simple and direct way that the parties cannot
perform any local operation other than a unitary without de-
stroying the orthogonality of the states. Since a unitary op-
eration cannot yield any information or eliminate even one of
the states, the parties cannot distinguish this set of states.

The following example also demonstrates the condition of
this theorem is not sufficient, this time with entangled states.
The �̂ j are orthogonal, but they cannot be distinguished since
there is no measurement either party can make that is less
than full rank without reducing the Schmidt rank of at least
one of the states. The states are

��1	 = �01	AB + �12	AB,

��2	 = �13	AB + �24	AB,

��3	 = �20	AB + �31	AB,

��4	 = �32	AB + �43	AB. �19�

For example, if ��1	 is not eliminated for outcome Al, then
the support of Al must include a two-dimensional subspace
that is not orthogonal to either �0	A or �1	A. Then ��2	 is not
eliminated, so the support of Al cannot be orthogonal to �2	A,
etc. On the other hand, if ��1	 is eliminated, then the kernel
of Al must include �0	A and �1	A, which means that ��2	 must
also be eliminated so the kernel of Al must include �2	A as
well, etc. Thus, since we may assume Al�0, the rank of Al
must be DA. It is true that the structure of these states is
altered by this operation—for example, �k	A→ �ak

l 	A—but
while the �ak

l 	A need not be orthogonal, they do need to be
linearly independent. Then, an argument similar to the above
will again show that subsequent measurements by the two
parties must all be full rank. This means they can never
eliminate even a single state, so this set cannot be distin-
guished without reducing at least one of them to a product
state.

The condition of the theorem is not necessary for SEP.
The states of Eq. �6� provide a counterexample, since as
already shown they are distinguishable by SEP while pre-
serving the original Schmidt ranks, but the density operators
�̂ j, corresponding to these states, are not mutually orthogo-
nal. It is conceivable, on the other hand, that the condition of
the theorem is sufficient for SEP, but we do not know if this
is the case. Given the �̂ j are mutually orthogonal, one might
try constructing a separable measurement starting with or-
thogonal projectors Aj � Bj, one for each state �� j	, such that
the support of Aj�Bj� is equal to that of � j

A�� j
B�. However, if

the set of states is an unextendible product basis �18,19�

R1 →← R1 →←

R1

↑

↓
R1

↑

↓

(a) (b)

1 1
2

2

2

FIG. 8. Intuitive picture indicating how theorem 4 can be
proved. The parts of this figure correspond to the two ways it can
happen that �̂2�̂1�0 �only selected components of ��2	 are shown�.
In either case, any individual measurements the parties can perform
that preserve Rj leave the picture essentially unchanged, which
means they have not distinguished. See Appendix A 3 for a detailed
proof.
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�each such set satisfies the conditions of the theorem�, then
the projector onto the remaining part of Hilbert space is pro-
portional to a bound entangled state, meaning that no sepa-
rable operation exists to complete this measurement. The
starting point of this argument is a very special set of opera-
tions, so it does not constitute a proof the states are indistin-
guishable by SEP. In fact, it has been proven that every un-
extendible product basis in 3�3 is distinguishable by SEP
�18�, so sufficiency for SEP remains an open question.

Since the rank of �̂ j is Rj
2 and we know from the previous

theorem that deterministic distinguishing while always pre-
serving Rj requires the set of these density operators to be
mutually orthogonal, we have the following corollary.

Corollary 5. If a set of states can be perfectly distin-
guished by LOCC while always preserving Rj, then

�
j=1

N

Rj
2 � DADB. �20�

Once again, the set of states in Eq. �6� provides an ex-
ample showing that this corollary does not hold for SEP. For
these states, DADB=9 whereas � jRj

2=12.

V. ADDITIONAL THEOREMS

We now give two additional theorems, which relate
Schmidt ranks of the states in the original set to be distin-
guished with those of the residual states. In particular, I con-
sider how the largest Schmidt rank rj that can be preserved
for state �� j	 is constrained by the collection of original
Schmidt ranks �Rj�� and the dimensions DA, DB of the Hil-
bert spaces HA, HB. It will be convenient to write the origi-
nal states as

�� j	 = �
m,n=1

D

�Mj�nm�m	A�n	B, �21�

with Mj a matrix of rank Rj. Then for a given measurement
outcome A � B, the parties will be left with

A � B�� j	 = �
m,n=1

D

�BMjA
T�nm�m	A�n	B, �22�

where AT is the transpose of the matrix A. In the following,
we will use two facts.

�i� The Schmidt rank rj of the residual state is given by
the rank of the matrix r�BMjA

T�.
�ii� If �� j	 is identified deterministically �or unambigu-

ously �20�� by outcome A � B, then BMkA
T=0 ∀k�j.

We will also find useful in this section two inequalities on
matrix ranks �21�, which say that for m� l matrix X and l
�n matrix Y, the rank r�XY� of their product is bounded as

min�r�X�,r�Y�� � r�XY� � r�X� + r�Y� − l . �23�

The first theorem we will consider concerns general, two-
way protocols and applies in both the deterministic and un-
ambiguous cases.

Theorem 6. Given the task of deterministically or unam-
biguously distinguishing a set of bipartite states, ��� j	� hav-

ing Schmidt ranks �Rj�, then for every separable outcome
Am � Bm distinguishing �� j	 and preserving rj

m,

2rj
m + max

k�j
�Rk� � DA + DB. �24�

Proof. For either the deterministic or unambiguous case,
we have that rj

m=r�BmMjAm
T �, implying r�Bm��rj

m and
r�Am��rj

m and r�BmMkAm
T �=0 ∀k�j. From the latter expres-

sion with Eq. �23�, we have

0 � r�Bm� + r�MkAm
T � − DB

� r�Bm� + r�Am� + r�Mk� − DA − DB

� 2rj
m + Rk − DA − DB �25�

and the theorem easily follows. �
Note how this expression explicitly shows the trade-off

between the original and final Schmidt ranks, in relationship
to the Hilbert space dimensions. The following corollary of-
fers one example of how this result can be useful.

Corollary 7. If any of the original states—say, the first—
has Schmidt rank R1=DA �DA�DB�, then one cannot pre-
serve Schmidt rank exceeding DB /2 for any single SEP out-
come identifying �� j	 with certainty when j�1. If any two
states start out with Schmidt ranks equal to DA, then no out-
come can preserve greater than DB /2.

When DB /2�DA, these statements are nontrivial and are
a consequence of the extent to which the rank-DA states are
spread through the space, so they cannot be annihilated by
measurement operators of rank exceeding DB /2. In general,
as the largest Schmidt rank Rmax decreases, less of the space
is occupied by the corresponding state, which can then be
annihilated by higher-rank operators, allowing larger
Schmidt rank to be preserved for other states. From another
point of view, the amount of information required to distin-
guish decreases along with Rmax, so the parties may use less
refined measurements allowing rj

m to be greater.
According to the proof of this theorem, if any single state

���	 is excluded by the outcome m, even if there are nonzero
probabilities for identifying several other states, the bound in
the theorem still holds with maxk�j�Rk� replaced by R�. Then
the result becomes applicable to protocols that allow for er-
rors in identifying the state.

We see from this theorem that when DA=DB=2, it is not
possible to distinguish by SEP while preserving entangle-
ment, even for a single outcome �this conclusion holds for all
protocols that exclude at least one state for every final out-
come, so is not restricted to deterministic, or even unambigu-
ous, distinguishing�. Other simple examples giving an intui-
tive picture for this theorem are presented in Fig. 9. For the
case DA=2 and DB=3 �DB /2�DA�, preserving entanglement
while distinguishing requires that no more than one state be
initially entangled. In part �a� of the figure, we see that with
both states rank 2, they are necessarily too intertwined for
entanglement to be preserved. Increasing DB allows higher-
rank states to be fully separated from each other and preserv-
ing entanglement becomes possible �Fig. 9�b��. With a 3
�3 system no more than one of the states can have Rj =3,
and if one does have this rank, the other states cannot remain
entangled after being identified by the measurements. This is
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seen in Fig. 9�c� where ��1	 can be distinguished in the
�0	A �0	B+ �1	A �1	B corner of the box, preserving rank 2, but
no other outcomes can distinguish while preserving entangle-
ment. Again, increasing the size of HB allows more space for
the states and even with R1=3 it is possible to preserve r2
=2 �Fig. 9�d��. Notice that in Figs. 9�b� and 9�d�, Schmidt
rank of DB /2 can be preserved. In Fig. 9�c� we see that DB /2
can be exceeded for r1, but this is in line with the theorem,
since the rank of the other state is R2�DA. It is easily seen in
the latter case that any attempt to increase R2 to DA would
destroy the ability to preserve r1	DB /2.

When DA and DB do not differ by too much, the theorem
gives a nontrivial bound, but since Schmidt ranks cannot
exceed the smaller dimension, this is no longer the case for
DB /2�DA �or with A and B reversed�. In addition, as is
illustrated in the right half of Fig. 9�b�, the presence of ad-
ditional states can alter conclusions about the amount of en-
tanglement it is possible to preserve. This demonstrates that
the theorem gives only a necessary, and not a sufficient, con-
dition for preservation of entanglement.

We now consider a restriction to one-way classical com-
munication. The next theorem again shows there is a trade-
off between the starting and residual Schmidt ranks, though
here the trade-off involves both the number of states, N, and

the average Schmidt rank R̄=� jRj /N �22�.
Theorem 8. With Alice going first in a one-way LOCC

protocol, if for any one of Alice’s outcomes �Am� Bob is able
to deterministically distinguish the remaining states, then

rj
m + R̄ � DA + DB/N , �26�

where rj
m refers here to the Schmidt rank of �� j	 following

Alice’s outcome and both before and after Bob measures �see
below�.

Proof. In order for Bob to be able to distinguish with
certainty after Alice obtains outcome m, the reduced density
operators of the various possible states remaining must be
mutually orthogonal �implying that they can preserve rj

m�.
The rank of each of these reduced density operators is
r�MjAm

T � �Bob has yet to do anything so I have set B= IB�,
and their orthogonality implies that the sum of these ranks
cannot exceed DB. Then, again using Eq. �23�, we have

DB � �
j=1

N

r�MjAm
T �

� �
j=1

N

�Rj + r�Am� − DA�

= �
j=1

N

Rj + N�r�Am� − DA� . �27�

With rj
m�r�Am�, the theorem follows immediately. �

The following upper bound on the number of states will
follow as a direct consequence of this theorem.

Corollary 9. With Alice going first followed by Bob de-
terministically distinguishing,

N �
DB

rmax + R̄ − DA

, �28�

with rmax the largest value of rj
m.

Of course, this bound should only be applied if rmax+ R̄
	DA; otherwise, Eq. �26� is trivially satisfied without regard
to the value of N.

If DA�DB and all the states have their maximum rank of
Rj =DA, we see that the parties cannot preserve Schmidt rank
greater than DB /N or, alternatively, the number of states can-
not exceed DB /rmax. If they are not concerned with preserv-
ing entanglement, then setting rmax=1 shows that if a set of
Schmidt rank DA states can be distinguished perfectly by
one-way LOCC, it cannot have more than DB members. This
generalizes �at least when restricted to one-way communica-
tion� the results of �10,11,13�, that no more than D maxi-
mally entangled states on D�D can be perfectly distin-
guished. Figure 10 makes clear that DB rank-DA states can be
distinguished. These states fill the space, in the sense that the
sum of Schmidt ranks is equal to the Hilbert space dimen-
sion. This diagram makes it seem almost intuitively obvious
that adding another rank-DA state would make it impossible
to distinguish �a conclusion which is correct, though when
dealing with quantum systems, we should always be careful
about trusting such intuitions�.

|0〉B |1〉B |2〉B

|1〉A
|0〉A 1 2

1 2

(a)

|0〉B |1〉B |2〉B |3〉B

|1〉A
|0〉A 1 2 4

1 3 2

(b)

|0〉B |1〉B |2〉B

|2〉A
|1〉A
|0〉A 1

1 2

2 1

(c)

|0〉B |1〉B |2〉B |3〉B

|2〉A
|1〉A
|0〉A 1 2

1 2

1

(d)

FIG. 9. Illustration of theorem 6. �a� For DA=2 and DB=3, it is
not possible to preserve entanglement while distinguishing if more
than one state is initially entangled. �b� Increasing DB allows
higher-rank states to be fully separated from each other, and then
preserving entanglement becomes possible. As seen in the right half
of this diagram, however, the presence of additional states can alter
this conclusion. �c� For a 3�3 system with R1=3, ��2	 cannot
remain entangled after being identified by the measurements. �d�
Again, increasing the size of HB allows more space for the states
and even with R1=3 it is possible to preserve r2=2.

|0〉B |1〉B |2〉B |DB − 3〉|DB − 2〉|DB − 1〉

|2〉A
|1〉A
|0〉A 1 2 3 · · · DB − 2 DB − 1 DB

DB 1 2 · · · DB − 3 DB − 2 DB − 1

DB − 1 DB 1 · · · DB − 4 DB − 3 DB − 2

FIG. 10. DB rank-DA states that are distinguishable by one-way
LOCC.
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In Appendix C, it is shown that these bounds for one-way
CC �theorem 8 and corollary 9� can be exceeded if two-way
CC is allowed. Included in this appendix are examples
where, depending on the outcome of Bob’s measurement,
Alice risks �i� by measuring, the destruction of entanglement
that would otherwise be preserved, as opposed to �ii� being
unable to distinguish the states if she does not measure.
Thus, we have interesting and nontrivial cases where the
main purpose of the classical communication is simply to
determine whether the next party should proceed with any
measurement at all.

In Appendix D, two additional theorems are given, related
to protocols of type LOCC-K0, where the parties are not
allowed to communicate until after they complete their mea-
surements. These theorems address the question of always
distinguishing with a set of N rank-D states on D�D, in
which case theorem 8 tells us that the maximum possible
residual Schmidt rank is �D /N�. One of these theorem shows
that when D /N is an integer and the parties can preserve this
rank for any single outcome, then they do so for all their
outcomes using LOCC-P0. The other theorem deals with the
case of noninteger D /N.

VI. DISCUSSION

A. Relationship to noncollective entanglement purification

When entanglement is shared between two parties under
realistic circumstances, it is very difficult to completely
eliminate the effects of noise, which may enter in the cre-
ation of the entangled state or when it is shared between the
parties through a quantum channel. As a result, the parties
commonly share a mixed state rather than a pure one. Pure-
state entanglement is, however, necessary for many imple-
mentations of quantum-information processing, so it is im-
portant to understand when the parties will be able to purify
their shared state.

Noncollective entanglement purification �23–25� is the
process of obtaining a pure entangled state from a single
copy of a mixed state. The question we are considering in
this paper is directly related to this process: Alice and Bob
are given a state �� j	 drawn from a set of N mutually or-
thogonal, bipartite states with some a priori probabilities pj,
but are not told which state was chosen. They may then
describe their system by the mixed state,

� = �
j=1

N

pj�� j	
� j� . �29�

Together, with some probability, they perform an operation
�, obtaining the new state

�� = �
j=1

N

qj� j	
 j� , �30�

where

� j	 = ��� j	/�
� j��†��� j	

and

qj = pj
� j��†��� j	/�k=1

N
pk
�k��†���k	 .

We want to know if and when �� is a pure entangled state.
It will certainly be pure if qj =0 for all j except one—that is,
if � �� j	� jJ, for some fixed J. Whether or not it is en-
tangled will depend on the relationship between the operator
� and the state ��J	. If it is entangled, then the parties have
identified the original state as ��J	 while preserving en-
tanglement, which is the subject of the work described in this
paper.

Can �� be pure and entangled when more than one of the
qj are nonzero? The answer is yes if and only if the nonzero
� �� j	 are all the same, up to normalization and phase. In
other words, entanglement purification is possible without
distinguishing among the eigenstates of �, but only if there
exists a product operator � satisfying the above-stated con-
dition. This is equivalent to the statement that there must
exist a product projector such that all the original states not
annihilated by it were “equivalent” on the support of that
projector. When such a projector does not exist, then the only
possibility for noncollective entanglement purification is by
the methods discussed in this paper.

Previous discussions of entanglement purification �23–25�
have focused on the case where the final state is uniformly
entangled �all Schmidt coefficients equal to each other�, cor-
responding to a maximally entangled state on a smaller
space. The results presented in this paper are concerned in-
stead only with the Schmidt rank of the residual state. How-
ever, given any pure entangled state, one can with nonzero
probability obtain a uniformly entangled state by local op-
erations on the separate parts �26,27�. Therefore the ques-
tions addressed in this paper, concerning use of LOCC to
distinguish a set of states and preserve entanglement, are
directly related to previous discussions of noncollective en-
tanglement purification.

B. Multipartite systems

Any multipartite system may be viewed as bipartite by
choosing a division of the parties into two groups. We may,
for example, let Alice be in one group by herself and the
remaining parties in the other. A question of interest is
whether there is a way to extend our various arguments to
also apply when the many parties are viewed separately. In
order for this to be possible, we must first find a suitable
generalization of Schmidt rank. Possible generalizations
have been proposed �28,29�, but here I will only consider a
rather simple one: the �generalized� Schmidt rank Rj of a
multipartite quantum state is the smallest rank of the com-
pletely reduced density operators � j

A ,� j
B ,� j

C , . . . .
The proof of theorem 1 involves each party locally and

sequentially dividing the composite Hilbert space HA � HB
into orthogonal subspaces. This division follows directly
from the fact that their measurement operators include ones
with nonempty kernel, which is orthogonal to that operator’s
support. Such divisions are not restricted to bipartite sys-
tems, and it is also true for the multipartite case that these
divisions can be continued until all subspaces are no larger
than r�r�r� . . . . If they must preserve �generalized�
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Schmidt rank of at least r for each of their outcomes then
after optimally choosing their operations, no part of any state
can reside in any of the subspaces smaller than this, one state
may be placed entirely within each of those that are r�r
�r� . . . , and we see that

Nmax = �DA/r� �DB/r� �DC/r�¯ �31�

for any multipartite system, when the parties must preserve
at least r.

The proof of theorem 3 for the multipartite case is also
essentially the same as for bipartite systems, and the state-
ment of the theorem applies without alteration. That is, if the
multipartite states can be completely partitioned by a cascad-
ing sequence, then they can be perfectly distinguished while
preserving the original states intact. The partitioning of the
states into subsets again points to a protocol the parties may
use, involving orthogonal projections onto combined sup-
ports of reduced density operators in the appropriate subsets.

VII. SUMMARY

In summary, I have introduced the question of preserving
entanglement in the course of locally distinguishing an un-
known state drawn from a set of orthogonal states. Several
results on this topic have been proved. Theorem 1 �general-
ized by Eq. �31�� gives the achievable maximum number of
states on a multipartite system when a �generalized� Schmidt
rank of r must always be preserved. Theorem 2 showed that
for bipartite systems and one-way classical communication
from Alice to Bob, the sum of Schmidt ranks of the states
cannot exceed DA�DB /r�, when once again the parties must
always preserve Schmidt rank of r. The next two theorems
considered the possibility of preserving the original Schmidt
ranks of the states in the set. Theorem 3 applies to multipar-
tite systems and gives a sufficient condition that the states
can be preserved unchanged. Theorem 4 then gives a neces-
sary condition for preserving the original Schmidt ranks, that
the set of density operators � j

A
� � j

B must be mutually or-
thogonal. Following these results, I then proved two theo-
rems that show explicitly a necessary relationship between
the initial and final Schmidt ranks, given the parties must
always distinguish the state.

In each case, we discussed how altering restrictions on the
resources �types of operations and amount of classical com-
munication� available to the parties may change these results.
Various examples were provided illustrating this question,
including explicit demonstrations of the superiority of two-
way classical communication over protocols where the com-
munication is restricted to be in only one direction. In par-
ticular, it was shown that the sum of Schmidt ranks can
exceed the dimension of HA � HB. It may be recalled that Lo
and Popescu �30� have shown that when locally manipulat-
ing pure states, anything that can be done using two-way
communication can just as well be done with one-way com-
munication alone. For the task of distinguishing a set of
states and preserving entanglement, we have seen that one-
way communication may not be sufficient. The reason is that
we are effectively manipulating a mixed state. This latter
point was discussed in the previous section, where I argued

that the question of distinguishing while preserving entangle-
ment is closely related to that of purifying entanglement
from a mixed state.
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APPENDIX A: PROOFS OF THE THEOREMS

1. Maximum number of states

Theorem 1. Suppose the parties share a DA�DB system
and using LOCC-K2 are able to distinguish with certainty
among a set of N states while preserving Schmidt rank of at
least r for every outcome. Then,

N � �DA/r� �DB/r� � Nmax, �A1�

where �x� is the largest integer not greater than x, and this
upper bound is achievable by LOCC-P0.

Proof. At some point in the protocol one of the parties
must implement a measurement operator that is less than full
rank. The reason for this is that in order to eliminate any
single state in the given set—say, ��J	—it must be that �A
� B� ��J	=0, for some A and B. This means either A or B
must be singular, so has a nontrivial kernel. If it is Alice who
first implements a singular operator, then that operator di-
vides Alice’s Hilbert space HA into two orthogonal parts, its
support and its kernel, of dimensions DA1 and DA−DA1, re-
spectively. If there are N1 states that are not excluded, then
these states must be distinguishable within the remaining
�DA1�DB�-dimensional space. Furthermore, the N−N1

states that were excluded lie, from the outset, entirely in the
other ��DA−DA1��DB�-dimensional space, so at least this
many states must be distinguishable in that space. If we de-
fine a function f�DA ,DB� to be the maximum number of
states perfectly distinguishable while preserving Schmidt
rank at least r in DA�DB, then N1� f�DA1 ,DB� and N−N1

� f�DA−DA1 ,DB�. Clearly,

N = N1 + �N − N1� � f�DA1,DB� + f�DA − DA1,DB� .

�A2�

The maximum number of states in the original set is then
bounded above as

f�DA,DB� � max
Ak

�f�DA1,DB� + f�DA − DA1,DB�� , �A3�

and the maximum is taken over all choices of Alice’s opera-
tor Ak—in other words, over all ways that she can divide her
space into two orthogonal pieces.
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We now look for upper bounds on f�DA1 ,DB� and f�DA

−DA1 ,DB� by considering measurements by Bob �it could
just as well be Alice again� for each of the cases. Note that
these measurements should be considered as completely un-
related protocols; each step in this argument involves a
“first” measurement �corresponding to a singular Kraus op-
erator� in a new protocol aimed at distinguishing a smaller
number of states on a smaller space. At the second step, we
obtain

f�DA,DB� � max
Bm

�max
Ak

�f�DA1,DB1�

+ f�DA1,DB − DB1�� + max
Ak

�f�DA − DA1,DB1� �

+ f�DA − DA1,DB − DB1� ��� , �A4�

and after many steps,

f�DA,DB� � max��
l=1

n

f�DAl,DBl�� , �A5�

with the maximum now taken over operators that sequen-
tially �and by local measurements� divide the original space
into n subspaces.

Since each division represents a successful outcome, one
of the two subspaces at each step must be at least r�r. If
any subspace is larger than this, it can be divided by a sub-
sequent measurement, so it is valid to continue the process
until all subspaces are smaller than or equal to r�r. Then the
maximum in the above equation means choosing the best
way to divide the space into such subspaces. Note that
f�DAl ,DBl�=1 if both DAl and DBl are equal to r �corollary 7�
and vanishes if either is less than r. Hence, the right-hand
side of Eq. �A5� is equal to the maximum number of or-
thogonal r�r subspaces in the original space. We can see
Nmax is an upper bound on this number by assuming other-
wise and showing this leads to a contradiction. This assump-
tion may be written N=N1+ �N−N1�	 �DA /r� �DB /r�, leading
to

N1 + �N − N1� 	 ��DA1/r� + ��DA − DA1�/r���DB/r� , �A6�

with N and N1 defined above. This implies either N1
	 �DA1 /r� �DB /r� or N−N1	 ��DA−DA1� /r� �DB /r�. Following
along the argument presented in the preceding part of this
proof, one eventually arrives at a division for which one
subspace is r�r and the other is no larger than this. We then
have that there are either at least two states in an r�r sub-
space �N1	 �r /r� �r /r�=1� or at least one in a subspace
smaller than this. This is a contradiction, giving us the stated
upper bound. Certainly, there is no problem fitting Nmax r
�r subspaces into the space, so the bound can be achieved,
completing the proof. �

2. Schmidt rank sum for one-way protocols

Theorem 2. If Alice goes first using LOCC-K1 and the
parties are always able to distinguish and preserve Schmidt
rank at least r; then, � jRj �DA�DB /r�.

Proof. In order for Bob to be able to distinguish with
certainty following Alice’s measurement, the reduced density
operators �̃ j

B of the various possible states remaining after
Alice’s outcome must be mutually orthogonal. If they must
preserve Schmidt rank at least r for each outcome, then each
of these density operators must have rank at least r. These
two requirements imply that for each of Alice’s outcomes Ak,
no more than �DB /r� of the �� j	 can have nonzero probability
or nonvanishing �Ak

†Ak � IB� �� j	. Let the eigenstate corre-
sponding to nonzero eigenvalue �m

k of Ak
†Ak be �am

k 	. Then,

�Ak
†Ak � IB��� j	 = �

m

�m
k ��am

k 	
am
k � � IB��� j	 , �A7�

which vanishes if and only if each term in the sum vanishes.
Thus, no more than �DB /r� of the �� j	 can satisfy ��am

k 	
am
k �

� IB� �� j	�0 for any single eigenstate of Alice’s POVM el-
ements.

From the collection of eigenstates for all these POVM
elements, choose a �generally non-orthogonal� basis, denoted
by ��am	�. Expanding the �� j	 in the dual basis ��ām	�, where

am �am�	=�mm�,

�� j	 = �
m=1

DA

�m
j �ām	�bm

j 	 , �A8�

we see from the arguments of the previous paragraph that no
more than �DB /r� of the �m

j can be nonzero, for any fixed m.
Now consider the Schmidt ranks

Rj = R��� j	� = R��
m=1

DA

�m
j �ām	�bm

j 	� � �
m=1

DA

R��m
j �ām	�bm

j 	� .

�A9�

Sum this equation over j to obtain

�
j

Rj � �
m=1

DA ��
j

R��m
j �ām	�bm

j 	�� . �A10�

Now, R��m
j � ām	 �bm

j 	�=1 if �m
j �0 and vanishes otherwise.

Then from the last line of the previous paragraph, we have
that for each m the quantity in parentheses on the right-hand
side of this inequality is less than or equal to �DB /r�. This
yields

�
j

Rj � DA�DB/r� , �A11�

completing the proof. �
We will now see that the bound in the theorem can be

reached in all cases not discussed in Sec. IV B �that is, when-
ever that bound does not exceed DminNmax�, considering first
DB�DA. Then we can have a set of nB= �DB /r� rank-DA
states, as

�� j	 = �
k=0

DA−1

�k	A�k�B�j − 1�r	B, j = 1, . . . ,nB, �A12�

with �B�A� here indicating addition mod DB�A�. Defining new
quantities nA and a�r through the relation DA=nAr+a, we
can write Alice’s POVM as �m=1, . . . ,nA−1�
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Em = �
k=0

r−1

�k + �m − 1�r	A
k + �m − 1�r� ,

EnA
= �

k=0

r−1

ak�k + �nA − 1�r	A
k + �nA − 1�r� ,

EnA+1 = �
k=0

r−1

ak��k + �DA − r�	A
k + �DA − r�� , �A13�

where if a=0, ak=1 and EnA+1 is to be omitted. When a
�0, ak=1/2 for k=a , . . . ,r−1 and ak�=1/2 for k=0, . . . ,r
−a−1; otherwise, these coefficients are equal to 1. Notice
that the last two POVM elements have overlapping supports
when a�0, which is why some of the coefficients must dif-
fer from unity. Whichever outcome Alice obtains, Bob can
distinguish preserving Schmidt rank r. An example of such a
set of states is given in Fig. 11�a�.

If DA /nA�DB�DA, we cannot have states with Schmidt
rank DA, so instead choose nB�nA−1� states having rank r
and, in addition, nB states having rank r+a, with all these
states represented as

���n−1�nB+j	 = �
k=0

kn

�k�A�n − 1�r	A�k�B�j − 1�r	B,

�A14�

where n=1, . . . ,nA, j=1, . . . ,nB, and kn=r−1 except when
n=nA, in which case knA

=r+a−1. Alice does the same
POVM given in Eq. �A13�, and as in the previous case for
each of her possible outcomes, Bob can distinguish preserv-
ing r. This set of states is illustrated by the example in Fig.
11�b�.

3. Preserving the original Schmidt ranks

Theorem 4. If a set of states ��� j	� is perfectly distinguish-
able by LOCC while preserving Rj, then the density opera-
tors ��̂ j� form a mutually orthogonal set.

To prove this theorem, we will use the following lemma,
in which we refer to a measurement by Alice expressed in
terms of Kraus operators expanded as

Al = �
m=0

DA−1

�am
l 	A
m� . �A15�

Then, we can easily prove the following lemma.
Lemma 10. Given a complete measurement by Alice, the

outcomes of which correspond to the operators Al in Eq.
�A15�, and a set of states ��l	A=�m�m �am

l 	A with the �m in-
dependent of l and �M �0, then 
aM

l ��l	�0 for at least one
outcome of Alice’s measurement.

Proof. This follows from the fact that for a complete mea-
surement, we have �lAl

†Al= IA or

�
l


am
l �am�

l 	 = �mm�. �A16�

Then we have that

�
l


aM
l ��l	 = �

m

�m�
l


aM
l �am

l 	 = �M � 0. �A17�

The lemma follows directly. �
We now prove the theorem.
Proof of theorem 4. It will be sufficient to show that the

parties cannot distinguish a pair of states and preserve Rj, j
=1,2, if the density operators �̂1 and �̂2 are not orthogonal.
Assuming they are not orthogonal, there are two general cat-
egories, illustrated in Fig. 8, pertaining to the relationship
between these two states �Supp�·� means support of the indi-
cated operator�.

�i� Fig. 8�a� — in a product basis expansion of ��2	 there
is a term �2

A	 �2
B	 such that �2

A	�Supp��1
A� and

�2
B	�Supp��1

B�.
�ii� Fig. 8�b� — if such a term �as in �i� above� is not in

��2	, then there must be two terms �2
A	 �2

B	 and ��2
A	 ��2

B	
such that �2

A	�” Supp��1
A�, but �2

B	�Supp��1
B�, and

��2
A	�Supp��1

A�, while ��2
B	�” Supp��1

B�.
Let us consider these two cases separately, beginning with

the first one. In this case with a convenient choice of bases,
the states can be written

��1	 = �
k,k�=0

R1−1

gkk��k�	A�k	B,

��2	 = ���0	A + 
�R1	A��0	B + �
k=1

DB−1

�
k�=0

DA−1

fkk��k�	A�k	B,

�A18�

where the matrix g has rank R1, ��0, and we have
�2

A	 �2
B	=� �0	A �0	B �additional such terms do not change

the conclusion�.
Then, following outcome Al, written as in Eq. �A15�, we

have

Al��1	 = �
k,k�=0

R1−1

gkk��ak�
l 	A�k	B,

|3〉A
|2〉A
|1〉A
|0〉A

2 1

1 2

1 2

1 2

(a)

12 10 11
10 11 12

7 8 9

4 5 6

1 2 3

(b)

FIG. 11. Examples illustrating how the bound of theorem 2 can
be achieved. �a� The states of Eq. �A12� when DA�DB, with r=3.
Alice’s two POVM elements are each rank 3: the first annihilates
�3	A, the second �0	A. �b� The states of Eq. �A14� when DB�DA;
each square box is r�r. Note that states 10,11, and 12 are rank
�r+a� with a�0.
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Al��2	 = ���a0
l 	A + 
�aR1

l 	A��0	B + �
k=1

DB−1

�
k�=0

DA−1

fkk��ak�
l 	A�k	B.

�A19�

Define ��0
l 	A=� �a0

l 	A+
 �aR1

l 	A. There are three possibilities:
�a� ��1	 is eliminated by Al⇒ �a0

l 	A=0, �b� ��2	 is eliminated
by Al⇒ ��0

l 	A=0, or �c� neither is eliminated by Al, so each
must continue to have its original Schmidt rank ⇒�a0

l 	A�0
� ��0

l 	A. Since ��0, we may conclude from lemma 10 there
must be at least one l such that neither state is eliminated and

a0

l ��0
l 	�0. For this outcome, one can again choose a basis

with �0	A defined as the projection of ��0
l 	A onto

Supp�Al�1
AAl

†� �since 
a0
l ��0

l 	�0 and �a0
l 	A is in this support,

this projection is guaranteed to be nonzero�. Also choose

�R̄1	A as the projection of ��0
l 	A onto the kernel of Al�1

AAl
†, if

this projection is nonzero �otherwise, 
̄=0 below and the

choice of �R̄1	A is unrestricted, the following conclusion be-
ing unchanged�. This gives

Al��1	 = �
k,k�=0

R1−1

ḡkk��k̄	A�k	B,

Al��2	 = ��̄�0̄	A + 
̄�R̄1	A��0	B + �
k=1

DB−1

�
k�=0

DA−1

f̄ kk��k̄�	A�k	B,

�A20�

which has exactly the same form as before Alice’s measure-
ment. By the symmetry between the parties, the same con-
clusion will hold after Bob’s subsequent measurement and,
by extension, after they complete an arbitrary number of
rounds of measurements. In other words, for any LOCC pro-
tocol that preserves Rj, there will always be an outcome such
that they have failed to distinguish between this pair of
states.

For the second case, we can choose bases such that

��2	 = ��0	A�R1	B + 
�R1	A�0	B + �
k=1

DB−1

�
k�=1

DA−1

fkk��k�	A�k	B,

�A21�

with ��0�
, and after outcome Al,

Al��2	 = ��a0
l 	A�R1	B + 
�aR1

l 	A�0	B + �
k=1

DB−1

�
k�=1

DA−1

fkk��ak�
l 	A�k	B.

�A22�

First note that if for any single outcome �aR1

l 	A is not orthogo-

nal to �ak�
l 	A ∀k�=0,. . .,R1−1, then we are back to the previous

case for which we have seen the parties cannot distinguish
the states and preserve Rj. So we may assume this orthogo-
nality in the following. Define ��R1

l 	A=� �a0
l 	A

+�k�fR1k� �ak�
l 	A. By an argument similar to that given for the

previous case, there must be at least one outcome for which
neither state is eliminated and 
a0

l ��R1

l 	�0. Then choosing a

new basis with �R̃1	A= �aR1

l 	A and �0̃	A the projection of ��R1

l 	
onto Supp�Al�1

AAl
†�, we have

Al��1	 = �
k,k�=0

R1−1

g̃kk��k̃	A�k	B,

Al��2	 = �̃�0̃	A�R1	B + 
�R̃1	A�0	B + �
k=1

DB−1

�
k�=1

DA−1

f̃ kk��k̃�	A�k	B.

�A23�

Once again we see that this has the same form as before
Alice’s measurement and there is also a symmetry between
the parties. Hence, by the argument used for the previous
case, we must conclude that they cannot distinguish between
these states. This covers all possible cases, so the conclusion
holds quite generally and the theorem follows directly. �

APPENDIX B: PROOF OF NONLOCALITY WITHOUT
ENTANGLEMENT

We give here a very simple and transparent proof that the
nine orthogonal product states of Bennett et al. �15�,

��1	 = �1	A�1	B,

��2	 = �0	A��0	B + �1	B� ,

��3	 = �0	A��0	B − �1	B� ,

��4	 = �2	A��1	B + �2	B� ,

��5	 = �2	A��1	B − �2	B� ,

��6	 = ��1	A + �2	A��0	B,

��7	 = ��1	A − �2	A��0	B,

��8	 = ��0	A + �1	A��2	B,

��9	 = ��0	A − �1	A��2	B, �B1�

cannot be distinguished by LOCC. The method of proof will
be to consider general local operations by either party and to
show that the only ones that do not destroy the mutual or-
thogonality of the states are proportional to unitaries. Then,
since unitary operators do not provide the parties with any
information and also do not alter the relationship between the
states, the party who goes next can do no better and so on, no
matter how many rounds of measurements they make.
Hence, they are unable to distinguish with certainty.

Proof. Due to the symmetry between the parties, we may
suppose Alice goes first, implementing a completely general
local operation written as

A = �
k=0

2

�ak	A
k� . �B2�

The nine states after this operation become
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��1�	 = �a1	A�1	B,

��2�	 = �a0	A��0	B + �1	B� ,

��3�	 = �a0	A��0	B − �1	B� ,

��4�	 = �a2	A��1	B + �2	B� ,

��5�	 = �a2	A��1	B − �2	B� ,

��6�	 = ��a1	A + �a2	A��0	B,

��7�	 = ��a1	A − �a2	A��0	B,

��8�	 = ��a0	A + �a1	A��2	B,

��9�	 = ��a0	A − �a1	A��2	B. �B3�

We require 
� j� �� j�
� 	=0 ∀ j��j �some of these states may

vanish identically�, since otherwise they cannot distinguish
with certainty. Then, considering in turn �j , j��
= �1,2� , �1,4�, and �2,4�, we conclude that the states �ak	A

form a mutually orthogonal set �again, some may vanish�.
Using this fact and considering orthogonality for �j , j��
= �6,7� and �8,9�, we see that the �ak	A must all have the
same norm; 
ak �ak	 is independent of k. Hence, since we
may assume that A does not vanish identically, it must be
proportional to a unitary operator, which completes the
proof. �

APPENDIX C: TWO-WAY COMMUNICATION IS BETTER
THAN ONE-WAY

For theorem 8 and corollary 9 �which, with DA=DB=D
and Rj =D, state that r�D /N and N�D /r for one-way com-
munication, respectively�, I now show that if they use
LOCC-P2, the parties can successfully distinguish which
state and also, at least for some outcomes of their measure-
ments, preserve r=D /2	D /N. Let N=3	D /r=2, and let
D�8 be a multiple of 4. Take the original states as

��1	 = �
k=0

D−1

�k	A�k	B,

��2	 = �
k=0

D−1

�k	A�k � D/2	B,

��3	 = �
k=0

D−1

�− 1�k�k	A�k � D/2	B, �C1�

where � denotes addition mod D. Alice and Bob can each
make an orthogonal measurement on their respective spaces,
with outcomes of rank D /2 represented by the projectors

P�1 = �
k=0

D/2−1

�k	�
k� ,

P�2 = �
k=D/2

D−1

�k	�
k� . �C2�

One of them–say, Alice—tells the other which outcome she
obtained. If Bob’s outcome was the same as Alice’s, then
since PAl � PBl �� j	=0 for j=2,3 but not for j=1, he then
knows that the state was ��1	 and they now share a state of
Schmidt rank D /2. If their outcomes were both l=1, for
example, then they now have

��̃1	 = �
k=0

D/2−1

�k	A�k	B. �C3�

This result is not in contradiction with theorem 8 or with
corollary 9, however, since if their outcomes were not the
same, then while the probability that the state was ��1	 now
vanishes, the probabilities for the other two states are both
nonzero. Therefore, in this event one-way communication
has been insufficient to distinguish the state. For example, if
Alice obtained outcome 1 while Bob obtained 2 �the other
case works in a similar way�, then their system is left in one
or the other of

��̃2	 = �
k=0

D/2−1

�k	A�k + D/2	B,

��̃3	 = �
k=0

D/2−1

�− 1�k�k	A�k + D/2	B. �C4�

To distinguish between these possibilities, the parties must
make another round of measurements. Before Alice mea-
sures, she needs to know from Bob whether or not she
should. Otherwise, if Bob had obtained the same outcome
that she obtained, in which case they share the state in Eq.
�C3�, and she goes ahead with the following measurement
anyway, they will no longer share a state of Schmidt rank
D /2. This illustrates the results of theorem 8 and corollary 9
in a somewhat nontrivial way.

To complete their task, Bob does a measurement with
projectors �PB+ , PB−�, where

PB± =
1

2 �
k=0

D/4−1

��2k + D/2	B ± �2k + 1 + D/2	B�

� �B
2k + D/2�±B
2k + 1 + D/2�� . �C5�

Now,

PB±��̃2	 =
1

2 �
k=0

D/4−1

��2k	A ± �2k + 1	A�

� ��2k + D/2	B ± �2k + 1 + D/2	B� ,

PB±��̃3	 =
1

2 �
k=0

D/4−1

��2k	A � �2k + 1	A�

� ��2k + D/2	B ± �2k + 1 + D/2	B� , �C6�

so Alice can complete the protocol by the measurement
�PA+ , PA−�, with
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PA± =
1

2 �
k=0

D/4−1

��2k	A ± �2k + 1	A��A
2k�±A
2k + 1�� . �C7�

If their outcomes are the same �++ or −−�, the state was ��2	,
and if different �+− or −+�, the state was ��3	. In either case,
they preserve Schmidt rank of D /4.

Another example where two-way communication is better
than one-way pertains to corollary 9, which says that if N
	D /2, a one-way protocol cannot preserve entanglement for
any single outcome while always distinguishing the state. I
now give a case where success is possible for N	D /2 with
a two-way protocol. In particular, in D=5 the set of N=3
states—��0	=�k �k	A �k	B and �� j	=�k �k	A �k � �1+ j�	B , j
=1,2 �with � again denoting addition mod D�—may be dis-
tinguished with certainty using a two-way protocol, with
some outcomes preserving Schmidt rank of 2. One such suc-
cessful outcome is when the parties both obtain P�1
= �0	�
0 � + �1	�
1 � ,�=A ,B, in their measurements, identify-
ing ��0	 as the state. I leave the remainder of this protocol
�which is not unique� as an exercise for the reader. �Here, as
in the previous example, communication must go both ways
after their initial measurements in order that they know
whether or not to continue. Otherwise, they risk destroying
entanglement in the case they preserved it, because they do
not know the result of the other’s measurement.�

APPENDIX D: PRESERVING �D /N� WITH LOCC-K0

Here, I will prove two theorems for distinguishing and
preserving entanglement by LOCC-K0, with the discussion
restricted to sets of Schmidt rank-D states in D�D. Accord-
ing to theorem 8, the largest Schmidt rank they can preserve
is D /N. Let us begin with a theorem concerning the case
when D /N is an integer.

Theorem 11. Suppose D /N is an integer and the parties
are restricted to LOCC-K0. If there is a protocol in which
they are always able to distinguish a set of Schmidt rank-D
states on a D�D system and can preserve the maximum
Schmidt rank of D /N for at least one outcome, then they
preserve D /N for all their outcomes and they can do so using
orthogonal measurements �LOCC-P0�.

Proof. Consider the single outcome that by assumption
preserves D /N, for which both Alice’s and Bob’s measure-
ment operators �say, Am ,Bn� must have rank D /N. When
Alice gets Am, each of Bob’s reduced density operators � jm

B

will have rank D /N. Then to distinguish with certainty these
density operators must all be mutually orthogonal �this is
why neither Am nor Bn can have rank greater than D /N�.
Given that D /N is an integer, this uniquely determines an
orthogonal measurement Bob may use, with measurement
operators having support identical to those of these density
operators, so each has rank D /N. Hence, when Alice gets Am,
they can preserve D /N for any of Bob’s outcomes and he
may just as well do an orthogonal measurement. Recogniz-
ing that Alice and Bob play completely equivalent roles, this
argument may be turned around starting with Bob’s outcome
Bn determining an orthogonal measurement Alice can
choose, thus showing that they both may choose orthogonal
measurements for which each of their combined outcomes

preserves D /N. �
It should be noted that the starting assumption that they

are always able to distinguish the state is crucial. The re-
stricted assumption—that only the single outcome �Am ,Bn� is
known to distinguish the state—certainly does not lead to the
conclusion that the parties can distinguish for all outcomes.
This does not even follow from knowing that the single out-
come on Alice’s side Am is known to allow Bob to distin-
guish for every outcome of a measurement he can make, a
fact that can be seen from the following discussion. As ar-
gued in the above proof, Am determines a set of reduced
density operators on Bob’s side, which determine the al-
lowed supports for Bob’s measurement operators, which in
turn determine a set of allowed supports for Alice’s measure-
ment operators. There is certainly no guarantee that these
sets of supports, one for each of Bob’s outcomes, will all be
identical. If they are not, Alice will be unable to choose a
measurement that will distinguish in all cases and the parties
must fail for at least some of their outcomes.

What if D /N is not an integer, but it is known they can
always distinguish and that one outcome preserves Schmidt
rank of �D /N�? In this case, the extra dimensions allow for
flexibility in the choice of measurements and the conclusion
of the previous theorem no longer holds. Indeed, the two
states �D=5, N=2�

��1	 = �
k=0

4

�k	A�k	B,

��2	 = �0	A�2	B + �1	A�3	B + �2	A�0	B + �3	A�4	B + �4	A�1	B

�D1�

are distinguished for all outcomes by the orthogonal mea-
surements

P�1 = �0	�
0� + �1	�
1� ,

P�2 = �2	�
2� + �3	�
3� ,

P�3 = �4	�
4� , �D2�

but only some outcomes preserve r=2 �outcome 1 for Alice,
1 for Bob, for example� whereas others preserve r=1 �2 for
Alice, 1 for Bob�. While in this example they do not always
preserve entanglement, one can easily think up other such
examples with N�3 where they do.

The following result, which is clearly weaker than theo-
rem 11, applies to the case when D /N is not an integer.

Theorem 12. Suppose D /N is not an integer and the par-
ties are restricted to LOCC-K0. Then, in order for them to
distinguish a set of Schmidt rank-D states on a D�D system
and preserve the maximum Schmidt rank of �D /N� for every
outcome of their measurement, it must be that
D= �N+n��D /N�, with n a positive integer. That is, it must be
possible to divide the parties’ spaces into subspaces all hav-
ing dimension equal to the maximum achievable Schmidt
rank, a task for which they can use LOCC-P0.

Proof. First note that if all outcomes preserve �D /N�, each
of the parties’ measurement operators must have rank �D /N�
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�this follows from arguments similar to those in the preced-
ing proof�. I will show below that any pair of measurement
operators for either one of the parties must have supports that
are either orthogonal or identical. Then, the measurements
divide their spaces into orthogonal subspaces each of dimen-
sion �D /N� and the theorem follows immediately.

The proof is by contradiction. Hence, suppose on the con-
trary A1 and A2 have supports of dimension �D /N� that are
neither orthogonal nor identical to each other. Each
Am�m=1,2� determines a set of N reduced density operators
on Bob’s space, � jm

B , one for each state �� j	. Each of these
density operators has rank �D /N� or 0. In order to distinguish
and preserve �D /N�, Bob must choose each of his measure-
ment operators to have support containing the support of one
of the � jm

B and orthogonal to the others �for each m�. Consider
the density operators �J1

B ��J2
B � for Alice’s first two outcomes

and some fixed state ��J	, and Bob’s corresponding measure-
ment operators B1�B2�. The support of the latter must be
chosen to contain the range of MJA1�MJA2� �MJ is the matrix
corresponding to ��J	 in Eq. �21��. Given ��J	 is rank D,
then MJ is nonsingular, and the fact that the supports of A1
and A2 are neither orthogonal nor identical implies the same
fact about the supports of B1 and B2. In particular, the range
of MJA1, which is the support of �J1

B , intersects both the
support and the kernel of B2. This implies that when the state
is ��J	 and Alice measures A1, there is a nonzero probability
that Bob will measure B2 �since the support of B2 is not
orthogonal to �J1

B �. When this occurs, Bob’s reduced density
operator becomes �̃J1

B =B2�J1
B B2

† �ignoring unimportant nor-
malization�. But given that the support of �J1

B is not orthogo-
nal to the kernel of B2, the rank of �̃J1

B will be strictly less
than that of �J1

B . That is, the Schmidt rank of their residual
shared state, which is equal to the rank of �̃J1

B , is strictly less

than �D /N�, the rank of �J1
B . This contradicts the conditions of

the theorem, implying that A1 and A2 must have supports that
are either orthogonal or identical to each other. �

Theorem 12 only gives a necessary condition, so it says
nothing as to whether or not the ability to divide into equal
size subspaces of dimension �D /N� is sufficient for the par-
ties to accomplish this task. The following example shows
that when D= �N+n��D /N�, there exists at least one set of N
states that can always be distinguished by LOCC-P0 preserv-
ing the maximal possible Schmidt rank. The states are

�� j	 = �
k=0

D−1

�k	A�k � �D/N��j − 1�	B, j = 1, . . . ,N , �D3�

with � again denoting addition mod D. The parties do the
orthogonal measurements

P�l = �
k=�D/N��l−1�

�D/N�l−1

�k	�
k�, l = 1, . . . ,N + n . �D4�

Then, PAl � PBl� �� j	 vanishes except �31� for the single state
j satisfying l�= �j+ l−1�mod�N+n�, and since 1� j�N,
then for fixed l the possible set of values for l� is l , l
+1, . . . , �l+N−1�mod�N+n�. When it does not vanish, it is
equal to

PAl � PBl��� j	 = �
k=�D/N�l

�D/N��l+1�−1

�k	A�k � �D/N��j − 1�	B,

�D5�

which is of Schmidt rank �D /N�. Thus, all outcomes with
nonzero probability distinguish, preserving �D /N�.
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