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We present a robust construction of a set of logic gates operating on a system of qubits encoded in the
rovibrational eigenstates of an Na, molecule using the optical adiabatic population transfer (APT) phenom-
enon. We demonstrate the operation of a complete universal gate set for quantum computation on a two-qubit
system with gate fidelities approaching 99.99%. Like other APT-based processes, the method is robust against
substantial fluctuations in the intensity of the laser pulse. Our construction is easily scalable to deal with a
larger number of qubits. With the aid of the set of gates thus shown we may construct pulse sequences for a
wide class of quantum logic operations. We also show how to produce a representation of Bell states from a
representation of product states with essentially perfect fidelity. Our scheme can be realized in all diatomic and
polyatomic molecules that possess easily accessible and well characterized excited electronic states.
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I. INTRODUCTION

It is well known that all logic circuits of interest to quan-
tum computations can be realized by a sequence of a small
set (“gate set”) of one-qubit and two-qubit logic gates [1].
Such a “universal” gate set is composed of the one-qubit
phase shifter, the Hadamard gate, and the two-qubit
controlled-NOT (CNOT) gate. There have been many propos-
als of implementing these and other universal gate sets on
various quantum systems [1].

In the past a number of authors have considered using the
vibrational modes of molecules as platforms for quantum
computations. Most of these papers [2-7] have derived the
pulses that produce the desired logic gate numerically, using
optimal control theory (OCT) [8-10]. The drawback of this
approach is that the pulses thus produced are critically de-
pendent on the exact knowledge of the potential-energy sur-
face(s) on which the nuclei move. Such knowledge is usually
not accurate enough for high fidelity operations. In addition,
the pulses obtained using OCT are extremely sensitive to the
pulse details. For example, like in the use of a 7 pulse to
induce population exchange between two levels, the OCT
derived pulses are extremely sensitive to the pulse area.
Moreover, the OCT derived pulses are sensitive to the exact
phase chirp and pulse shape. Since in real experiments it is
very difficult to produce pulses whose parameters are accu-
rate to a fraction of a percent, as dictated by the quantum
computations requirements, the method is very difficult, if
not impossible, to apply in practice.

Adiabatic turn-on and turn-off of an interaction appears to
be a natural direction for performing operations needed for
quantum computation. Recently, several groups have pro-
ceeded in this general direction and have suggested using
“adiabatic quantum computing” [11-16] and “holonomic
computing” [17-20], for performing logic manipulations in
various systems.

*Electronic address: cianmj@physics.ubc.ca

1050-2947/2007/75(5)/052308(9)

052308-1

PACS number(s): 03.67.Lx, 33.80.—b

In this paper we take a seemingly easier adiabatic ap-
proach, relying on adiabatic population transfer (APT) be-
tween sets of three and four quantum levels. The main idea is
to build all the gates mentioned above via the in-tandem
applications of adiabatic passage (AP) [21-26] steps. We
show using a system of qubits encoded in the rovibrational
eigenstates of the sodium dimer molecule (Na,) that the
method fidelities approach the presumed fault-tolerant
threshold value of 99.99%.

In contrast to the numerically derived OCT-based pulses,
APT is very robust. Once the theoretically specified order of
delay times and adiabatic conditions Q;7;>>1, where (), is
an effective Rabi frequency of the ith pulse, and 7; is its
duration, are met, APT is rather insensitive to the exact val-
ues of (); and 7, and other pulse parameters [21,22,27,28].
However, in our case, since we use a nondegenerate encod-
ing for the qubits, the duration 7 for each pulse will be pre-
cisely defined such that the optical phase accumulations of
the states can be worked into our scheme. With the pulse
duration specified, this will still allow for significant varia-
tion in the pulse intensities dictated by the adiabatic condi-
tions. Moreover, because APT is a generic scheme it does not
change in essence from one set of levels to another. In this
application, it involves resonant transitions between a small
(3 or 4) number of levels, the input for the universal gate set
construction consists of a few dipole matrix elements, which,
if necessary, can be extracted experimentally. No theoretical
knowledge of an entire potential-energy surface is necessary.

The APT based logic gates we demonstrate rely mainly on
introducing the pulses in the right sequence and maintaining
the electric field’s amplitudes and their analytically derived
phases in accordance with the requirements of the logic op-
eration at hand. Below we demonstrate both the great stabil-
ity and the near-perfect gate fidelities we achieve in the one-
and two-qubit Na, systems. Because of the universality, this
method can be implemented in other quantum gates not ex-
plicitly considered here and be readily scaled up to treating
multi (=3)-qubit systems [24].
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FIG. 1. Interaction scheme for one-qubit gate operations using
APT. The qubit states, |0) and |1), are coupled to an excited state |I)
by two different laser fields. A third states, |S), coupled to the in-
termediate state |I) acts as a shelving or auxiliary state for the gate
procedures.

II. ONE-QUBIT GATES
A. Single qubit adiabatic population transfer

Our general strategy is based on adiabatic passage
phenomena. One of the best known applications of AP,
called stimulated Raman adiabatic passage (STIRAP)
[21,22,27,28], allows for populations to be transferred from
an initial bound state |0) to a final state |1) in a complete
fashion. The method is based on performing a stimulated
Raman process via a third level |I) using two laser pulses
with central frequencies in near resonance with the transi-
tions from |0) to |I) and from |I) to |1). As shown by Berg-
mann and co-workers [21,22], when the lasers are turned on
in a “counterintuitive” order (i.e., by first coupling |I) to |1)
and then coupling |I) to |0)) the population moves directly
from |0) to |1)while leaving the intermediate state |I) empty.

Consider a single qubit in an arbitrary state given by

|40) = ol0) + 1) (1)

which has the typical normalization such that |a|*+|8[*=1.
In performing the APT scheme, two additional nondegener-
ate states are introduced, as shown in Fig. 1. The first addi-
tional state, labeled |S), is used for temporary population
shelving. It must therefore be long-lived relative to the dura-
tion of the gate operation. This is not a very restrictive re-
quirement because our pulse durations are in the ps to ns
domain. The second additional state, labeled |I>, acts as the
intermediate state in the APT population transfer scheme.
Because it never gets populated, its actual lifetime is of no
importance.

B. Encoding qubits on molecular energy levels

In the APT scheme, we use as the intermediate state, that
must be coupled to the two other levels, a rovibrational state
belonging to an electronic manifold different than that of the
initial and final states. In this way we minimize the restric-
tions imposed by the optical selection rules. For example,
transitions within the same electronic state depend on the
presence of a permanent electric dipole moment which is
absent for homonuclear diatomics and is confining for het-
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eronuclear diatomics, whose levels couple to a given state by
the AJ==1 and Av = +1 selection rules, where v and J label
the vibrational and rotational quantum numbers, respectively
[29]. More specifically, we select low-energy rovibrational
levels [v,J) in the B'II, electronic state of Na, to house our
intermediate levels. These states are optically accessible
from nearly all of the X 12;: ground states, and have transition
dipole moments, B— X, that are less dependent on internu-
clear distance than other electronic surfaces (e.g., A'2%) [30].

Because both the shelving state and the states used to
store the qubits (“qubits states”) should be stable against de-
coherences due to spontaneous emission, we use for these
states low-lying rovibrational eigenstates in the ground elec-
tronic state, XIE;,’, of the Na, molecule. The average life-
times for spontaneous emission in the infrared may be as
long as a few milliseconds (ms) [31,32], allowing plenty of
time for the completion of all logic operations of interest.

We have chosen to use a diatomic molecule so as to avoid
an additional coupling between qubit states and nonqubit
states belonging to other normal modes of vibration of the
same molecule, a complication encountered by other groups
using polyatomic molecular states coupled by broad band
pulses [7].

C. Numerical simulations

The viability of the following schemes are demonstrated
by performing a number of simulations of one- and two-
qubit systems encoded in a Na, molecule. In all cases our
simulations are derived from a numerical solution of the
Schrodinger equation using a molecular set of energy levels,
coupled through typical electric-dipole matrix elements by
pulses satisfying the adiabatic condition. We present our re-
sults in the interaction representation, thus omitting the dy-
namical phase of each of the states from the figures. These
phases can each be monitored and integrated into these
schemes by the appropriate timing and durations of the laser
pulses. In addition to establishing the very high fidelity rates
of our schemes, our simulations also serve to obtain realistic
estimates for the durations of the various gate operations. For
all cases studied we have conservatively considered laser
powers of approximately 10 MW/cm? and pulse durations of
100 ps, which satisfy the adiabatic conditions for typical op-
tically allowed molecular transitions.

The fidelity of each gate is computed as the overlap be-
tween the expected wave function, |®), and that obtained
numerically, |¢,), at the conclusion of each gate operation.
We show that the fidelities for the /8 phase (7), Hadamard,
and CNOT gates, which make up a universal and fault-tolerant
basis for quantum computation [33], are all essentially unity.
Note, these gates comprise the “standard” four-element uni-
versal gate set: The m-phase shifter (S), 7, Hadamard, and
CNOT gates. Since S is related to 7 it suffices to demonstrate
the implementation of 7.

For the single qubit operations we take the v=1, J=1
state in BIHu, B,1,1), as our intermediate level. By the
optical selection rules we know that this will couple strongly
to at least the three rovibrational levels in X ‘E;’, X,v=0,J
=0), |X,v=0, J=2), and |X,v=2, J=0) which we use to
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represent the |0), |S), and |1) states, respectively. This restric-
tive coupling between eigenstates allows us to avoid deco-
herences during our gate operations due to off-resonant cou-
plings between other nonparticipating states. The relevant
Franck-Condon factors are calculated using a discrete-
variable representation method which has been validated us-
ing previously published calculations [34,35].

We note that in some of the simulations presented below
where a chain of elementary APT processes is constructed to
yield a complex logical operation, the pulse that terminates
one elementary APT process may in fact be identical in all
aspects to the pulse that initiates the subsequent step. As we
show below, in such cases we can conjoin these two pulses
into one pulse. The use of such conjoined pulse chains sim-
plifies the experimental setup and saves on gate operation
times.

D. Phase gates

The standard matrix representation of a one-qubit phase
gate is given by

1 0
Rig)= <O ei"s).

R(¢) acts on the initial state ¢ of Eq. (1) by adding a rela-
tive phase ¢ to the phase of |1), leading to an output state

¥p) = l0) +e"B|1). 2)

We make use of the fact that population transfer between
states using adiabatic passage adds a controllable phase to
the final state. An obvious implementation of this fact is to
use two consecutive but independent applications of APT
involving the shelving state |S) as previously shown in
[23,24]. In the first step, two laser pulses with real Rabi
frequencies ,(r) and Qg(r) (see Fig. 1), tuned to be in reso-
nance with the |1)—|I) and |I)—|S) transitions, respectively,
are used to adiabatically transfer the entire population of
state |1) to state |S). In the second step, the population is
transferred back from state |S> to state |1), however, this time
we use a complex Rabi frequency Qg(f)=|Q(r)|e!®.
The second pulse sequence induces the [S)— e'®|I)
—e'?| 1) two-photon process. The net result of both steps is
to encode a phase ¢ onto state |1) exclusively. The complete
success of this strategy is demonstrated below.

1. /8 phase gate operation

Initializing our system to be the |+) one-qubit state,
1
|%>=|+>=T5(|0>+|1>), 3)
\

a T-gate operation adds a relative phase to |1) such that our
state goes into

1
|y = E[I0> +(a_+ia,)|1)], 4)
where a,=(2F22)12/2.

In Fig. 2 we present a simulation of this logic gate. As
shown in panel (c) the final values obtained numerically are
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exactly the desired values of Eq. (4). Thus the gate fidelity is
virtually perfect! We see that as required, the first APT pro-
cess, which uses the pulse sequence (g and (), completely
transfers the population of state |1) to state |S). When the
process is reversed and a 7/8 phase is imparted to (g, the
population flows back to the initial state which acquires ex-
actly a /8 phase. It is evident from Fig. 2(a) that even with
the conjoining of the two pulses between the APTs, gate
fidelities in our Na, system remain in excess of 99.9%. The
minor reduction in fidelity can be attributed to additional
laser couplings between off-resonant levels in our molecule
resulting in the temporary occupation of the intermediate
level and the minor deviation of the imaginary part of the |0)
coefficient from zero shown in Fig. (4).

E. Hadamard gate

One of the most useful quantum gates, commonly used to
initialize entanglement within a qubit system, is the Had-
amard gate represented by the matrix

u 1(1 1)
AV S A

The action of H on the initial state of Eq. (1) yields

lwf>=\%[<a+ﬁ>|0>+<a—ﬁ>|1>]. (5)

In the last few years a number of papers have looked into
the adiabatic manipulation of four-states in the so-called “tri-
pod” system [23,36], consisting of a threefold degenerate
ground state coupled to a single excited state. These papers
have demonstrated the versatility of APT in controlling the
tripod system to various desired final states. Here we show
how to use adiabatic passage in specifically implementing
the Hadamard gate on our molecular system.

An important prerequisite for the success of the adiabatic
schemes for the tripod system is that each of the three de-
generate states be individually addressable by the laser
pulses. This means that each Rabi frequency involved must
couple only one of the degenerate states to the excited “trans-
fer” state. Additionally, these three excited levels must be
sufficiently long lived to eliminate the loss of coherence via
decay.

In the present application, the tripod scheme is composed
of nondegenerate states. Thus the anharmonicity of the elec-
tronic potential-energy surface of the molecule is sufficient
to guarantee the one-to-one correspondence between the la-
ser frequencies and the transition frequencies, resulting in
easy and accurate addressability. Considering that the typical
spacings between two low-lying rovibrational eigenstates is
~0.001 eV, our gate operations can be done using lasers as
short as picosecond (ps) pulses. This time scale is much
shorter than the recorded average lifetimes of excited rovi-
brational levels in the ground-state electronic surface [31],
allowing us to completely avoid decoherences due to spon-
taneous decay. However, the nondegeneracy of our states
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FIG. 2. (Color online) Numerical simulation of the 7r/8-phase
gate implemented on a one-qubit system initialized to an even su-
perposition of the |0) and |1) qubit states. Where present, the thinner
lines on the plots represent the imaginary part of the variable cor-
responding to that line type. All times shown are in ps. (a) Profiles
of the Rabi frequencies (); for each of the pulses in resonance with
the |i)-|I) transitions used to carry out the gate operation. Solid line:
Q. Dashed line: €);. Dotted line: (). Notice that only the last pulse
contains an imaginary part due to the added phase shift. Units are
1/ps. (b) Temporal evolution of the probability amplitudes for each
of the states: |0) (solid line), |1) (dashed line), |S) (dotted line), and
|I) (dot-dashed line). As expected, the final populations of the |0)
and |I) states are not significantly affected. (c) The real and imagi-
nary parts of the qubit coefficients: |0) (solid line) and |1) (dashed
line). The thicker upper two lines on the right-hand side of the plot
represent the real parts of each state’s coefficients.
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also means that each level will accumulate a different dy-
namical phase, which did not occur in the original tripod
system. Thus just as in any system using a nondegenerate
qubit encoding, we must be careful to monitor each state’s
phase evolution and time our pulses appropriately or risk
losing our high gate fidelities.

With these issues resolved, we have constructed a mo-
lecular Hadamard gate using the tripod scheme of Kis and
Renzoni [23]. These researchers have shown how to perform
an arbitrary rotation on two of the ground tripod states. Simi-
lar to the phase gate, their scheme uses two consecutive APT
sequences characterized as

Q(1) = Q(t)cos x,
Q,(1) = Q(t)e'sin y,

Q1) = Qe (6)

with the arrangement shown in Fig. 1. By appropriately tun-
ing the three pulsed Rabi frequencies of Eq. (6) one trans-
forms the initial qubit state |, to a final state given as

) = e'¥(cos 5~ in - g sin )| i), (7)

where o=(g,, g,, g,) with g;, i={x,y,z} being the Pauli
matrices. n=(sin 2y cos 7,sin 2 sin 77,cos 2y) is a unit vec-
tor in three-dimensional (3D) space. Apart from a global
phase —48/2, the above transformation constitutes a rotation
of i) by an angle & about the unit vector n.

The direction of the rotation axis n is defined by the mag-
nitudes and relative phases of the Rabi frequencies coupling
the rotating qubit state to |I), given by Q(¢) and Q,(z) in Eq.
(6). In contrast, the angle of rotation and global phase is
determined solely by the relative difference in the phases of
0, (1) for the two APT processes. Thus if & is the same in
both steps, we get 6=0, and we return back to our initial
state.

A simple calculation shows that the values of the above
parameters required to implement a Hadamard gate are given
by x=F, n=m, and 8=|5,~ 8| =, where & represents the
ith APT processes. Note that the global phase of the final
state shown in Eq. (7), now equal to e/™?=i, gets used in
constructing the Hadamard gate operation.

1. Hadamard gate operation

In Fig. 3 we show the results of simulating the one-qubit
Hadamard gate starting from a single initial state (|0)), using
the Rabi frequencies as described above. As shown in panel
(b) of that figure, our initial state evolves into precisely the
|+) state of Eq. (3). As in the phase gate, changes in the
timings between the two APT processes does not reduce the
essentially perfect gate fidelity. As illustrated in Fig. 3(b), the
first APT step takes the system into a superpositions of the
|0), |1), and |S) states, in which the shelving state is occupied
for approximately 100 ps. The second AP step then com-
pletes the transfer.
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FIG. 3. (Color online) Calculations for the implementation of a
Hadamard gate on our one-qubit system beginning in the state |0).
Same units as in Fig. 2. (a) Temporal evolution of the three real
valued Rabi frequencies of the pulses coupling each of the states to
|1). Solid line: Q. Dashed line: ;. Dotted line: Q. (b) The popu-
lations of the four states: |0) (solid line), |1} (dashed line), |S) (dot-
ted line), and |I) (dot-dashed line), throughout the gate operation.

III. TWO-QUBIT GATES
We now consider an arbitrary two-qubit state given by
|4ho) = 0|00) + ctgy|01) + a1/ 10) + ;[ 11) )

normalized to unity. Similar to the one-qubit case we encode
the four-qubit states and two additional states, |I) and |S), in
six particular rovibrational eigenstates of our molecule. As
before, |I) acts as the intermediate state, used to transfer
population to and from the shelving state |S). The desired
gate operation determines which states out of the four-qubit
states gets coupled to the |/) state.

We present an explicit realization of a CNOT gate. The
procedure developed here has obvious and immediate exten-
sions to other two-qubit gate operations (such as the SWAP or
controlled phase). Similarly, our method can be easily ex-
tended to three-qubit gate operations, such as the Toffoli
(controlled-CNOT) gate. The pulse sequence of these compos-
ite gates thus generated is expected to be more efficient than
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TABLE 1. Input-output table for a quantum CNOT gate. The
value of the second qubit, given on the right in the two-qubit ket
notation, will be flipped only if the value of the first qubit is 1.

In Out

100) [00)
jo1) [01)
10} [11)
1) 10)

the in tandem application of a sequence of the elementary
gates.

A. Controlled-NOT gate

The CNOT gate acts by flipping the state of the second (or
target) qubit only if the first (or control) qubit has a value of
1, depicted in Table 1. After a CNOT gate operation, the initial
two-qubit state of Eq. (8) transforms into

|17 = 0|00) + gy |01) + ary4|10) + ary|11). 9

The implementation of this gate must therefore be able to
achieve complete population transfer between the [10) and
|11) states, without perturbing the coefficients of either the
|00) or the |01) states. Because of the simple storage of qu-
bits we have adopted, this task is reduced to simply exchang-
ing the populations between two given rovibrational eigen-
states within the same electronic manifold.

The use of a one-photon m-pulse scheme is precluded
because of the requirement in that scheme that the pulse area
be exactly equal to 7 to obtain satisfactory (i.e., near 100%)
fidelity. Instead, we have devised a simple scheme capable of
performing this operation using three APT processes (which
are less sensitive to the pulse area) applied in tandem. The

|17)

FIG. 4. Two-qubit interaction scheme for the implementation of
the cNOT gate. Of the four states, |00, |01), [10), and |11), which
encode the two qubits, only the latter two are involved in this op-
eration. Similar to the one-qubit case, these states are coupled to the
intermediate state |I), which in turn is coupled to the additional
shelving state |S).
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scheme, shown in Fig. 4, is similar to that used for the single
qubit gates, with the three involved states coupling solely to
the intermediate state |I). In the first stage one of the two
upper qubit states, e.g., |11), undergoes an APT to the shelv-
ing eigenstate |S). As before, the pulses are applied in the
“counterintuitive” order, first Q4(7) and then Q,(r), while
maintaining a significant overlap between them. Once the
[11) state has been emptied, we transfer the population from
[10) to [11), using pulses whose Rabi frequencies are (), and
Q). Last, to complete the procedure, the shelved population
in |S) is transferred to the (now) vacant |10) state.

Our scheme requires the use of only three laser frequen-
cies, with the overall gate fidelity being determined solely by
the efficiency of each APT step. An implementation to the
two-qubit SWAP gate or to the three-qubit CCNOT gate follows
essentially the same scheme, save for the employment of
different assignments for the qubit states, e.g., |01), [10) for
the SWAP gate and |110), |111) for the CCNOT gate.

1. CNOT gate operation

Using the same state representation as before, we encode
our states in the following rovibrational levels of Na,: levels
|X,v=0, J=0), |X,v=2, J=0), |X,v=2, J=2), |X,v=4, J
=2) are used for the qubit basis states |00), |01), [10), and
[11), respectively; then we use |X,v=4, J=0) for the shelv-
ing level and |B,v=3,J =1) as the intermediate state. In this
case each level except the ground state [00) couples strongly
to the excited level.

Such a simulation is shown in Fig. 5. We begin with an
initial state given by

1
) = \“_7(|00>+ 01) = 2(01) +]11)). (10)

We use the scaled Rabi frequencies shown in Fig. 5(a),
which are now entirely real, and introduce in each of the
three APT processes a relative Pump and Stokes phase dif-
ference of 7 in order to eliminate the extra 7 phase picked
up by the target state due to the evolution [28]. The popula-
tions of the states throughout the gate operation are shown in
Fig. 5(b). We see that the population of state |11) is first
transferred and stored in |S) and then the population of state
[10) is transferred completely to state |11). Finally the popu-
lation of state |S) is transferred to state |10). We note that the
shelving state |S) is occupied for less than 100 ps, well be-
low the spontaneous emission decay time. Notice that due to
unwanted coupling affects the intermediate state periodically
collects population for several ps, however, this remains be-
low the average cited decay time of such levels [35]. This
affect also causes population leaking into the imaginary parts
of the qubit coefficients, see Fig. 5(c).

As shown in the figure, the final state agrees exactly with
the theoretically expectation of Sec. Il A, i.e., with

= Vi5(|00>+ on+on-211). (1)
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FIG. 5. (Color online) Numerical simulation of a CNOT gate
implemented on a two-qubit system with an initial population split
1:1:2:1 between its four basis states. We use the same units as
before. The same representation is used as in the previous plot. (a)
Temporal profile of the Rabi frequencies of the pulses coupling
each of the states to |I) for the three successive APT processes
required to implement this gate. Solid line: y. Dashed line: Q.
Dotted line: Qg. (b) Time evolution of the populations of the six
states throughout the gate operation. These states are represented as
|00) (solid line), |01) (dashed line), |10} (dotted line), |11) (dot-
dashed line), |S) (dash-dot-dot), and |I) (dash-dash-dot). The three
independent APT processes between each of the states can be
clearly seen. (c) The evolutions of the four qubit coefficients are
shown using the same representation as in part (b). The thicker and
thinner lines represent the real and imaginary parts of the
coefficients.
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FIG. 6. Illustration of the pulses used for a one-qubit phase gate
applied to the second (right) qubit in a two-qubit system. Since two
one-qubit operations are being performed simultaneously, there are
two intermediate, |I}), |I,), and two shelving, |S,), |S,), states in
addition to the two-qubit basis states. Each of the two pulse enve-
lopes contains two frequencies, {Qg;,Q;,} and {Qg;,Qs,}, which
address the appropriate levels for the two APT processes.

B. One-qubit gates of N-qubit numbers

In our encoding scheme, each of the possible combina-
tions of qubits is assigned a single rovibrational level of a
molecule. Therefore in order to perform a particular one-
qubit gate on each qubit of all N-qubit numbers, we must
carry out N of these one-qubit operations on each of the
appropriately selected 2V levels. For instance, suppose we
wish to apply a one-qubit phase gate, defined as before, on
the second (right) qubit represented in our two-qubit system.
This action will take our initial state from Eq. (8) to a final
state

|ihy) = 0|00 + a1 ?|01) + a1 10) + aye[11). (12)

In this operation a phase ¢ has been added to each of the two
two-qubit states whose second qubit is |1). If we had chosen
the first qubit as the target then the |10) and the |11) states
would have been multiplied by the ¢'® phase factor.

There are two basic options of implementing this and
other one-qubit operations using our APT procedures in this
two-qubit system:

(i) One can perform two consecutive phase-gate op-
erations for each of the two levels, using the same interme-
diate and shelving states for both processes.

(ii) One can introduce another intermediate and shelv-
ing state, |/,) and |S,), and then perform the two phase gates
simultaneously on both qubit states, as shown in Fig. 6.

The second option would appear preferable because it
would consume half (or an Nth) the amount of time of the
first option. However, it is more restricted: First, the laser
pulses must be accurately constructed such that the appropri-
ate levels are simultaneously coupled for each of the transi-
tions, and second, the encoding of these states in the rovibra-
tional eigenstates of the molecule must be chosen such that
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FIG. 7. (Color online) Results from the numerical simulation of
the three discussed gates, constituting a universal gate set, applied
to our two-qubit system initialized to an even superposition of the
four-qubit basis states. Two consecutive pulse sequences are applied
to the appropriate levels to perform each of the two single qubit
gate operations. The units used are as before. (a) Plot of the Rabi
frequencies for the pulses coupling each one of the states: |00)
(solid), |01) (dashed), and |S;) (dash-dot-dot) to the intermediate
state |1;); and |10) (dotted), |11) (dash-dot), and |S,) (dash-dash-dot)
to |I,). (b) Time evolution for each state’s population. We use a
similar representation as in Fig. 5(b) with changes to the state |S5)
(dash-dash-dot), and the two intermediate levels (thin solid lines)
whose populations fluctuate near zero. (c) The evolutions of the
four-qubit coefficients are shown using the same representation as
before. The thicker and thinner lines represent the real and imagi-
nary parts of the coefficients.
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there is no interference between the two simultaneous pro-
cesses. Thus if we are to perform two simultaneous one-qubit
operations in a two-qubit system, each of the two laser pulses
will have to contain two different Rabi frequencies tuned to
be in resonance with the transitions depicted in Fig. 6. In this
scheme we first apply the two pulses {Qg;,g,} followed by
the {Q;,Q,,} pair, thereby simultaneously transferring the
populations of the [10) and |11) states to the two shelving
levels, |S;) and |S,), respectively. Then, as before, this pulse
sequence is reversed and the populations are sent back with
the desired phase to their original levels.

In the N-qubit systems, N different narrow-band pulses
must be contained within each pulse envelope in order to
simultaneously perform the N single qubit operations. Ex-
perimentally, we can design such pulses using commercially
available pulse shapers. The above strategy also applies to
the Hadamard and other one-qubit gates.

C. Composite operations on two-qubit systems

We now apply our technique to perform composite opera-
tions made up of the phase-change, Hadamard, and CNOT
logic gates on two-qubit systems, thereby proving its ability
to perform any desired quantum computation on qubit sys-
tems of arbitrary dimensions. Instead of demonstrating again
the /8 phase (T) gate we study the 7r-phase change gate,
which involves simply adding a different phase to one of the
pulses in the second APT process, as discussed in Sec. I D.
We show that one can produce in this way a molecular rep-
resentation of a Bell state with essentially 100% fidelity.
Here we use the same molecular state encoding as in the
CNOT example, with the additional shelving (|S,)) and inter-
mediate state (|/,)) encoded in the |X,v=0, J=2) and |B,v
=1, J=1) states, respectively. In Fig. 7 we present simula-
tions of three consecutive gate operations on a product initial
state:

1
|42 = 500 +[10)(102) +[12)) = (100) +[01) +[10) + [11)).

(13)

The first operation performs a 7r-phase gate on the first (left)
qubit if this qubit is 1, resulting in the state

)= 5(100) + 1)~ 110y~ 1), (14)

The two individual phase-gate operations that must be per-
formed on the [01) and |11) states are separated for demon-
stration. However, since these procedures can be done simul-
taneously by tuning the pulses to address each of the
appropriate levels we used different intermediate, |1,), |I,),
and shelving states, |S,), |S,), for each case.

In the next step a Hadamard gate acts on the second
(right) qubit of |¢,,). Shown in Fig. 7(a) are the two consecu-
tive single qubit processes: |00)+|01)—|00) and —(|10)
+|11)) ——|10) that together give us the state
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1
|ih,) = —=(|00) - 10}). (15)
V2

Finally, we apply a CNOT gate, moving the population
from |10) to |11). Since the target state did not contain any
population, the shelving state was not required. (In fact a
basic three-level APT transfer scheme would have been suf-
ficient.) The final operation leaves us in a representation of a
Bell state,

1
ly = —=(00) - [11)). (16)
V2

This combined logic operation is characterized by the same
essentially perfect gate fidelity encountered for each of the
individual gates. A calculation finds an error of less than
0.01% for this process, the slight deviation from previously
higher stated fidelities are due to the large variations in Rabi
frequencies between pulses that we use in order to test the
robustness of the scheme. Higher accuracy, approaching the
presumed fault-tolerant error threshold of 99.99%, can be
obtained by minor tuning of the pulses’ intensities together
with an additional lengthening of the pulses conjoining each
of the consecutive APT processes.

IV. CONCLUSIONS

We have developed a method of implementing a universal
gate set on one- and two-qubit molecular systems using APT.
We have demonstrated the procedure using the Na,-molecule
vibrational states. Our method is robust and produces nearly
flawless gate fidelities. The procedure can be readily ex-
tended to perform any quantum computation on much larger
systems. An experimental realization of our procedure in the
Na, molecule is now being developed.

We have shown that when the number of qubits is in-
creased it is possible to shorten the performance times by
using more molecular levels. Although this shortening of
performance times uses more resources (molecular levels), it
enables multiplexing and saving in laser resources, because
the procedure then uses fewer pulses, with each pulse being
composed of many narrow-band components. Such pulses
can now be readily prepared using commercially available
pulse shapers.

Although we have shown how to produce a molecular
representation of a Bell state, we have so far not exploited
the theoretically predicted superior scaling of entangled
states. In molecular systems, entanglement of the vibrational
and the rotational quantum states in an ordinary optical ex-
citation process is easily attainable via broadband excitations
from a |v;)|J;) initial state to produce an entangled superpo-
sition of energetically close [v')|J;+1) and |v")|J;— 1) states.
The exploitation of such entanglements in conjunction with
our procedures is now being investigated.

ACKNOWLEDGMENTS

We thank Evgeny Shapiro and Ioannis Thanopoulos for
invaluable discussions.

052308-8



ROBUST OPERATION OF A UNIVERSAL SET OF LOGIC...

[11M. A. Nielson and 1. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-
bridge, England, 2000).

[2] J. P. Palao and R. Kosloff, Phys. Rev. Lett. 89, 188301 (2002).

[3]J. P. Palao and R. Kosloff, Phys. Rev. A 68, 062308 (2003);
69, 059901(E) (2004).

[4] U. Trumann, C. Tesch, and R. de Vivie-Riedle, Chem. Phys.
Lett. 378, 273 (2003).

[5] D. Babikov, J. Chem. Phys. 121, 7577 (2004).

[6] C. Tesch and R. de Vivie-Riedle, J. Chem. Phys. 121, 12158
(2004).

[7] U. Troppman and R. de Vivie-Riedle, J. Chem. Phys. 122,
154105 (2005).

[8] S. Rice and M. Zhao, Optical Control of Molecular Dynamics
(Wiley-Interscience, New York, 2000).

[9] D. Tannor and S. Rice, J. Chem. Phys. 83, 5013 (1985).

[10] S. Shi, A. Woody, and H. Rabitz, J. Chem. Phys. 88, 6870
(1988).

[11] E. Farhi et al., Science 292, 472 (2001).

[12] W. Kaminsky, S. Lloyd, and T. Orlando, e-print arXiv:quant-
ph/0403090v2.

[13] M. Steffen, W. vanDam, T. Hogg, G. Breyta, and 1. Chuang,
Phys. Rev. Lett. 90, 067903 (2003).

[14] M. Grajcar, A. Izmalkov, and E. II'ichev, Phys. Rev. B 71,
144501 (2005).

[15] M. S. Sarandy and D. A. Lidar, Phys. Rev. Lett. 95, 250503
(2005).

[16] A. M. Childs, E. Farhi, and J. Preskill, Phys. Rev. A 65,
012322 (2001).

[17] P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999).

[18] A. M. Samoilenko, Y. A. Prykarpatsky, U. Taneri, A. K.
Prykarpatsky, and D. L. Blackmore, Math. Comput. Simul.
66, 1 (2004).

PHYSICAL REVIEW A 75, 052308 (2007)

[19] D. Lucarelli, J. Math. Phys. 46, 052103 (2005).

[20] L.-A. Wu, P. Zanardi, and D. A. Lidar, Phys. Rev. Lett. 95,
130501 (2005).

[21] U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, J.
Chem. Phys. 92, 5363 (1990).

[22] K. Bergmann, H. Theuer, and B. Shore, Rev. Mod. Phys. 70,
1003 (1998).

[23] Z. Kis and F. Renzoni, Phys. Rev. A 65, 032318 (2002).

[24] H. Goto and K. Ichimura, Phys. Rev. A 70, 012305 (2004).

[25] N. Sangouard, X. Lacour, S. Guérin, and H. Jauslin, Eur. Phys.
J. D 37, 451 (2006).

[26] N. Sangouard, X. Lacour, S. Guérin, and H. R. Jauslin, Phys.
Rev. A 72, 062309 (2005).

[27] N. Vitanov, M. Fleischhauer, B. Shore, and K. Bergmann, Adv.
At., Mol., Opt. Phys. 46, 55 (2001).

[28] M. Shapiro and P. Brumer, Principles of the Quantum Control
of Molecular Processes (John Wiley and Sons, Inc., Hoboken,
NJ, 2003).

[29] V. Hughes and L. Grabner, Phys. Rev. 79, 829 (1950).

[30] W. J. Stevens ef al., J. Chem. Phys. 66, 1477 (1977).

[31] K. Xu, T. Mukaiyama, J. R. Abo-Shaeer, J. K. Chin, D. E.
Miller, and W. Ketterle, Phys. Rev. Lett. 91, 210402 (2003).

[32] F. K. Fatemi, K. M. Jones, P. D. Lett, and E. Tiesi, Phys. Rev.
A 66, 053401 (2002).

[33] P. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan,
Inf. Process. Lett. 75(3), 101 (2000).

[34] W. Demtroder, W. Stetzenback, M. Stock, and J. Witt, J. Mol.
Spectrosc. 61, 382 (1976).

[35]J. J. Camacho, A. Pardo, and J. M. L. Poyato, J. Phys. B 38,
1935 (2005).

[36] R. G. Unanyan, B. W. Shore, and K. Bergmann, Phys. Rev. A
59, 2910 (1999).

052308-9



