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We show how to do decoy-state quantum key distribution efficiently with large random errors in the intensity
control. We present a theorem for efficiently calculating the lower bound of single-photon counts with many
undetermined parameters. In the calculation of the single-photon counts of our protocol, the linear terms of the
intensity fluctuation disappear and only the quadratic terms take effect. Given that the intensity fluctuation is
upper bounded by ±5%, ±10%, and ±15%, the verified lower bound of the percentage of untagged bits from
our protocol is as large as 99.7%, 99.0%, and 97.9% of that from an ideal protocol where the light intensity is
exactly controlled.
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I. INTRODUCTION

Recently, some proposals have been made for implement-
ing quantum key distribution �QKD� �1–3� securely with ex-
isting technologies �4–11�. The decoy-state method �4–8�
seems to be very promising: it only requires a random switch
of the intensity of coherent-state pulses �light pulses directly
from a laser device� among a few values. Different from the
earlier results �12�, which used only one intensity of coherent
light, the decoy-state method is unconditionally secure under
any attack, including the so-called photon-number-splitting
�PNS� attack �12–14�. By the separate theoretical results of
Inamori, Lütkenhaus, and Mayers �ILM� and Gottesman, Lo,
Lütkenhaus, and Preskill �GLLP� �15�, QKD can be done
securely even if Alice uses an imperfect source, provided that
the upper bound of the fraction of tagged bits �those raw bits
caused by multiphoton pulses from Alice� or the lower bound
of the fraction of single-photon counts is known. The decoy-
state method can be used to verify such bounds faithfully and
efficiently.

Decoy-state QKD has been implemented in a number of
experiments �16–20�. Very recent experiments have demon-
strated a QKD distance longer than 100 km �17–19� and a
very stable, remarkable key rate over a distance of more than
20 km �20�, with one-way quantum communication only. All
these indicate that decoy-state QKD will be practically use-
ful. However, the existing theory of the decoy-state method
assumes the exact intensity of each light pulse. As a continu-
ous variable, the intensity of a coherent-state light pulse can-
not be controlled exactly in principle. A very important prob-
lem in practical QKD is how to use the decoy-state method
efficiently, given the inexact control of the pulse intensity. In
this paper, we study this problem and we find that, if the
intensity error of each pulse is random, the decoy-state
method can work efficiently even when there are large inten-
sity errors. This paper is arranged as follows. After a brief
background review of decoy-state QKD in the next section,
we show in Sec. III how to verify the fraction of single-
photon counts by the decoy-state method when there are ran-

dom intensity fluctuations in the decoy and signal pulses, if
the averaged intensity is bounded in a small range. A simple
method to verify the bounds of the averaged intensity is pre-
sented in Sec. IV. We then evaluate the efficiency of our
method in Sec. V. A discussion of the applicability of our
protocol is given in Sec. VI. The paper ends with concluding
remarks in Sec. VII. Detailed derivations of some formulas
used in Sec. III are given in the Appendix.

II. BACKGROUND REVIEW

To have a clear picture, we would like first to consider an
analogy here. We want to distill out pure water from raw
water by heating. For security, we have to heat the raw water
for a sufficiently long time so that all poisonous constituents
in the raw water are removed. The heating time is dependent
on the amount of poison in the raw water. The ILM-GLLP
result says that if the amount of poisonous constituents in the
raw water is given, then we know the heating time needed to
remove all harmful constituents, and the remaining water is
pure. For security, we need only the upper bound of the

poisonous constituents. Suppose the true amount is �̂ and
this requires a heating time t̃. If we overestimate the amount

as ���̃, we shall use a longer heating time t� t̃. We can
regard it as two-stage heating: first, heat the water for time t̃
and then take additional heating for an interval t− t̃. Since at
time t̃ the water is pure already, it is still pure with any
additional heating. This ILM-GLLP result itself does not
show how to verify the amount of poisonous constituents in
the raw water. If we overestimate the amount too much, we
need too long a heating time and then all the raw water may
be evaporated and we obtain nothing finally; if we underes-
timate the amount then we are worrying that the raw water is
insufficiently heated and the remaining water after heating is
still impure. The “decoy-state method” in this analog is to
faithfully and tightly verify the upper bound of poisonous
constituents in the raw water. The verified amount is always
larger than the true amount for any type of raw water, and the
verified amount is normally only a little bit larger than the
true value.

Now we come back to the theory of QKD with an imper-
fect source. We start from the theoretical result of ILM and*Electronic address: xbwang@mail.tsinghua.edu.cn
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GLLP �15�. The elementary concept there is the so-called
tagged bits, of which Eve can have full information without
causing any disturbance. In the case that Alice uses an im-
perfect source, those raw bits caused by multiphoton pulses
from Alice are regarded as tagged bits, because Eve in prin-
ciple can have full information of their bit values without
causing any disturbance if she uses a PNS attack. The ILM-
GLLP results �15� show that, even if Alice has used an im-
perfect source, a secure final key can be distilled if one
knows the upper bound of the tagged bits. There are two
important features of the ILM-GLLP results �15�. First, the
key distillation does not need information about which raw
bits are tagged. Second, the key distillation does not need an
exact value for the fraction of tagged bits. The only informa-
tion needed is the upper bound of the fraction of tagged bits
among all those initial bits. In particular, the final key rate is
given by �15�

R = 1 − � − H�t� − �1 − ��H� t

1 − �
� , �1�

where � is the upper bound of the fraction of tagged bits, t is
the quantum bit-flip rate �QBER�, and H�t�=−t log2 t− �1
− t�log2�1− t�. There are two tasks in the final key distillation,
error correction and privacy amplification. Formula �1�
shows that after the error correction, which consumes H�t� of
raw bits, is done, q=�+ �1−��H(t / �1−��) bits must then be
used in privacy amplification to guarantee security. Suppose

the true value of the fraction of tagged bits is �̂��. If we

knew the exact value �̂, we would need to consume only q̃

= �̂+ �1− �̂�H(t / �1− �̂�) of raw bits in the privacy amplifica-

tion in order to obtain a secure final key K̃. But we do not

know the precise value �̂; what is used is the upper bound
value � in doing the privacy amplification. This means that if

we replace the precise value �̂ by a larger value �, we shall
consume more than the needed amount of raw bits in the

privacy amplification and the final key K is shorter than K̃.
Equivalently, the whole privacy amplification can be virtu-
ally divided into two stages. In stage 1, q̃ raw bits have been

consumed and the key K̃ is obtained. In stage 2, q− q̃ raw
bits are consumed for a further privacy amplification and the

final key K is obtained. Since K̃ is secure already, additional
privacy amplification to a secure key is also secure. There-
fore K is secure. This means that any overestimation of the
amount of tagged bits is secure. However, too much overes-
timation will decrease the key rate or even lead to a zero final
key. For example, if we trivially assume �=1, this is a cor-
rect upper bound but the key rate will be zero. Before the
decoy-state method was proposed, one had no other choice
but to trivially assume that all those multiphoton pulses
caused counts at Bob’s side. This would overestimate the �
value drastically with increase in the distance of QKD. The
necessary condition for a secure QKD is ��1. Consider a
coherent state of intensity x �with phase randomization�

�̂x = �
n=0

�
e−xxn

n!
�n	
n� . �2�

Suppose the channel transmittance is � and the constant in-
tensity x=� is used by Alice for all pulses. The total counts
of Bob’s detector are given by

1 − e�� + dB � �� + dB � �� �3�

if the dark count rate dB of Bob’s detector is very small. For
security, we need

�� 	 e−��2/2 �4�

if we trivially assume that all those multiphoton pulses have
caused counts at Bob’s side. This requires �	�e−� /2. Note
that Eve could also control the instantaneous detection effi-
ciency of Bob’s detector. Suppose the average detection ef-
ficiency of Bob’s detector is 
B and the light intensity de-
creases by one-half over every 15 km, then �=2−L/15
B,
given the QKD distance L. The secure distance is then lim-
ited by

L � − 15 log2�e−��
B
−1/2� . �5�

This shows that the secure distance decreases with increasing
intensity �. If ��0.1 and 
B�10%, the secure distance is
shorter than 20 km. One can raise the secure distance by
decreasing �; however, this demands better detection tech-
nology �21� because otherwise the quantum bit-flip rate will
be too large due to the dark count. Also, the key rate will be
low if � is too small.

The central task of the decoy-state method is to verify the
� value faithfully and tightly. For security, the verification
should be faithful so that the verified value � should never
be smaller than the true value of the fraction of tagged bits,
whatever is Eve’s channel. For efficiency, the verified �
value should be only a little larger than the true value in the
normal case when there is no Eve.

If one uses coherent states, information about the upper
bound of the tagged bits �multiphoton counts� is equivalent
to information about the lower bound of the fraction of
single-photon counts �1. The ILM-GLLP result has then
been improved �26� and a higher key rate formula is given
based on the the lower bound of the fraction of single-photon
counts

R = �1 + �0 − H�t� − �1H�t1� , �6�

where �1 and �0 are the lower bounds of the fraction of
single-photon counts, and vacuum counts respectively, and t1
is the upper bound of the QBER of those single-photon
pulses. Recently, the result has been further improved by
Koashi �27�.

In this paper, we shall study only how to verify the lower
bound of the fraction of single-photon counts instead of the
upper bound of the fraction of tagged bits hereafter. We shall
call those raw bits caused by single-photon pulses sent from
Alice untagged bits.
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III. THREE-INTENSITY DECOY-STATE METHOD
WITH RANDOM INTENSITY FLUCTUATIONS

The counting rate of any state � is defined as the prob-
ability that Bob’s detector counts whenever Alice sends out a
pulse of state �. If Alice sends out N pulses of state � and
Bob observes n counts, the counting rate of state � is S
=n /N. In general, given a source producing independent
pulses of mixed states,

� = a1�1	
1� + �1 − a1��̃ , �7�

if the lower bound of the counting rate of the single-photon
state ��1	
1�� is known to be s1, the �1 value of this source is
a1s1 /S. Note that in such a case S can be directly observed in
the experiment. In the following we shall consider only how
to verify s1. In the protocol, Alice uses three types of pulse,
vacuum pulses, decoy pulses of supposed intensity �, and
signal pulses of supposed intensity ��	� �and ���1�. For
simplicity of presentation we shall also call these three types
of pulses three classes: Y0, Y, and Y� for the vacuum pulses,
the decoy pulses, and the signal pulses, respectively. At each
time, Alice chooses a pulse randomly from one class and
sends it to Bob. More explicitly, we assume that at each time,
the probabilities of using a vacuum pulse �a pulse from Y0�,
a decoy pulse, and a signal pulse is p0, p�, and p��, respec-
tively �p��	 p�	 p0 , p0+ p�+ p��=1�.

We shall assume that the intensity fluctuation of each in-
dividual pulse is random. This is possible if we use some
specially designed schemes to generate the pulses. For ex-
ample, consider a scheme where Alice controls the intensity
of each decoy pulse and signal pulse by the single-shot feed-
forward method as shown in Fig. 1. Each time she first pro-
duces a strong father pulse Fi whose intensity is not con-
trolled exactly. This pulse is then split into two daughter
pulses: the �strong� reflected pulse Ti of intensity Ii and the
transmitted pulse �i. The intensity of pulse Ti is detected in
detector D. Given the intensity of the pulse Ti and the
reflection-transmission ratio R of the beam splitter, the in-
tensity of the pulse �i can be calculated. The attenuator A is
controlled instantaneously according to the single-shot detec-
tion outcome �the electrical current� of D. If Alice wants to
produce a constant intensity w for the outcome pulse �i, the
instantaneous attenuation should be set to be Rw / Ii exactly.

If the measurement and the feedforward instantaneous at-
tenuation are done accurately, the intensity of the outcome
pulse �i is a constant. However, there could be random er-
rors in the measurement outcome �the electrical current of D�
and in the instantaneous attenuation, and these errors cause
random fluctuations of the intensity of the light pulse �i.
�The intensity of the outcome pulse �i should be controlled
to be larger than 2�� in the scheme.�

There are many ways to do the instantaneous attenuation.
For example, one can make use of photon polarization. Set
the polarization of pulse Fi to be horizontal. If the polariza-
tion of pulse �i is rotated by a certain angle, the intensity of
the pulse after passing through a horizontal polarizer will be
decreased accordingly. Alternatively, one can also attenuate a
light pulse with a phase shift. The light is first split into two
beams and then a phase shift is taken on one beam. After
combining these two beams in a beam splitter, one output
beam will be attenuated accordingly. Here we require feed-
forward control of the attenuation, i.e., the polarization rota-
tion or the phase shift at each time, to be determined by the
measurement outcome �electrical current� of detector D. This
type of feedforward technique has been demonstrated in a
recent experiment with electronic optical modulators
�EOMs� in another application �22�. There, the overall delay
time for a complete feedforward polarization rotation is
about 150 ns, which requires an optical fiber of 30 m long to
delay the light. The switching time of an EOM is about 65 ns
�22�. This allows an overall repetition rate of more than
15 MHz, which exceeds the repetition rates of the existing
decoy-state experiments already. The EOM switching time
can be further shortened �23�. Pulse �i from Fig. 1 is used as
the input light pulse in our protocol as shown in Fig. 2.

Given these random errors, whenever Alice wants to use
� or ��, she actually uses

�i = �1 + i��̄, �i� = �1 + i���̄�. �8�

Alice does not know the value of the instantaneous fluctua-
tion i or i�. Here �̄ , �̄� are the averaged intensities of the
decoy and signal pulses

FIG. 1. Single-shot feedforward control of the intensity of each
individual light pulse. BS, beam splitter; D, detector; A, attenuator.
The attenuator offers instantaneous attenuation controlled by the
measurement outcome of D. Since there could be random errors in
the measurement outcome and attenuation, there are random errors
in the outcome light pulse �i.

FIG. 2. Our proposed setup for decoy-state QKD. D1, low-
efficiency detector; A1, constant attenuation; BS, 50:50 beam split-
ter. The transmitted light �pulse O� is sent to Bob and the reflected
light �pulse r� is detected by Alice. The intended intensity of pulse
xi can be either � or �� as required by the three-intensity decoy-
state protocol. By observing the number of counts of D1, the bound
values of the averaged intensity of output pulses can be determined
tightly.
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�̄ =
1

N
�

1

N

�i, �̄� =
1

N�
�

1

N�

�i�, �9�

and N ,N� are number pulses in classes Y ,Y�, respectively.
As shown in Sec. IV, the values of �̄ , �̄� can be determined
in very narrow ranges as

�̄ � ��−,�+�, �̄� � ��−�,�+�� �10�

using the circuit shown in Fig. 2. We shall make use of the
following important fact:

�
0

N

i = �
0

N�

i� = 0 �11�

in the calculation. Since the intensity error of each individual
pulse is random and independent, the state of each class can
be represented by a single-pulse state. The true state of a
pulse in class Y �decoy pulse� can be written into the follow-
ing convex form:

�� =
1

N
�

i,n=0

N

�̂�i
= a0�0	
0� + a1�1	
1� + ac�c, �12�

with a0=�ie
−�i /N, a1=�i�ie

−�i /N, ac=1−a0−a1; �̂�i
is the

density operator of the coherent state of intensity �i as de-
fined in Eq. �2� with x=�i, and �c is the density operator of
all multiphoton pulses in class Y. Explicitly,

ac�c =
1

N
�
i=1

N

�
n=2

�
�i

ne−�i

n!
�n	
n� . �13�

The state of a signal pulse is

��� =
1

N�
�
i=1

N�

�
n=0

�

�̂�i�
. �14�

Here �̂�i�
is a coherent state of intensity �i�, as defined by Eq.

�2� with x=�i�. If �̄� is sufficiently larger than �̄ and the
intensity error is not too large, we can also write ��� in a
convex form including �c:

��� = a0��0	
0� + a1��1	
1� + ac��c + ad��d �15�

with a0�=�ie
−�i� /N�, a1�=�i�i�e

−�i� /N�, ac�= ���i�
2e−�i� /N�� /

���i
2e−�i /N�ac, ad��0, and �d a density operator. Given

these convex forms of the decoy and the signal states, we
have the following equations:

S� = a0S0 + a1s1 + acsc,

S�� = a0�S0 + a1�s1 + ac�sc + ad�sd. �16�

Here S0 ,S� ,S�� are the observed counting rates of pulses in
classes Y0 ,Y ,Y�, respectively. Therefore we regard them as
known parameters in the protocol. s1 and sc are unknown
variables of the counting rates of single-photon pulses and
pulses of state �c; sd is the counting rate of state �d which is
regarded as an unknown parameter. The values of parameters
�ax �x=0,1 ,c , �ax� �x=0,1 ,c ,d are not determined yet. In

practice, the number of pulses is always finite; therefore sta-
tistical fluctuation for the counting rate of a certain state is
unavoidable. In general, we can assume sx�= �1−rx�sx, x
=1,c, and �s1� ,sc�, ��s1 ,sc� are the counting rates of single-
photon pulses and �c pulses from class Y� �Y� respectively.
The ranges of �rx �x=1,c can be determined by classical
sampling theory. The vacuum counts from classes Y ,Y� can
also be a bit different from that of class Y0. We use the
notations s0 ,s0� for the counting rates of vacuum pulses in
classes Y ,Y�; their possible ranges can also be determined by
classical sampling theory. If we define bc�= �1−rc�ac�, Eq.
�16� is changed to the following form for the nonasymptotic
case:

S = a1s1 + acsc,

S� = a1�s1 + bc�sc, �17�

and S=S�−a0s0, S�=S��−a0�s0�+ f1−ad�sd, and f1=r1a1�s1.
Therefore, it will be secure if we find the smallest value s1
satisfying the equation above among all possible values for
the parameters S ,S� ,a1 ,ac ,a1� ,bc�. In general, this can be
done numerically. But there are too many undetermined pa-
rameters here; therefore the complexity of numerical solution
can be huge. In what follows we first make an analytical
study of how to obtain the worst-case solution for s1 given
the ranges of all parameters, and then we show how to de-
termine the range of each parameter.

Define K1=S/a1, Kc=S /ac, K1�=S� /a1�, Kc�=S� /bc�. We
can always find a meaningful solution for s1 ,sc if

K1� 	 K1 	 0, Kc 	 Kc� 	 0, �18�

as shown in Fig. 3. The solution of s1 ,sc is the crossing point
of the two lines in the sc-s1 plane. In this plane, it is easy to
see that the s1 value rises if K1� or Kc� decreases, or if K1 or Kc
rises. Therefore, the largest possible values of K1� ,Kc� and the
smallest possible values of K1 ,Kc will produce the lower
bound of s1. Therefore we have the following theorem.

Theorem. Given Eq. �17�, if Eq. �18� holds, the maximum
values of the parameters in set U= �a0s0 ,a1 ,ac , f1 and the
minimum values of the parameters in set V

FIG. 3. Graphics of Eq. �17� in s1-sc plane. Obviously, the s1

value will be raised if K1 or Kc is raised, or if K1� or Kc� is decreased.
This leads to our theorem.
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= �a0s0� ,a1� ,bc� ,ad� ,sdwill give the smallest non-negative
value of s1 that satisfies Eq. �17�.

Given this theorem, the remaining task is to determine the
upper bounds of parameters in set U and the lower bounds of
parameters in set V. We have the following bound values for
those parameters involved in Eq. �17�:

e−�+ � a0 � e−�−�1 + �̄22/2� ,

�1 − �−2��−e−�− � a1 � �+e−�+,

ac � 1 − e−�+ − �+e−�+ + �+2/2, �19�

a0� =
1

N � e−�i� � e−�̄+� ,

a1� � �1 − �−��2��−�e−�−� ,

bc� � �1 − rc�
�−�

2�1 − e−�− − �−e−�−�

�1 + 2��+
2e�−�−�+

,

ad�sd � 0, �20�

with =Max�i, �=Max�i�, and �± and �±� are bound
values of the averaged intensity of the decoy pulses or the
signal pulses, respectively, as defined in Eq. �10�. The deri-
vations of the inequalities above are shown in the Appendix.
The task remaining is to determine the values of �± and �±�.
These can be done by simple tomography at Alice’s side.

IV. DETERMINE THE AVERAGED INTENSITIES
BY SIMPLE TOMOGRAPHY

Alice can, as shown in Fig. 2, every time first produce a
pulse of intensity 2�i or 2�i� through attenuating the pulse
�i. The pulse is then split by a 50:50 beam splitter. The
transmitted mode is sent to Bob, while the reflected mode
goes to a low-efficiency photon detector, e.g., with a detec-
tion efficiency of 
�10%. Suppose she has observed the
clicking rate of h+d0 and h�+d0 for those N reflected pulses
of intensity ��i and N� reflected pulses of intensity ��i�,
respectively. Here d0 is the dark count rate of her detector.
Mathematically,

�
0

N

�1 − e−
�i�/N = h , �21�

which is equivalent to


�̄ −
� �1 + i

2�
2�̄2

2N
+ ¯ = h . �22�

This leads to the following facts:

�̄ � h/
 , �23�


�̄ −
� �1 + i

2�
2�̄2

2N
� h . �24�

The following inequality is obtained after solving Eq. �24�:

�̄ � �+ =
1 − �1 − 2h�1 + ��


�1 + ��
� h/
 + h2�1 + ��/�2
�

�25�

and �=�i
2 /N�2, =Max��i�. Using the Taylor expansion

of Eq. �21� we obtain a tightened lower bound formula based
on Eqs. �23� and �25�,

�̄ � �− = h/
 + h2/�2
� − 
2�+
3/3! �26�

Replacing h with h� in Eqs. �25� and �26� we can also bound
�̄�:

�̄� � �−� = h�/
 + h�2/�2
� − 
2�+�
3/3! �27�

and

�̄� � �+� =
1 − �1 − 2h��1 + ���


�1 + ���
� h�/
 + h�2�1 + ���/�2
�

�28�

with ��=�i�
2 /N���2, �=Max�i�. Alice can now know

the bounds of all parameters in Eqs. �19� and �20� with the
observed values h ,h� and the above formulas for �̄ , �̄�.

V. EFFICIENCY EVALUATION

We shall compare the efficiency of two protocols, the
ideal protocol where the intensity of light pulses from each
class is controlled exactly �0, �, or ��� and our protocol
where the intensity of each light pulses is inexactly con-
trolled. In a real experiment using our protocol, Alice simply
reads h ,h� values and then calculates the lower bound of s1.
Here we assume the model that Alice has observed

h = 1 − e
� � 
� − 
2�2/2, h� = 1 − e
�� � 
�� − 
2��2/2

�29�

in carrying out our protocol. Here � and �� are the intensity
values Alice wants to use for decoy and signal pulses. In
carrying out our protocol, Alice tries her best to produce
intensities � ,�� as accurately as possible. �Remark. Equa-
tion �29� is only an assumed model to forecast what h ,h�
would be observed if one did the experiment using our
method. In a real experiment, one simply uses the observed
values of h ,h� instead of Eq. �29�.� Given these, we can
calculate bounds for �̄ and �̄� by our earlier equations.
We take the following assumptions: �=0.2, ��=0.6, 
=5%
for Alice’s detection efficiency, a linear channel with trans-
mittance �=10−4, S0=s0=s0�=0, N=109, and =�. In
both protocols we use f1�10a1

�s1 /N�e−� and rc

�10�1/sc�1−a0−a1�N. As shown in Ref. �5�, the probabil-
ity that the actual value of the statistical fluctuation goes
beyond any of the assumed ranges above is exponentially
small. To compare the efficiencies of our protocol and the
ideal protocol, we only need to compare the solutions of Eq.
�17� for the two protocols. We now denote s1 , s̃1 to be the
lower bounds of single-photon transmittance verified from
our protocol and from the ideal protocol, respectively. The
lower bound of the fraction of single-photon counts from
class Y� is given by
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�1� = s1��e−���1 − ��2�/�1 − e−���� ,

�̃1� = s̃1��e−��/�1 − e−���� . �30�

�1� is for our protocol, �̃1� is for the ideal protocol. We shall

calculate T=s1 / s̃1, R=�1� / �̃1�. We find very good results
given various  values, as shown in Table I. Moreover, the
results of our protocol can even be improved because there
are obviously better ways to bound � ,�� more tightly. For
example, suppose we know that the fluctuation of more than
90% of the pulses is less than 10%, even though the largest
fluctuation is 50%; we have ��3.4% and we can verify R
�96% with 2 being replaced by � in all equations. For
another example, Alice can use two detectors of efficiencies

1 ,
2 to tightly verify the upper bound of �. Every time she
first produces a pulse of intensity 3x. She equally divides the
pulse into three modes, mode b is sent to Bob, and modes 1
and 2 are sent to detectors 1 and 2 at her side, respectively.
Using the number of counts of each detector at her side, she
can verify an upper bound of the � value almost equal to the
true value.

Our theorem is based on the conditions of Eq. �18�. These
conditions are related to the statistical fluctuations, which are
dependent on the value of s1 ,sc. But we can verify these
conditions before knowing the exact values of s1 ,sc. Denote
�=S� /�. There are only two possibilities for the value of sc,
i.e., sc�2� or sc�2�. If sc�2�, we have the bound values
of

f1 � 10a1� �

a1N
, 1 − rc � 1 −� 1

2�acN
. �31�

Given these, we can easily verify Eq. �18� and then obtain
the lower bound value of s1 through our theorem. If sc��,
using the first equality of Eq. �17� we find that s1	�, which
is a very good result because in the normal case of a linear
lossy channel, the true value of s1 is just �. Therefore, given
whatever value of sc, it is secure if we use Min�� ,s1 as the
verified lower bound of the single-photon counting rate �s1 is
the calculated result with the assumption sc�2�.� Normally,
one should find that s1��. In such a case, the s1 value is
used to distill the final key. If s1	�, one must use � as the
fraction of untagged bits for the final key distillation.

In the above discussions, we have assumed that the
vacuum pulses in class Y0 are exactly produced. But there
could also be errors in producing the vacuum pulses of class
Y0. This can be easily resolved as shown below. In general,
S0�0. We can safely set s0�=0 according to our theorem and
we need to consider only the upper bound of s0. Asymptoti-

cally, we can simply replace s0 by S0 even though pulses in
Y0 are not strictly vacuum. Assume that the actual state in Y0
is �0= �1−�0��0	
0�+�1�1	
1�+�m�m. Here �m is a state of
multiphoton pulses, �m=O��1

2�, �1�1, and �0=�1+�m. There-
fore, we have

S0 = �1 − �0�s0 + �1s1 + �msm. �32�

This leads to a preliminary upper bound of s0�S0 / �1−�0�.
We then replace s0 in Eq. �17� and solve the equation for
lower bound of s1. We assume s1�1.5S0 at this stage; oth-
erwise the protocol should be discarded. A new bound of
s0�S0 / �1−�0�−�1s1�S0 is obtained if Eq. �32� is used
again. According to our theorem, the result is secure if the s0
value is overestimated. Therefore one can simply use S0 even
though the vacuum pulses in class Y0 are not exactly
vacuum.

VI. DISCUSSION

We have assumed that the intensity error of each pulse is
independent and random in our protocol above. However, if
the feedforward control is not used, the intensity error may
not be perfectly random and the results here do not directly
apply. If the intensities of each pulse are correlated, then
neither the state of the decoy pulses nor the state of the signal
pulses can be represented by a single-pulse state. Also, the
counting rate of single-photon pulses from different classes
can be different even if there are infinite pulses of each class.
Consider an extreme example. The intensity of each indi-
vidual pulse is 10% larger than the assumed values �� or ���
for the first half of the decoy and signal pulses and 10%
smaller than the assumed values for the second half. Eve’s
channel transmittance is 4� for the first half of the pulses and
� for the second half of the pulses. �Eve can change the
channel transmittance according to the averaged pulse inten-
sities of a certain time interval. She can detect the intensity
change through measuring the pulses in a very short period,
given that the system repetition rate larger than 1 MHz.� The
counting rate of the single-photon pulses in class Y is

s1 =
1.1�e−1.1� � 4� + 0.9�e−0.9� � �

1.1�e−1.1� + 0.9�e−0.9� . �33�

The counting rate of single-photon pulses in class Y is

s1� =
1.1��e−1.1�� � 4� + 0.9��e−0.9�� � �

1.1��e−1.1�� + 0.9��e−0.9��
. �34�

Given �=0.2, ��=0.6, we find that

s1/s1� = 1.023 35 	 1. �35�

Therefore, the single-shot feedforward scheme in our proto-
col or any other scheme to guarantee the randomness of in-
tensity error is necessary. Of course we can also use the
protocol in Ref. �24� where randomness is not required, but
the protocol requires producing the decoy and signal pulses
from the same father pulse and using a stable two-value at-
tenuator. Another alternative is presented in Ref. �25� where
the only condition for a secure final key is to know the larg-

TABLE I. Efficiency comparison of our protocol and an ideal
protocol.



5% 10% 15% 20% 25% 30% 35%

T 99.8% 99.6% 99.2% 98.7% 98.0% 97.2% 96.3%

R 99.7% 99.0% 97.9% 96.3% 94.4% 91.9% 89.2%
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est possible intensity error, given any error pattern, but the
final key rate decreases drastically with small intensity er-
rors.

VII. CONCLUDING REMARKS

In summary, we have shown that the decoy-state method
can work efficiently even if there are large errors in the light
intensity, if the intensity errors of each pulse are random. The
lower bound of the fraction of untagged bits can be verified
efficiently since the effect of linear terms of the fluctuation
disappears, and we only need to consider the quadratic terms
in the protocol. It should be interesting to implement the
protocol here in the future.
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APPENDIX

In this appendix we derive the inequalities of �19� and
�20�. First, a0= �1/N��e−�i = �1/N�e−�̄�e−�̄i. After the Tay-
lor expansion, we have

� e−�̄i = ��1 − �̄i +
�̄2i

2

2
− ¯ � . �A1�

Using the facts that �i=0 and =Max��i�, we obtain

e−�̄ � a0 � e−�̄�1 + �̄22/2� . �A2�

Further, the fact that �−��̄��+ leads to

e−�̄+ � a0 � e−�̄−�1 + �̄22/2� . �A3�

This is the first inequality in Eq. �19�. We have the following
equivalent form for a1= �1/N���ie

−�i:

a1 =
1

N
�̄e−�̄ � �1 + i��1 − �̄i +

1

2
�̄2i

2 − ¯ � . �A4�

This means

�̄e−�̄�1 − �̄2� � a1 � �̄e−�̄, �A5�

which gives rise to

�−e−�−�1 − �−2� � a1 � �+e−�+, �A6�

the second inequality of Eq. �19�. Next we consider ac=1
−a0−a1=1− �1/N���e−�i +�ie

−�i�. As a result of Taylor ex-
pansion

ac = 1 − e−�̄�1 + �̄ −
2�̄2

2
+ ¯ � , �A7�

which leads to

1 − e−�̄ − �̄e−�̄ � ac � 1 − e−�̄ − �̄e−�̄ + e−�̄�̄22/2.

�A8�

Given the bounds of of �̄, we have

1 − e−�̄− − �̄−e−�̄− � ac � 1 − e−�̄+ − �̄+e−�̄+ + e−�̄+�̄+
22/2.

�A9�

The derivations of the first two inequalities in Eq. �20� are
same as far Eq. �19�. We only show the third one here. To
obtain the lower bound, we have

� �i�
2e−�i�/N�

� �i
2e−�i/N

�
�̄�2e−�̄�

�1 + 2��̄2e−�̄
. �A10�

Therefore we have

ac� �
�̄�2e�̄−�̄�ac

�̄2�1 + 2�
�

�−�
2�1 − e−�̄− − �̄−e−�̄−�

�1 + 2��+
2e�−�−�+

. �A11�

Given that bc�= �1−rc�ac�, we arrive at the third inequality of
Eq. �20�.
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