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The use of Rényi entropy as an uncertainty measure alternative to variance leads to the study of states with
quantum fluctuations below the levels established by Gaussian states, which are the position-momentum
minimum uncertainty states according to variance. We examine the quantum properties of states with expo-
nential wave functions, which combine reduced fluctuations with practical feasibility.
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I. INTRODUCTION

The most widely used measure of uncertainty is variance,
which has good properties that include simple uncertainty
relations for basic variables such as position and momentum
or the quadratures of a single-mode field. The minimum un-
certainty states for position and momentum have Gaussian
wave functions, combining interesting theoretical properties
with practical feasibility. These are coherent and squeezed
states. For mechanical systems, such as a trapped ion, this
includes the ground state of harmonic potentials, their dis-
placement created by a sudden shift of the trap center, and
the result of a nonadiabatic drop in the trap spring constant
�1�. In quantum optics they include the vacuum state, the
output of a laser well above threshold, and light emerging
from nonlinear media illuminated by a laser beam �2�.

However, variance is not free from nontrivial difficulties.
The most relevant are that �i� it puts too much weight on the
tails of probability distributions, and �ii� it leads to meaning-
less infinite variances in common situations �3�. Among
other possibilities, these difficulties are avoided by the Rényi
entropy, which has been successfully applied in recent times
to diverse physical problems �4–8�.

The analysis of the ultimate quantum limits using this
measure of uncertainty leads to the study of states with non-
Gaussian wave functions. In this work we examine the quan-
tum properties of states with exponential wave functions,
which combine reduced fluctuations with practical feasibil-
ity. These states are feasible since the exponential wave func-
tions are the ground state of � potentials, which can be ap-
proximated in practice by square potential wells in the limit
of vanishing width L and large depth V with finite product
VL �9�.

More specifically, we show that, when using the Rényi
entropy, the position-momentum uncertainty product for ex-
ponential states is less than for Gaussian states, which are the
minimum position-momentum uncertainty states according
to variance �Sec. III�. We show that they are nonclassical
states, as revealed by their nonpositive Wigner functions
�Sec. IV�, the presence of squeezing �Sec. V�, and sub-
Poissonian statistics �Sec. VI�. We examine the application

of these states to the detection of small phase shifts, showing
that they reach the Heisenberg limit �Sec. VII�.

II. RÉNYI ENTROPY

We consider a one-dimensional problem describable by
two conjugate Cartesian variables X , P satisfying the com-
mutation relation �X , P�= i�. In order to cover different
physical situations �such as position and momentum vari-
ables of a trapped ion or the field quadratures of a single-
mode quantum light field� we will consider the dimension-
less variables

x =�m�

�
X, p =

1
�m��

P , �2.1�

with �x , p�= i, where m is a mass and � a frequency.
The most popular measure of uncertainty of a generic

observable A is the variance �A,

��A�2 = �
a

�a − �A��2P�a�, �A� = �
a

aP�a� , �2.2�

where a are the values of the observable A and P�a� are the
corresponding probabilities. The main advantage of this mea-
sure is that it leads to an universal uncertainty relation for x
and p,

�x�p �
1

2
. �2.3�

Nevertheless, the product of variances becomes trivial and
useless in finite-dimensional spaces since there are proper
states with �A=0 �10�.

The main drawback of the variance is the tail effect,
where values of A with vanishing probabilities P�a� but large
	a	 are overestimated. This is particularly relevant for practi-
cal experimental and numerical problems, since the accurate
determination of the tails 	a	→� with P�a�→0 requires
large resources.

As a further disadvantage, the variance leads very often to
meaningless diverging results �A→�. To illustrate this point
let us consider a simple case where only two outcomes a
=0, a0 have nonvanishing probabilities,

P�a0� = �, P�0� = 1 − � , �2.4�

with P�a�0,a0�=0, so we get
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�A = �A��1

�
− 1. �2.5�

For fixed �A�=�a0, we have �A→� when �→0 and a0

→�. This behavior is rather paradoxical, because the diver-
gence of �A occurs in the limit in which the state becomes
the eigenstate of A with eigenvalue a=0, since when �→0
we have P�0�→1.

As a suitable alternative to the variance avoiding the
above difficulties, we may consider, for instance, the �=2
case of the family of Rényi entropies �4�

H� =
1

1 − �
ln
�

a

P��a�� , �2.6�

so that we define the uncertainty �A of the observable A as
�4–8�

�A = eH2 =
1

�
a

P2�a�
, �2.7�

which is bounded from below by unity, �A�1.
Uncertainty relations involving this uncertainty measure

are available for finite-dimensional spaces of arbitrary di-
mension N �6,7�. For example, in Ref. �6� it has been shown
that, for complementary observables A and B, with ��a 	b��
=1/�N, where 	a� and 	b� are the corresponding eigenvec-
tors, there are uncertainty relations of the form �see the Ap-
pendix for further details of this derivation�

�A�B � 
 2N

N + 1
�2

. �2.8�

However, to the best of our knowledge, there is no known
counterpart of this uncertainty relation for observables with a
continuous spectrum in infinite-dimensional spaces �7�.

III. EXPONENTIAL STATES AND UNCERTAINTY
PRODUCTS

Let us consider the family of exponential states 	�x�

	�x� =� 21/



2���1/
�
exp
i�p�x −

	x − �x�	


�
 � , �3.1�

where � and 
 are real positive parameters. For arbitrary

 ,� we have

�x =
�

21/
���3/
�
��1/
�

, �p =

21/


2�
���2 − 1/
�

��1/
�
,

�3.2�

and

�x =
2�



��1/
� , �3.3�

while no simple analytical expression for �p is available,
leaving aside the particular cases 
=1,2 ,�.

This family includes the Gaussian states 	g�x� for 
=2,

	g�x� = 
 2


�2�1/4

exp
i�p�x −
�x − �x��2

�2 � , �3.4�

which reach the equality in the uncertainty relation �2.3� with

�gx =
�

2
, �gp =

1

�
, �3.5�

so that they are referred to as minimum uncertainty states.
Concerning the Rényi entropy, we have

�gx = ��
, �gp =
2

�
�
 . �3.6�

Relevant examples of Gaussian states are the coherent
states 	c�x�, which are defined by 
=2 and �=�2,

	c�x� =
1


1/4 exp
i�p�x −
�x − �x��2

2
� , �3.7�

so that �cx and �cp are equal,

�cx = �cp =
1
�2

, �3.8�

and also �cx and �cp are equal,

�cx = �cp = �2
 . �3.9�

Gaussian states are no longer minimum uncertainty states
when using the Rényi entropy �2.7�, so that there are states
with uncertainty products �x�p below 2
 �8�. Maybe the
simplest and most interesting case is given by the exponen-
tial states with 
=1,

	e�x� =
1
��

exp
i�p�x −
	x − �x�	

�
� , �3.10�

or, in momentum representation,

	̃e�p� =�2�




exp�− ip�x��
1 + �2�p − �p��2 , �3.11�

for which

�ex =
�

�2
, �ep =

1

�
�3.12�

and

�ex = 2�, �ep =
4


5�
. �3.13�

When using the Rényi measure �2.7� the 
=1 states 	e�x�
in Eq. �3.10� present a product of uncertainties below the
Gaussian level,

�ex�ep =
8


5
� �gx�gp = 2
 , �3.14�

while the opposite result is obtained for the product of vari-
ances,

ALFREDO LUIS PHYSICAL REVIEW A 75, 052115 �2007�

052115-2



�ex�ep =
1
�2

� �gx�gp =
1

2
. �3.15�

The reduction of fluctuations for exponential states with 

�1 increases when 
 decreases, as shown in Ref. �8�, where
these states have been studied in classical optics as waves
less diffracting than Gaussian waves.

IV. NONCLASSICAL BEHAVIOR

The amount of nonclassical behavior can be measured in
different ways. One of the most widely used relies on the
positivity or negativity of s-ordered quasidistributions on the
phase space of the problem that includes the Wigner function
�11,12�. From a practical perspective, this is reflected in phe-
nomena such as squeezing and sub-Poissonian statistics,
which are examined in more detail below.

For the exponential states �3.1� with 
�2 the Wigner
function takes always negative values, since the Gaussian
states are the only pure states with positive definite Wigner
function �13�. In particular, for the case 
=1 the Wigner
function is �for �x�= �p�=0 without loss of generality�

We�x,p� =
1



exp
− 2

	x	
�
�
 cos�2p	x	� − �p sin�2p	x	�

1 + ��p�2

+
sin�2p	x	�

�p
� , �4.1�

which is represented in Fig. 1 as a function of x /� and �p.
The amount of negativity can be measured, for example, in
terms of the distance between We�x , p� and its modulus
�12,14�,

N = 

−�

�

dp

−�

�

dx�We�x,p� − 	We�x,p�	�2, �4.2�

which in our case leads to

N � 2.5 � 10−3. �4.3�

This negativity is actually very small when compared to the
negativity of number states, which is two orders of magni-
tude larger, even for small photon numbers such as n�10
�14�. This measure of negativity is not very informative
since, for example, it does not depend on the amount of

squeezing represented by the parameter �. A more informa-
tive measure is provided by the distance between 	e and the
coherent states 	c, which are reported to be the only classical
pure states �13,15�. This can be carried out, for example, in
terms of the Bures distance

dB
2 =

1

2
min

c
�	e − 	c�2 = 1 − max

c

�F , �4.4�

where F is the fidelity,

F = �
 dx 	c
*�x�	e�x��2

, �4.5�

and minc �maxc� means that we consider the minimum
�maximum� by varying the state parameters �x�c and �p�c of
the coherent state. For the same state considered above �

=1, �x�= �p�=0�, the maximum F is obtained for �x�c= �p�c

=0, leading to

max
c

�F =�2�


�
exp
 1

2�2�erfc
 1
�2�

� , �4.6�

where erfc is the complementary error function. In Fig. 2 we
have represented dB as a function of �, showing that the
minimum distance to coherent states �maximum fidelity� oc-
curs for �=1.08 with maxcF�0.97.

V. SQUEEZING

Squeezed states are those with fluctuations in x or p, or in
general of any rotated operator x�=x cos �+ p sin � for arbi-
trary �, below the level established by the coherent states.
Different uncertainty measures can be used to establish such
a limit.

If we use the variance, for the exponential states with
arbitrary 
 we have �xp+ px�=2�x��p� so that

��x��2 = cos2 ���x�2 + sin2 ���p�2. �5.1�

For 
=1 the squeezing condition becomes

��x��2 =
�2

2
cos2 � +

1

�2 sin2 � �
1

2
, �5.2�

which is satisfied either when ��1 or when ���2. Maxi-
mum squeezing occurs always for �=0,
 /2, i.e., the squeez-

�p

x/�

W (x,p)e

-2

0

2

-2

0

2

0

0.1

0.2

0.3

FIG. 1. Wigner function We�x , p� for the exponential state �3.10�
for �x�= �p�=0 as a function of x /� and �p.
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FIG. 2. dB as a function of � for the exponential state �3.10�.
Minimum occurs around ��1.08.
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ing condition is equivalent to �ex��cx or �ep��cp.
The result is slightly different if we use the threshold �3.9�

established by Rényi entropy so that �ex��cx occurs when
���
 /2 while �ep��cp holds when �� �4/5��
 /2. Thus
all states 
=1 are squeezed. Moreover, with the Rényi mea-
sure it is possible that both x and p are squeezed simulta-
neously, which holds for �� �4/5 ,1��
 /2.

VI. NUMBER STATISTICS

A relevant signature of nonclassical behavior �especially
in quantum optics� is sub-Poissonian number statistics,
which means that the fluctuations of the number operator are
below the level established by coherent states.

The number operator is

n̂ =
1

2
�x2 + p2 − 1� , �6.1�

and the number states 	n� are the eigenstates of n̂, n̂	n�
=n	n�, n=0,1 , . . . ,�, with wave function

	n�x� =� 1
�
2nn!

Hn�x�exp�− x2/2� , �6.2�

where Hn are the Hermite polynomials. The number statistics
for an arbitrary state 		� is

P�n� = ��n		��2. �6.3�

Concerning exponential states, the variance is of little use
since from Eq. �3.11� we have �p4�→� so that �en→�. For
a more accurate assessment of number fluctuations �n we
can rely on the Rényi entropy

� jn =
1

�
n=0

�

P j
2�n�

, �6.4�

for j=e ,c, so we may say that the analog of sub-Poissonian
statistics for this measure is �en��cn provided that the two
states have the same mean number �n̂�e= �n̂�c. For the expo-
nential states with 
=1 and �x�= �p�=0 we have that �n̂�e

= �n̂�c is just a function of �. In Fig. 3 we have represented
both �en, �cn for 
=1 as functions of �, showing that the
analog of sub-Poissonian behavior �i.e., �en��cn� occurs for
all �. We can note that this is fully opposite to the predictions
of variance.

VII. HEISENBERG LIMIT

Quantum fluctuations establish a limit to the resolution of
precision measurements, which is usually expressed as a
function of the energy resources employed in the measure-
ment. This is the case of interferometric measurements de-
vised to detect small phase shifts � generated by the number
operator n̂, which are rotations in the x , p plane. Phase shifts
are detected provided that � is above a threshold �� im-
posed by quantum fluctuations. In most cases, this threshold
can be determined simply by a propagation of uncertainties

from the measured observable M to the inferred value of the
phase shift ��M� so that, using the variance for example
�16�,

�� = � ��

��M�
��M =

�M

	��M�/��	
. �7.1�

For definiteness, let us consider M =x so that �16�

� ��x�
��

� = 	��x, n̂��	 = 	�p�	 �7.2�

and

�� =
�x

	�p�	
. �7.3�

In order to optimize �� let us consider that the state expe-
riencing the phase shift satisfies �x�=0 so that 	�p�	 is maxi-
mum for fixed energy resources, represented in this case by
the mean number �n̂�. Furthermore, we shall consider �x
→0. This is illustrated in Fig. 4.

Since �x→0 implies �p��x, we can use the approxi-
mation

�n̂� �
1

2
���p�2 + �p�2� , �7.4�

so that

1 1.5 2 2.5

1

2

3

4

�

e� n

c� n

FIG. 3. Number uncertainty �en �solid line� as a function of �
for exponential states with 
=1 and �x�= �p�=0, compared with the
number uncertainty for a coherent state �cn �dashed line� with the
same mean number �n̂�e= �n̂�c.

FIG. 4. Phase uncertainty in Eq. �7.3� where the shadowed re-
gion represents the area of uncertainty.
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�� =
�x

�2�n̂� − ��p�2
. �7.5�

Focusing on exponential states and minimizing with respect
to �, we get

�� =
�x�p

�n̂�
, �7.6�

which is reached for

� =

21/


2��n̂�
���2 − 1/
�

��1/
�
�7.7�

with

�x�p =

���3/
���2 − 1/
�

2��1/
�
, �7.8�

which does not depend on �n̂�.
Similarly, using Rényi entropy instead of variance to as-

sess the uncertainty of M we arrive at a closely related result

�� =
�x�p

�n̂�
, �7.9�

with

�x�p = 21/
���1/
���2 − 1/
� , �7.10�

for the same � as above. There is a lack of symmetry be-
tween x and p in Eqs. �7.9� and �7.10�. This mixture is un-
avoidable since �x arises from using the Rényi entropy to
assess the uncertainty of the measured observable, while �p
unavoidably arises when expressing �p� in terms of the mean
value of the number operator in Eq. �7.4�, since �p2�
= ��p�2+ �p�2 irrespective of the uncertainty measure adopted
for x.

We get the result that all exponential states reach the
Heisenberg limit, which is the best accuracy allowed by the
quantum theory for the detection of linear phase shifts gen-
erated by n̂. This is because the minimum phase uncertainty
scales as the inverse of the mean number �16�. In Fig. 5 we
have represented both �x�p and �x�p for the exponential

states as functions of 
, showing that the optimum states are
given by 
�2 �i.e., Gaussians� or 
�1.6, respectively.

VIII. CONCLUSIONS

We have examined the quantum properties of exponential
states. These states present a lesser position-momentum un-
certainty product than the minimum uncertainty states of
variance, they are nonclassical states with slightly negative
Wigner function, present squeezing, satisfy the analog of
sub-Poissonian number statistics, and allow us to reach the
Heisenberg limit. These states are feasible in practice since
they are the bound states of � potentials, which can be suit-
able approached via square wells.

Quantum fluctuations are involved in fundamental con-
cepts such as quantum versus classical behavior, comple-
mentarity, and quantum limits to precision measurements.
There is the peculiarity that the quantum theory does not
impose nor does it suggest any particular uncertainty mea-
sure, while the results obtained in these areas depend on the
choice adopted. This is the case, for example, of complemen-
tarity �17�. Most of the works on quantum fluctuations deal
exclusively with variance. However, there is nothing in the
quantum formalism favoring variance, and, as we have men-
tioned above, it can encounter relevant disadvantages. Thus,
alternative approaches such as the one considered in this pa-
per are worth elaborating.
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APPENDIX: UNCERTAINTY RELATIONS WITH RÉNYI
ENTROPIES

Here we provide a simple derivation of the uncertainty
relations presented in Ref. �6�. The state of the system in a
Hilbert space of dimension N is represented by a density
matrix �, while �a,b will represent the reduced density matri-
ces

�a = �
a

P�a�	a��a	, �b = �
b

P�b�	b��b	 , �A1�

where P�j�= �j	�	j�, j=a ,b, are the statistics of observables
represented by two Hermitian operators A, B, 	a� and 	b�
being the corresponding eigenvectors. We consider comple-
mentary observables so that ��a 	b��=1/�N.

Following the approach in Ref. �6�, the derivation of un-
certainty relations is simplified if we regard the above den-
sity matrices as vectors,

x = �ã, y = �b̃, v = �̃ , �A2�

where the tilde above any operator W designates

W̃ = W −
1

N
I , �A3�

and I is the N�N identity. A scalar product between arbi-
trary vectors vF,G is defined via the trace of the product of
the corresponding operators F ,G in the form

FIG. 5. �x�p and �x�p for the states �3.1� as functions of 
.
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vF · vG = tr�F†G� . �A4�

It can be seen that complementarity implies that x ·y=0,
and it follows that

x2 = v · x = CA
2 −

1

N
,

y2 = v · y = CB
2 −

1

N
,

v2 = tr��2� −
1

N
, �A5�

where

CA
2 = �

a

P2�a� =
1

�A
, �A6�

and similarly for CB.
Considering an orthogonal decomposition of v of the

form

v = 
xx + 
yy + 
zz , �A7�

where 
x,y,z are scalars and z�x ,y, we get from Eq. �A5�
that 
x=
y =1 so that

x2 + y2 � v2, �A8�

which is equivalent to

CA
2 + CB

2 �
N + 1

N
, CA

2CB
2 � 
N + 1

2N
�2

. �A9�

The last one can be expressed also as

�A�B � 
 2N

N + 1
�2

. �A10�

A weaker relation has been obtained via a slightly different
method in Ref. �7�,

�A�B � 
 2�N
�N + 1

�2

. �A11�
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