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Violation of Bell’s inequality with continuous spatial variables
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The Einstein-Podolsky-Rosen (EPR) argument revealed the paradoxical properties of a two-particle system
entangled continuously in the spatial parameter. Yet a direct test of quantum nonlocality exhibited by this state,
via a violation of Bell’s inequality, has not been forthcoming. In this paper, we identify and construct experi-
mental arrangements comprising simple optical components, without nonlinearities or moving parts, that
implement operators in the spatial-parity space of single-photon fields that correspond to the familiar Pauli spin
operators. We achieve this by first establishing an isomorphism between the single-mode multiphoton
electromagnetic-field space spanned by a Fock-state basis and the single-photon multimode electromagnetic-
field space spanned by a spatial-eigenmode basis. We then proceed to construct a Hilbert space with a two-
dimensional basis of spatial even-odd parity modes. In particular, we describe an arrangement that implements
a rotation in the parity space of each photon of an entangled-photon pair, allowing for a straightforward
experimental test of Bell’s inequality using the EPR state. Finally, the violation of a Bell inequality is quan-
tified in terms of the physical parameters of the two-photon source.
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I. INTRODUCTION

Seventy years ago, Einstein, Podolsky, and Rosen (EPR)
[1] challenged the completeness of quantum mechanics by
highlighting the correlations exhibited by two-particle sys-
tems described by the entangled EPR state

|\If>:ffdxdx'glr(x,x')“x,lx/}, (1)

with the un-normalized state function (x,x")=d(x—-x");
here |1,) represents the one-dimensional (1D) position repre-
sentation of a one-particle state. If the particles propagate
freely, then measuring the particle positions reveals that they
are always correlated, while momentum measurements re-
veal that they are anticorrelated, in apparent contradiction
with the uncertainty principle [1,2]. However, most investi-
gations of the EPR argument relied on the discrete Hilbert
space of two entangled spin-% particles suggested by Bohm
(EPRB) [3], an example of which is

1
|‘1’>=E{|TT>+|U>}- 2)

In a typical scenario, each particle is subjected to a Stern-
Gerlach device at angles 6; and 6,, respectively. The spins
are aligned when #,=6,=0 and antialigned when 6,=-6,
=7, in analogy to the position and momentum measurements
in the EPR scheme, respectively.

Bell’s celebrated inequality showed that quantum nonlo-
cality is exhibited by the EPRB state when intermediate
angle settings are probed [4], a feature not captured by the
original EPR argument. In the Clauser-Horne-Shimony-Holt
(CHSH) embodiment of Bell’s inequality [5], local reality
implies that
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where E; (|E,|<1) is the expected value of the correlation
between the two spin directions (i.e., the statistical correla-
tion between the counting rates in two counters in one arm of
the apparatus and those in the other arm). The CHSH in-
equality is violated by the EPRB state in Eq. (2) where
E((6,,6,)=cos(6;—6,) and B reaches a maximum value of
2V2 (the C’irelson limit) when 6;=—6,=% and 6;=-0,
=%T, for example. The violation of Bell’s inequality using
the EPRB state has been firmly established in numerous ex-
periments [6—12], which have led to the development of ap-
plications such as quantum cryptography [13-15] and quan-
tum teleportation [16—18], among others, thereby fueling
interest in the burgeoning domain of quantum information
[19]. The EPRB state has become a cornerstone of experi-
mental quantum information science since it is readily pro-
duced by the process of optical spontaneous parametric
downconversion (SPDC) in polarization space [20-22], fol-
lowing appropriate filtering of the spatial and spectral de-
grees of freedom, or, equivalently, in the discrete spatial do-
main [10] or in the time-energy domain [23-25].
Nevertheless, interest in continuous quantum variables,
such as those of the EPR state, has persisted, although the
communities that study discrete and continuous variables
tend to be distinct (see Ref. [26] for a recent survey of the
continuous quantum variables literature). One aspect of the
problem is the identification of canonical continuous quan-
tum variables, corresponding to the position and momentum
variables discussed by EPR, that are easily accessed experi-
mentally. An approach to testing the predictions of the origi-
nal EPR argument using continuous quantum variables was
proposed by Reid and Drummond in 1988 [27] where mea-
surements of the quadratures of the signal and idler optical
fields produced by a nondegenerate parametric oscillator
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above threshold replace the position and momentum mea-
surements. Their proposal was later verified experimentally
by Ou er al. [28]. More recently, the EPR proposal was dem-
onstrated experimentally by Howell et al. [29], where the
position and momentum measurements were performed by
measuring the near- and far-field diffraction patterns of
SPDC obtained by different placements of lenses in the path
of the signal and idler photons and an inequality involving
the products of the widths of patterns showed an apparent
violation of the uncertainty principle.

While these experiments indeed verify the EPR paradox,
they do not constitute a test of quantum nonlocality via a
violation of Bell’s inequality. In fact, Bell argued that the
EPR state would not violate the CHSH inequality, and thus
does not exhibit quantum nonlocality [30]. His argument is
based on the observation that the Wigner distribution [31]
associated with the EPR state is non-negative everywhere,
and thus admits a local and realistic hidden-variables model.
This statement has spurred many investigations that have
critiqued Bell’s argument and shown it to be erroneous by
proposing counterexamples in which an EPR state is pre-
dicted to yield a violation of Bell’s inequality [32-36]. Sev-
eral proposed experimental arrangements for testing quan-
tum nonlocality of the EPR state were subsequently
considered [37-39]. While these schemes are feasible in
principle, they nevertheless present considerable experimen-
tal difficulties. The approach suggested by Chen er al. [36],
for example, describes the construction of abstract pseu-
dospin operators (so named because of apparent similarity to
the familiar Pauli spin—% operators) defined in the Fock basis
of a single-mode electromagnetic field. But the experimental
realization of these pseudospin operators requires complex
photon-atom interactions [36].

The theoretical underpinning for violating Bell’s inequal-
ity with an EPR state was recently elucidated by Revzen et
al. [40]. These authors demonstrate that the non-negativity of
the Wigner distribution is not a sufficient condition for satis-
fying the CHSH inequality; rather, a further condition on the
allowed observables is required. A class of observables that
Revzen et al. term “nonproper” observables is associated
with an evolution of the associated Wigner distribution, in
the Schrodinger picture, into one that is not non-negative
everywhere. It turns out that the pseudospin operators pro-
posed by Chen et al. [36] fall into this class (as do all of the
constructs that show a violation of Bell’s inequality using the
EPR state [34]). This is precisely the class that was over-
looked by Bell.

In this paper, we complete the EPR-Bell program by
showing that an entangled EPR state in the spatial domain
violates a Bell inequality and hence demonstrates quantum
nonlocality. Our proposal retains the original EPR state in the
continuous spatial domain [Eq. (1)] while permitting a vio-
lation of the CHSH inequality that relies on dichotomic
quantum variables. The 2D Hilbert space constructed for
each photon is the parity space in the one-dimensional spatial
domain, where parity refers to the even-odd modal content of
the photon spatial profile.

We begin by constructing an isomorphism between
the single-mode multiphoton electromagnetic-field space
spanned by a Fock-state basis (such as that used by Chen
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et al. [36] to construct pseudospin operators) and the single-
photon multimode electromagnetic-field space spanned by a
spatial-eigenmode basis, and construct the parity space in
this basis. We then proceed to describe a set of optical ar-
rangements, suggested by this isomorphism, that implement
relevant operators on parity space. The arrangements rely on
simple linear optical components, and require no nonlineari-
ties or moving parts. In particular, we describe a simple op-
tical device that applies a rotation [an SO(2) operator] in
parity space. This, in turn, allows us to construct an arrange-
ment for testing the CHSH inequality by implementing two
SO(2) operators, one for each photon of a two-photon
source, here taken to be SPDC-produced entangled photon
pairs. The extent of the violation of the CHSH inequality is
quantified in terms of the physical parameters of the two-
photon source, namely, the width of the pump spatial profile
and the thickness of the nonlinear crystal. We complete the
paper by comparing our proposal to other approaches and by
outlining some future possibilities for this scheme.

For the sake of completeness, we mention other relevant
work that makes use of the spatial degree of freedom of
entangled photon pairs. Early work examined the spatial co-
herence of photon pairs produced by SPDC [41-45]. This led
to the development of a paradigm usually known as quantum
imaging [46-50], which explores the unusual imaging con-
figurations offered by entangled photon pairs. More recently,
efforts have been directed to studying discretized spatial do-
mains [51,52], interference effects arising from the spatial
profile of the SPDC pump, and orbital angular momentum.
One well-studied and widely used two-photon interferometer
is the Hong-Ou-Mandel interferometer [53]. While this is a
temporal interferometer, the effect of the spatial parameter
on the interferogram has attracted substantial attention
[54-60]. The effect of the spatial pump profile on the spec-
trum of the entangled photons produced by SPDC has also
been considered [61,62]. The work presented in this paper
establishes a bridgehead between the overall research effort
in quantum imaging and that of the mainstream quantum-
information-processing community, which, by-and-large, re-
lies on the spin-% formalism.

II. STRATEGY FOR MANIPULATING CONTINUOUS
SPATIAL VARIABLES IN PARITY SPACE

While the EPRB state and the associated CHSH inequal-
ity may be easily analyzed in terms of the Pauli spin—% (or
2-level) operators (o, 0y, 0y), the situation is more involved
if the particles inhabit Hilbert spaces of larger (potentially
infinite) dimension. One approach to manage such a large-
dimension Hilbert space is to map it onto a Hilbert space of
lesser dimension. A general procedure for mapping a
continuous-variable system onto a discrete one of arbitrary
dimension has been outlined by Brukner et al. [63].

A particular instance of this mapping was detailed by
Chen et al. [36], where a discretely infinite dimensional Hil-
bert space was mapped onto a 2D space. This mapping was
accomplished by constructing a generalization of the Pauli
operators for the case of a single-mode electromagnetic field
in the Fock basis. These are the so-called pseudospin opera-
tors:
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sy=i2 ([2n+ 1)2n| = [2n)2n + 1)),
n=0

s.= > (|2n)2n| - [2n+ 1)2n + 1)). (4)
n=0

One may also define a “raising” operator s*=3,[2n+1){2n|
and a “lowering” operator s~ =3,|2n)(2n+1|. The question
of how to construct an experimental realization of pseu-
dospin operators nevertheless remains challenging.

One of the principal results of this paper is to establish
an isomorphism between the single-mode multiphoton
electromagnetic-field space spanned by the Fock-state basis
{|n)} (pseudospin space) and the single-photon multimode
electromagnetic-field space spanned by a spatial-eigenmode
basis {¢,(x)} (which we henceforth call pariry space). Our
overall strategy is to identify each Fock state with a spatial
mode, |n)—|¢,), which then enables us to construct parity-
space operators in the spatial domain that are straightforward
to implement.

We begin by considering a pure single-photon multimode
state in the 1D spatial domain (in anticipation of the two-
photon case where we use a 1D approximation as discussed
in Appendix A) given in general by [47]

W)= f dxp(x)|1,), )

where [dx|y(x)|*=1. Here x refers the direction normal to
the photon general direction of propagation. Any orthonor-
mal basis over L, can be used to decompose the state func-
tion ¢,

Wx) =2 cupy(x). (6)
n=0
where 3,|c,[>?=1 and c,=[dx¢,(x)¢(x). The state may
thereby be recast in the form

dxep,()[1,) = 2 ¢,[n), ()

n=0

W= ¢,
n=0

where we have made the association [dx¢,(x)|1,)=]|n).

A convenient discrete basis for L, is (amongst others) the
set of Hermite-Gaussian functions. A particular characteristic
of this set of functions of interest to us is that their sequence
alternates between even and odd functions, i.e., ¢,,(—x)
=¢,,(x) and ¢, (=x)=—,,.1(x), Vn. Thus, an algebraic
property of the sequence of integer numbers {n}, namely, the
alternation of even and odd integers, is associated with a
functional property of the sequence of functions {¢,(x)},
namely, the alternation of even- and odd-parity spatial
modes. Given this association, one may decompose the state
in Eq. (7) into even (|e)) and odd (|o)) spatial-parity compo-
nents

PHYSICAL REVIEW A 75, 052114 (2007)

|\P>=E 62n|2n>+2 C2n+1|2n+ 1>=a|e>+:8|0>’ (8)

n=0 n=0

where (e|e)=(olo)=1, |a|*=2y[c0,* [B=Zonuilernal®
and |a>+|B*=1.

This procedure establishes three levels of description for
the one-photon state: (1) the spatial-parameter description of
Eq. (5); (2) the discretized spatial eigenmode description
given by Eq. (7); and (3) the spatial-parity-space description
provided by Eq. (8). In Appendix B we consider the spatial-
parity operators S,, S,, and S, in these three levels of de-
scription.

The advantage of our approach, in comparison with that
based on the Fock basis for the single-mode multiphoton
electromagnetic field, is that experimental realizations of the
abstract spatial-parity operators (and others) are readily
implemented in the spatial domain. Indeed, a wide range of
relevant optical transformations developed in the optical-
imaging community may be implemented in the spatial do-
main, as we demonstrate in the next section.

)

III. CONSTRUCTION OF OPERATORS IN ONE-PHOTON
PARITY SPACE

In this section we describe the construction of a set of
optical arrangements that implement operators on the parity
space of a one-photon field in the 1D spatial domain. A com-
mon feature of these arrangements is their simplicity. In par-
ticular, no nonlinearities or moving parts (such as scanning
elements) are required to implement any prescribed operator.

A. Parity flipper

The pseudospin operator s*=3,_|2n+1)(2n| is particu-
larly difficult to implement in the Fock basis since it requires
adding a single photon to the input field if the number of
existing photons is even, thus converting the number of pho-
tons from even to odd. However, in the spatial domain,
where the Fock photon-number basis is identified with the
order of a spatial eigenmode, a simple construction exists
that readily achieves this operation. In the spatial domain, an
optical system that transforms an odd mode to an even mode
(and vice versa), which we term a parity flipper, is a simple
phase plate that takes the form /App(x,x")=h(x)8(x—x"),
where h(x)=¢'™® and H(x) is the Heaviside step function,
H(x)=1 for x>0 and is otherwise equal to 0, shown sym-
bolically in Fig. 1(a). In other words, half of the single-
photon wave front passes with no change, while a phase 7 is
imparted uniformly to the other half of the wave front. Note
that no loss of photons is incurred by using such a phase
plate.

For reasons that will become clear shortly, we express the
parity flipper as h(x)=—iR(x), where the phase plate R (x)
is characterized by |R,(x)|=1, Vx, while ZR (x)=7 for x
=0 and ZR,(x)=-7 for x<0. Thus, except for an unimpor-
tant overall phase, the parity flipper is implemented with the
phase plate R (x). In Appendix C we define spaces that are
closed under this parity-flip operation, where it corresponds
exactly to the S, spatial-parity operator.
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FIG. 1. (Color online) Schematics of optical arrangements in the
spatial domain for one-photon spatial-parity operators. (a) A parity
flipper (PF) introduces a 7 phase shift between the two halves of
the input plane. The inset shows the transmittance A(x) of the phase
plate. For subspaces of L, closed under the parity flip (see text for
details), this device corresponds to the operator S,. (b) A spatial
flipper (SF) implements the transformation ¢(x)— ¢(—x) in 1D,
where ¢(x) is the input field distribution. This device corresponds
to the operator S.. (c) A cascade of operators S, from (b), followed
by S, from (a), corresponds to the operator iS,.

B. Spatial flipper

Next we consider the spatial parity operator S, that is
implemented by an optical system whose impulse response
function #.(x,x") is given in Eq. (B2) of Appendix B. The
completeness of the basis set {¢,(x)} implies that
En=0¢n(x)¢i(x’)=6(x—x’), and it is easy to then see that
h.(x,x")=8(x+x"). In other words, S, corresponds to the
transformation ¢(x) — (—x) that may be readily imple-
mented using mirrors, lenses, or other simple optical compo-
nents. The effect of the spatial flipper (SF), shown symboli-
cally in Fig. 1(b), is to flip an input optical field distribution
about the origin, which is expressed mathematically in the
three abovementioned levels of description as follows:

|\I’> - f dx';b(_x)“x) = 2 Czn|2”>— E C2n+l|2n+ 1)
n=0 n=0

= ale) - Blo)=5|¥). )

Now that we have demonstrated how to construct the S,
(parity flipper in a subspace of L, closed under parity flip)
and S (spatial flipper) operators, we can make use of the
commutation relation [S.,S,]=2iS, (or S.S,=iS,) to construct
the remaining parity operator S,, as shown schematically in
Fig. 1(c).

C. Parity analyzer

A parity analyzer (PA) is a device that separates a one-
photon state into its even- and odd-parity spatial compo-
nents. This corresponds to the operation of a polarizing beam
splitter in polarization space or a Stern-Gerlach device in
spin—% space. Consider the arrangement displayed in Fig.
2(a) where a spatial flipper (SF) is inserted into one arm of a
balanced Mach-Zehnder interferometer. This arrangement
separates the input beam (at planes 0 or 1) into its odd and
even components at the two output ports (planes 3 and 2).
Both beam splitters are symmetric, with a transformation be-

tween the input and output ports that obeys L(:f ). The

2
super-operator transformation P between the input and out-
put ports of this device may be expressed in matrix form as

follows:
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(@) 0} SF

PARITY ANALYZER (PA)

P P, =—P"

FIG. 2. (Color online) (a) Parity analyzer for a one-photon state.
The device is a balanced Mach-Zehnder interferometer with a spa-
tial flipper [SF, Fig. 1(b)] placed in one arm. This arrangement
projects an arbitrary input state at plane O onto its odd and even
components at planes 3 and 2, respectively. Alternatively, an arbi-
trary input state at plane 1 is projected onto its odd and even com-
ponents at planes 2 and 3, respectively. (b) Cascade of a parity
analyzer and an “inverse” parity analyzer.

(cm(x)) _(Po iP, )(%(x))
@s(x) iP. =P /\q@i(x)/
_—
P (10)
The operators P, and P, are projection operators onto the

even and odd spatial-parity subspaces, respectively, defined
as

b}

P.= %{]I +8. =2 [2n)2n

PO:%{]I—SZ}:E|2n+1><2n+1|. (11)

If the one-photon state is incident on port 0, the projections
of the state onto the even and odd spatial parity subspaces
emerge from ports 2 and 3, respectively. On the other hand,
if the state is incident on port 1, the projections of the state
onto the even and odd spatial parity subspaces emerge from
ports 3 and 2, respectively.

Consider the arrangement illustrated in Fig. 2(b) where
two cascaded parity analyzers are shown, but with the spatial
flipper in the opposite arm of the second interferometer, and
described with the transformation P,. The input-output trans-
formation of this arrangement is

B (1[ o)
PoP=={ (12)

i.e., the parity analyzer with the relocated spatial flipper is
the inverse of the parity analyzer in Fig. 2(a), with an unim-
portant overall phase P,=—P~!. Thus one may use a parity
analyzer to first split an incoming one-photon state into its
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even and odd spatial-parity projections and to separate them
into two distinct spatial paths, to then manipulate the two
components separately (without changing their parity), and
finally to recombine them into a single spatial path using the
“inverse” parity analyzer.

D. General SU(2) operator in parity space

To implement a Bell-inequality test on the parity space of
two-photons, we need to construct SO(2) operators, and,
more generally, SU(2) operators, on the one-photon parity
space. One approach toward constructing a general SU(2)
operator U,,

cos —¢'* isin —e?
U,(6,a,B8) = R 13
»(6,a.8) O 6 (13)
isin—e # cos—e

2

io

makes use of the decomposition of the SU(2) operator in
spin-% space into a linear superposition of the Pauli spin (or
spatial-parity) operators

(@) u, :cosgcosa _—)
g Sx
u, = isin;cos ﬁ+
) 5,1 su@)
u, :sin; sin
0 S,
u, =icos—sin o —NgF—
2
- /
(b)
cosg— Ry(x)
2 S0O(2)
... 0
zsm—+
2
(©) RO | o A
1 2 3
X X

FIG. 3. (Color online) First approach to the construction of an
SU(2) operator in parity space. (a) An SU(2) operator as a weighted
superposition of the spatial parity operators [Eq. (14)]. (b) An SO(2)
operator as a weighted superposition of the I and S, parity opera-
tors. The right panel shows a phase plate Ry(x) that performs the
same task as that of the superposition on the left. (¢c) The amplitude
transmittance and phase distribution of the phase plate Ry(x) is
shown in 1D.
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U, =ul+u,S, +u,S, +usS, (14)

where ui=%Tr{S,U2}, i=o, x, v, z, as shown schematically in
Fig. 3(a). We consider explicitly the case of an SO(2) rota-
tion operator

cos — isin—
2 o . .0
R(0) = =cos —l +isin =S, (15)
. 0 2 2
isin— cos =
2 2

shown schematically in Fig. 3(b). The effect of this operator
is to rotate the state by an angle @ in parity space. The optical
system corresponding to this operator has the impulse re-
sponse function

0 0
hy(x,x") = cos Eh][(x,x’) + i sin Ehx(x,x’),

=Ry(x)0(x —x"), (16)

where R4(x)=cos g+sin gRW(x). Thus, the rotation operator
R(6) in parity space is implemented in the spatial domain
using a phase plate having unity amplitude transmittance
|Ry(x)|=1, Vx and V6, while imparting a phase ZR,(x)=25
for x=0 and LRa(x)z—g for x<0, as schematized in Fig.
3(c). Such a transformation is readily attained by using spa-
tial light modulators, which allow spatially varying phase
distributions to be imparted to an optical wave front.

The second approach toward constructing a general SU(2)
operator in parity space makes use of its factorization into a
cascade of simpler operators

9 .. 9
Ui ) ol@tP)2 o\[ cos 5 i sin 5
’a’ =
2 P 0 ei@tB)2 .0 0
isin— cos—
—'_U(l) 2 2
S0(2)
ol@B)2 0
X
0 omi@B)2
— 7
v (17)

each of which is easily implemented in the spatial domain.
The U(1) transformation is simply a phase shift inserted in
the even and odd components separated into two distinct
paths at the output of a parity analyzer [Fig. 4(a)], whereas
the SO(2) transformation is a beam splitter with variable re-
flectance (VBS) that mixes the even- and odd-parity compo-
nents [Fig. 4(b)]. The arrangement in Fig. 4(c) shows an
implementation of a general SU(2) operator in parity space
in light of the decomposition offered by Eq. (17). The even
and odd components may then be recombined using an “in-
verse” parity analyzer. Note that one may use the above-
described construction of a general SU(2) operator to obtain
a complete characterization of the one-photon state (whether
pure or mixed) in parity space via quantum-state tomogra-
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FIG. 4. (Color online) Second approach to the construction of an
SU(2) operator in parity space as a cascade of simpler operations
[Eq. (17)]. (a) A U(1) operator applies phases « and —a to the even
and odd components, respectively. (b) An SO(2) operator mixes the
even and odd modes at a beam splitter with variable reflectance
(VBS). Since the even and odd modes are orthogonal, however,
simply mixing them at a beam splitter will not produce the desired
SO(2) operator; we must first convert the odd component to even
using a PF. Both output components of the beam splitter then have
even parity, and one is reverted back to odd parity using a PF. (c)
The SU(2) operator, following a parity analyzer, is composed of an
SO(2) operator as in (b), preceded and followed by two U(1) op-
erators as in (a), implementing the appropriate phases as provided
in Eq. (17).

phy, which requires implementing projection operators in ro-
tated bases [64—67].

IV. TWO-PHOTON PARITY-SPACE ANALYZER

The isomorphism between the single-mode multiphoton
electromagnetic-field space spanned by a Fock-state basis
and the single-photon multimode electromagnetic-field space
spanned by a spatial-eigenmode basis can be extended to
two-photon states. We begin by writing the two-photon state
function ¢(x,x’) [Eq. (1)] in terms of a discretized sum of
eigenfunctions known as the Schmidt decomposition

Pxx') = 2 N (€, (x), (18)
n=0

where =,|\,|?=1, and both {¢,(x)} and {&,(x)} are orthonor-
mal bases for L,. Note that no loss of generality is associated
with the discretization, and the expansion is exact if all terms
are retained [68—71]. A factorizable two-photon state is rep-
resented by a Schmidt decomposition with only one product
term, whereas entangled states include more than one. We
will focus on two classes of state functions, classified accord-
ing to their symmetry under inversion through the origin of
the x—x" plane. The first class consists of state functions
that behaves as (x,x’)=i(-x,—x’) (i.e., invariant under
the inversion), while the second class behaves as ¢(x,x’)
=—yf(—x,—x"). The practical importance of these two particu-
lar classes of two-photon states stems from the fact that they
correspond to the state produced by SPDC when the spatial
profile of the optical pump is even and odd, respectively, as
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2-photon
source

FIG. 5. (Color online) Parity projection for a two-photon source
(2PS). Each photon (planes x and x’) is directed into a parity ana-
lyzer PA| and PA,). The even (plane x]) and odd (plane x]) com-
ponents of photon 1 are detected by D] and D7; similarly for photon
2. Each detector integrates over its plane, and all detectors for the
two photons are connected to coincidence circuits.

described in Appendix A, and are thus readily achievable in
practice. Note that we use the variables x and x’ to refer to
the source plane and the variables x; and x, to refer to the
detector plane.

We consider first two-photon states having (x,x’)
=iy(—x,—x") [and thus also (—x,x")=i(x,—x')], the two-
photon state produced by SPDC using an even pump. The
condition ¢x,x")=y{—x,—x') implies two things: (1) the
bases functions {¢,(x)} and {&,(x)} have specific parity, i.e.,
each function is either even or odd; and (2) the sequences of
functions in the two bases are such that the corresponding
functions ¢,(x) and &,(x) in each term of the Schmidt de-
composition [Eq. (18)] are both even or both odd, for all n.
In particular, the maximally entangled EPR state with the
ideal state function i(x,x’)=48(x—x") has the Schmidt de-
composition

Ploox') = x—x") = 2 d(0) (x'), (19)
n=0

where {¢,(x)} are the Hermite-Gaussian functions, and all
the coefficients in the Schmidt decomposition are equal.

The second class of two-photon states that we consider
are those characterized by state functions having the property
Pl(x,x")=—iy(-x,—x"), which is produced with SPDC when
the pump has an odd spatial profile. It is easy to see that this
property also implies that the bases functions {¢,(x)} and
{£,(x)} have specific parity (i.e., each function in both bases
is either even or odd), but in this case the basis-function
sequences are such that ¢,(x) and &,(x) have opposite pari-
ties [i.e., when ¢,(x) is even, then &,(x) is odd, and vice
versal.

In light of the above classification, we now describe the
effect of implementing two parity analyzers, one in the path
of each photon from a pair of photons emitted by a two-
photon source (2PS), which will help set the stage for our
proposed experiment for violating Bell’s inequality in the
spatial domain. Each photon is guided to a separate parity
analyzer as shown in Fig. 5. In this conception, a detector is
placed at each exit port of both parity analyzers, the detectors
integrate the arrival of photons over their respective planes,
and singles and coincidence rates are recorded. The spatial
coordinates at the exits of the even and odd ports of each PA
are distinguished by superscripts “+” and “—,” respectively.
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Thus the output planes for photon 1 (traveling to the right in
Fig. 5) are described by the spatial coordinates x] and x7, and
those for photon 2 (traveling to the left in Fig. 5) are x5 and
x,. The detectors that detect the arrival of a photon over the
plane are denoted in a similar manner; thus D] detects the
arrival of a photon in the x| plane, and similarly for detectors
D7, D3, and Dj5.

The rate of coincidence of photon pairs at two points in
the four pairs of planes G(x],x3), G(x7,x3), G(x],x3), and
G(x7,x3), may be calculated by making use of the formalism
developed by Saleh er al. [46]; the total coincidence rates of
between each pair of detectors are obtained by integrating
over the spatial variables

P(+,+)= f f dxidx;G(x7,x3), (20)

where P(+, +) is the total coincidence rate between detectors
D7 and D}, and similarly for the other total coincidence rates
P(+,-), P(—,+), and P(-,-).

Evaluating the above expressions using states belonging
to the first class, where (x,x’)=i¢(—x,—x"), we have

1 1
P(+,+)=5(1+A), P(—,—)=5(1—A), (21)

and P(+,-)=P(—,+)=0; here

A= Re{f f dxydxyhlxy, x) i (= XI’XZ)}

= E )\gn - E )\gn+l . (22)

The quantity A is the difference between the weight of the
even-even contribution (Zn)\gn) and that of the odd-odd con-
tribution (2,3, ,,) in the Schmidt decomposition of the two-
photon state. When A=1, photon pairs are always detected
by the detectors D] and Dj (even-even); when A=-1, pho-
ton pairs are always detected by the detectors D] and D,
(odd-odd). In both of these cases the state is separable in
parity space. When |A| # 1 photon pairs are detected by the
detectors D] and Dj (even-even) or by D} and D; (odd-odd);
the photon pairs are never detected by the detectors D} and
D; (even-odd) or by D] and D} (odd-even). In particular,
A — 0 for the EPR state, and the ratio of even-even to odd-
odd detections is 1.

As a concrete example of state functions with ¢(x,x’)
=y(—x,—x"), consider the two-photon state characterized by
a state function of the form (see Appendix A)

r\2 1\ 2
x-lkx ) }exp{— (x;x ) }, (23)
1 2

with the normalization constant |A|>=4/l,1,, which allows
us to obtain an analytic formula for A:

2D/,
1+ (L)

Plx,x')=A exp[— (

(24)

Two limits are of particular interest: (1) the highly entangled
state [, <1, — A =0, where we have P(+,+)=P(—,— =% and
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all the singles rates are equal to % and (2) the separable state
l,=1,—A=1, where we have P(+,+)=1, P(-,—)=0, and
the singles rates are P(D])=P(D3)=1 and P(D7)=P(D3)
=0. The results of these two limits correspond to Stern-
Gerlach measurements with the angle settings 6,=6,=0 ap-
plied to the maximally entangled state é{H T+|1 |)} and
the factorizable state |T 1), respectively.

Similar results to those above are obtained when the sec-
ond class of two-photon states [¢(x,x’)=—¢(—x,—x")] is
considered, with obvious modifications. Thus, for a maxi-
mally entangled state in parity space in this class we have
P(+,-)=P(-,+)=5 and P(+,+)=P(~,-)=0, while in the
separable case we have P(+,—-)=1 and P(—,+)=P(+,+)
=P(-,-)=0 [or, alternatively, P(—,+)=1 and P(+,-)
=P(+,+)=P(—,-)=0]. The results of these two limits corre-
spond to Stern-Gerlach measurements with the angle settings
0,=6,=0 applied to the maximally entangled state %{H D
+|] T)} and the factorizable state |1 | ), respectively. In Ap-
pendix A we discuss in more detail how to produce all four
Bell states. Thus, one may, in principle, produce states cor-
responding to arbitrary two-qubit states in parity space
through superpositions of them.

V. VIOLATION OF BELL’S INEQUALITY
IN TWO-PHOTON PARITY SPACE

We are now in a position to describe our scheme for test-
ing the CHSH inequality using the spatial parameters of the
photon pairs. Implementing a test of this inequality violation
requires an SO(2) operator for each photon [Fig. 3(c) or
4(b)]. Two proposed setups are shown in Fig. 6. In the first
proposed setup each photon is sent through an implementa-
tion of an SO(2) operator [Fig. 3(c)] followed by a parity
analyzer. In the second proposed setup each photon passes
through a parity analyzer followed by an SO(2) operator
[Fig. 4(b)]. The parameters of the SO(2) operators are 6, and
6, for photons 1 and 2, respectively. It is assumed that 8, and
6, are set locally and their locations are spacelike separated
to outlaw any possible communication between the two sites.
The detectors at the two exit ports for each photon are de-
noted as in the previous section (Fig. 5). The two implemen-
tations yield identical outcomes and the following analysis
applies to both.

Coincidence measurements between pairs of detectors al-
low us to compute a parity correlation function E,(6;, 6,)
given by

E,(0),6) =P(+,+)=P(+,=)=P(=,+)+ P(-,—),
(25)

where —1<E,(6,,6,) <1, with the limits corresponding to
correlated and anticorrelated parity measurements. Using the
two-photon state specified in Eq. (1), and assuming that
(x,x")=i(—x,—x"), one may derive an analytical expres-
sion for E,

E,(6,,6,) =cos(6, + 6,) + (1 = P)sin 6, sin 6,, (26)

where the parameter P is given by
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2 e 2-photon e X

D 1 source 1 D,
=GR e R R

1 1

5 SO(2)

S0(2) %

FIG. 6. (Color online) Arrangements for demonstrating a violation of Bell’s inequality for continuous spatial variables. (a) The two-
photon source directs each photon into an SO(2) operator, Ry, (x) and Ry, (x") [Figs. 3(b) and 3(c)] followed by two parity analyzers and
detectors, as in Fig. 5. The two photons undergo rotations of 6, and 6, in parity space. (b) The two-photon source directs each photon into
a parity analyzer (PA) followed by the SO(2) operator shown in Fig. 4(b).

P=ffdxldx2|¢(x1,x2)|2h(x1)h(x2), (27)

which is equal to the total area of |¢(x;,x,)|* after twice the
area of its second and fourth quadrants in the x;—x, space
are subtracted from it. The first term in Eq. (26) is the result
expected for an ideal maximally entangled EPRB state [Eq.
(2)], while the second term quantifies the deviation from the
ideal condition.

An entangled state [¢(x;,x,) — 8(x;—x,), or ,—0 in Eq.
(23)] yields P=1 and E,(6,,6,)=cos(6;+ 6,), resulting in a
maximal violation of the CHSH inequality. A factorizable
state [¢(x;,x5) — iy (x))ir(x5), or 1;=1, in Eq. (23)] yields
P=0, and E, factorizes as expected, E,(6,,6,)
=cos 6, cos 6,. In this case the maximal attainable value of
the Bell operator is 2, and the CHSH inequality is not vio-
lated. _

The maximal value B,,,,=2V2 of the Bell operator for an
entangled state may be achieved at the settings 6;=6,=7% and
0,=0;= %T, for example. If we fix these settings while vary-
ing the parameter P, the Bell operator for the two-photon
state is B= %(1 +P)B,,ax» Which is plotted in Fig. 7(a) (dashed
curve). Obviously the inequality ceases to be violated (B
<2) when P<\2-1. However, one may choose to change
the four settings (6, 8], 65, 65) in order to maximize the vio-
lation of the inequality for each value of P, and the resulting
values of the Bell operator are plotted in Fig. 7(a) (solid
curve). If this procedure is followed, the EPR state always
yields a violation of the CHSH inequality in parity space.
The solid curve in Fig. 7(a) may in fact be fitted to the
relation

B=2\1+P2. (28)

In Fig. 7(b) we plot the value of the parameter P for the
Gaussian state in Eq. (23) as a function of the ratio I,/1,.

Thus far, the parameter P appears to be a good candidate
to quantify the entanglement of the EPR state in parity space
since it varies monotonically from 1 for the maximally en-
tangled state to O for the factorizable state, and it quantifies
the amount of violation of the CHSH inequality in parity
space. This intuition can be placed on more solid ground by

(@ 3

25

B 2 vt

P
(b) 4
0.8l
0.6}
P
0.4}
0.2}
dai 0.1 1
hh

FIG. 7. (Color online) (a) The Bell operator B for the CHSH
inequality as a function of the parity concurrence P. The dashed
line is calculated for fixed parameter settings (6?1=6?2=;g—T and 6
= Hézl%ﬂ), whereas the solid curve is calculated by optimizing the
parameter settings for maximal value of the Bell operator. (b) The

value of P for the Gaussian state in Eq. (23) as a function of /,/1;.
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comparing the conceptual development so far with the EPRB

case. An arbitrary two-spin-'z state (nonmaximally entangled

EPRB state) may always be reduced to the Schmidt form
(W) =Nl T + N[ L], (29)

with the spin correlation function
E((6,,0,) =cos(6, + 6,) + (1 — C)sin 6, sin 6,, (30)
where
C =27\, (1)

is the concurrence, as defined by Wootters [72-74]. The cor-
respondence between Eq. (30) and Eq. (26) is obvious. The
Bell operator for the CHSH inequality in spin space is

B=2v1+C2. (32)

Further insight into the relation between the degree of
parity entanglement P and concurrence C may be gained
after deriving an alternative expression for P by substituting
the Schmidt form [Eq. (18)] into the definition of P [Eq.
(27)], yielding

P= X

n,m=0,1,2,...

M\, Re{h @ p@n (33)

n,m' n,m

where the coefficients h’(ﬁl and hff’)n are the components of
the operator A(x) in the {¢,(x)} and {£,(x)} bases, respec-
tively,

h?) = f dx,(X)h(x) b (x),

o, = f dxé,(x)h(x) £, (x). (34)

Let us consider a few examples of forms of the Schmidt
decomposition. For a 2 X 2 system (i.e., both bases comprise
two functions only), we have the degree of parity entangle-
ment

P =20\ Re{h{ )} (35)

The quantity Re{hfﬁ)hfﬁ} achieves a maximum value of 1
when ¢y(x)=h(x)p,(x) and &)(x)=h(x)& (x) (i.e., the space
spanned by these bases are closed under the parity-flip op-
eration), resulting in the expression

P = 2)\0)\1 5 (36)

which reaches a maximum value of 1 when )\0=7\1=% for a
maximally entangled state.

Consider now the case of a 2 X 3 system (i.e., both bases
comprise three functions), where the degree of parity en-
tanglement is

P =2(\ o\ Refh{ hf)} + N \Refn{BR9)).  (37)

In this case, when N\g=X\; :)\2:%, P™¢ reaches a maximum
value of % (and not 1) when ¢, (x)=[a" ¢y(x)+ B ¢,(x)] h(x)
and & (x)=[a&)(x)+B&(x)] h(x), where |al>+|B|>=1. Note
that since the dimension of the space describing each photon
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Spin Space
™) o)
¥) o)

Parity Space

o, S, Parity Flipper

o, S, Spatial Flipper

io, iS, SF + PF
EPRB state EPR state

‘TT>+ ‘»LJ,)} ndvd\‘.' S(x—x')|1.1,)

1
1

Stemn-Gerlach

Device Parity Analyzer

Degree of Parity

Concurrence C Entanglement

FIG. 8. A table showing the identification of the states, opera-
tors, and variables in the traditional spin space with those of the
parity space discussed in this paper.

is odd, they cannot be closed under the parity-flip operation,
which results in a nominally maximally entangled state, not
maximal violation of the CHSH inequality in parity space,
although it could ostensibly produce a maximal violation
in an alternatively constructed space. In fact, one can show

that, in general, the maximal value of the degree of parity

entanglement for maximally entangled states O\;F%,, n

=0...N—1, where N is the number of terms in the Schmidt
decomposition), is given by

1, VN even,

P nax = 1 38
e - VNodd. (38)

VI. DISCUSSION AND CONCLUSION

It is most convenient to pose the paradoxes of quantum
mechanics and the problems of quantum information pro-
cessing in the language of discretized systems, in particular
using a spin-% formalism. Previous work on higher-
dimensional Hilbert spaces (so far up to 3) has relied on the
signal and idler photons’ orbital angular momenta. While this
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approach is implemented in the spatial domain, it is distinct
from the scheme that we have proposed here. (1) The work
pursued so far using orbital angular momentum truncates the
angular momentum space of entangled photons to a two- or
three-dimensional space for each photon, while our ap-
proach, which makes use of spatial-parity space, does not
truncate the space. (2) The experimental implementation of
operators on spatial parity are considerably simpler than
those on orbital angular momentum space. For example, the
conversion of the parity of a photon, or more generally rota-
tion in parity space, is achieved with a simple phase plate,
whereas the same process requires more involved arrange-
ments in angular-momentum space. (3) Finally, the angular
momentum approach requires 2D optical fields in contrast to
our arrangement, which makes use of 1D only. It is also
important to note the difference between this work and that
of Rarity and Tapster [9], which relied on discretizing the
spatial field by using pinholes, while our approach makes use
of the full wave front of the photon pairs. We have summa-
rized the isomorphism between the familiar operators and
states in spin—% space, heavily used in quantum information
processing, and the corresponding spatial-parity operators
and states in the table depicted in Fig. 8.

While we have made several (realistic) assumptions (see
Appendix A) that allow us to consider the 1D spatial domain,
one could also put the second spatial dimension to work. One
may also consider the possibility of studying entanglement in
the temporal or polarization domain, alongside the 2D
spatial-parity space, which would add a further dimension to
the hyperentangled states studied by Barreiro et al. [75].

Using the spatial-parity approach, one can consider quan-
tum cryptography or quantum teleportation in the spatial-
parity domain. While we have suggested some concrete op-
tical arrangements, their design was chosen for pedagogical
reasons, and many other alternative designs may be consid-
ered that achieve the same goals while accommodating the
requirements of the specific application.

In conclusion, we have proposed an experimental scheme
that allows for the violation of Bell’s inequality, and hence
demonstrating quantum nonlocality, that utilizes continuous
spatial quantum variables. The experimental arrangement is
particularly simple and straightforward, in contrast to previ-
ous proposals. The source is the process of optical spontane-
ous parametric downconversion, and the continuous spatial
parameters of the signal and idler photons are manipulated
using simple optical components to implement a Bell opera-
tor. Each photon traverses a unitary optical system that is
described with a single parameter representing a rotation in a
parity space constructed over the spatial parameter.
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APPENDIX A: 1D STATE PRODUCED BY SPDC
IN THE SPATIAL DOMAIN

The quantum state representing the two-photon field pro-
duced by SPDC from a nonlinear crystal of thickness L is
given by [46,76-79]

W) = f f dq,dq;E, (g} + 4.4} + 4)) X4, q)| 1. 14)
(A1)

where q,=(q;.q}), and k,=27/\,, t=p,s,i, are the transverse
momentum vectors and total momenta of the pump, signal,
and idler photons, respectively (M is the wavelength inside
the crystal); E,,(q;,q;) is the 2D Fourier transform of the
pump spatial profile E,(x,y) at the entrance to the nonlinear
crystal; the phase-matching function Y depends on the axial
wave-number  mismatch  Ak=k -ki-ki:  X(q,.q;)
ocexp(iLAk./2)sinc(LAk./217); here

[ ;
i =Nk = (g5 + ) = (q) + )%

R
k§= )*=(q))?

X y X
k= (@) - (a) K= ()= (q)).

ki = ki = ()" = (g

Assuming type-I collinear phase-matched SPDC and the
paraxial approximation, we have Ak, ~[(¢'-¢})*+(q’
—q?)*1/2k,. The phase-matching function ¥(q;,q,) may then
be separated, with very good approximation, to

Xq,.9) = Xo(q; — ;.95 — 47)
~Xi(q;—a)xi(q, - a)). (A2)

where ¥(g)=exp(imLg*/2\,)sinc(Lg?/2\,). The quality of
this approximation is determined by calculating the overlap
integral

‘ f f dq)‘dqy)’ez(qﬂqy)x’f(q*»?’{(q»")‘

n= .
\/ f f dq"dqyliz(qx,qy)lz\/ f f dq'de’| %, (¢ %1 (¢

(A3)

For the range of values of L/ A, of interest, the overlap inte-
gral n always exceeds 94%.

In this paper we only consider pump spatial profiles that
are separable, Ep(qﬁ,q;)=ﬁx(qj§)ﬁy(qu,), or equivalently
E,(x,y)=E(x)E,(y) (the effect of using pump profiles that
are nonseparable in x and y will be considered elsewhere),
whereupon the quantum state becomes
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FIG. 9. (Color online) Producing the four Bell states in parity space. (a) The Bell state |®*) is produced using type-I collinear degenerate
SPDC from a nonlinear crystal (NLC) when the pump has an even spatial profile. (b) The Bell state |®~) is produced when a spatial flipper
(SF) is placed in the path of one of the photons produced in (a). (c) The Bell state |¥'*) is produced using the setup in (a) by either using
a pump with an odd spatial profile or placing a parity flipper (PF) in the path of one photon while using an even pump. (d) The Bell state
|'W-) is produced using the two setups in (c) in conjunction with a spatial flipper (SF) placed in the path of one of the photons.

W)= J f dgydgiE(q; + ) xi(@; = g1 140

® f J dRdq}E(q) + a)xi(a) = a)l1 g 1)

=¥ ® [1). (Ad)

Assuming that none of the optical components in the experi-
mental arrangements leads to mixing of the x and y coordi-
nates, we may trace out the |W”) subspace, leaving only |W¥*).
From here on, we drop the “x” superscript and it is under-
stood that we have only one spatial dimension.

In the spatial domain, the 1D two-photon state is now the
EPR state given by Eq. (1) with ¢(x,x")=Jdx"E(x")x,(x
—x",x=x"); x1(x,x") is the linear shift-invariant joint prob-
ability amplitude of emitting the signal and idler photons
from x and x’, respectively, from a point in the pump beam
(and is the 2D inverse Fourier transform of y,). Since the
phase-matching function ¥, takes the form ;(¢,—g,), its 2D
Fourier transform is X(x,x’)=6(x+x’))(1(x_7x'), and the state
function becomes

w(x,x’)=E<x-;x )Xl(x—zx )

(A5)

In other words, the state function is separable along the x
+x’" and x—x' axes. The width of the function y; is of the
order VL\,/8 which is usually <W (the width of the pump
function E). Note that y;(x,x') is invariant under inversion
through the origin of the x-x’ plane: y;(x,x')=x;(-x,—x").
As a result the behavior of the state function ¢(x,x’) in Eq.
(A5) under inversion through this origin depends on E(x). If
the pump spatial profile is even, E(x)=E(-x), then ¢(x,x")
=i(—x,—x"); if E(x)=—E(-x), then (x,x")=—t)(—x,—x").
The state used in this paper for computational purposes
[given in Eq. (23)] was arrived at by assuming a pump with
a Gaussian profile of width /;=W, and approximating the

phase-matching function y; with a Gaussian function of
width ,=V\,L/8. The ideal EPR state is arrived at when (1)
the nonlinear-crystal thickness decreases L—0, so that
Xl(x_Tx’)H S(x—x") and (2) the pump width increases W
— 00, so that E(”zx’)—> 1, in which case #(x,x") — Sx—x").

Using this approach, we can generate all four Bell states
{|®*),|®7),|¥*),|¥)}. In Sec. IV we discussed how the
Bell state |®*)= é{|ee)+ |oo)} is produced when a pump hav-
ing an even spatial profile is used [Fig. 9(a)]. Placing a spa-
tial flipper (SF) [Fig. 1(b)], corresponding to S,, in the path
of one of the photons results in the Bell state |®7)=(1I
®SZ)|(1>+>=é{|ee>—|oo>} [Fig. 9(b)]. To generate the Bell
state |\If+>=%{|eo>+|oe>} one may either: (1) replace the
even pump used to generate |®*) with an odd pump or (2)
retain an even pump while placing a parity flipper (PF) [Fig.
1(a)], corresponding to S,, in the path of one of the photons
[Fig. 9(c)], |[¥"=(1®S,)|®*). The final Bell state |[¥~) is
obtained using either approach to produce |W*), after a spa-
tial flipper is placed in the path of one of the photons [Fig.
D], [P)=(1®S)[W).

APPENDIX B: SPATIAL PARITY OPERATORS

In the spatial domain we define the parity operators S,
k=x, y, z, which correspond to the pseudospin operators s in
the Fock basis in Eq. (4) and have the commutation relations
[S;,S;]1=i2€;Sk, where € is the antisymmetric tensor. In the
first level of description, namely, in the spatial domain [cor-
responding to the state given in Eq. (5)], each operator is
associated with a linear, unitary optical system characterized
by an impulse response function. The operators have the gen-
eral form

Sk=ffdxdx’hk(x,x')|1x)(1x,

, k=xy,z, (Bl)

where i (x,x") is the impulse response function of the asso-
ciated optical system given explicitly by
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(6,x") = 2 [ () 3, (87) + o (X) 3,y ()],
Ry(x,x") = i 25 [ a1 (¥) (X)) = () iy (X)),

h(x,x") = 25 [ 2 (X) 2, (x") = s (¥) by ()]

(B2)

The unity operator [ is associated with an optical system
having the impulse response function  hy(x,x’)
=2,¢,(x)¢,(x")=6lx—x").

When a parity operator is applied to the state in Eq. (5),
the result is

S = f ey (1), (B3)

where ' (x)=[dx"hi(x,x")¥(x"). The parity operators’ com-
mutation relations imply that the associated impulse response
functions are characterized by the relation

f dx"h(x,x")h(x",x") = i€y (x,x"). (B4)

Furthermore, since the parity operators are Hermitian
and  unitary, we  have  h(x,x')= h,-*(x' ,x)  and
Jdx"hi(x,x")h;(x",x")=8(x—x"), i=x,y,z, respectively. We
may also define parity “raising” S* and “lowering” S~ opera-
tors associated with optical systems having impulse response
functions  AT(x,x")=2,¢h,.1(x) ¢;n(x’) and A (x,x")
=3, ou(x) by, (x"), tespectively. The raising operator
changes an even-parity mode to an odd-parity mode, and
vice versa for the lowering operator.

The second level of description, in the discretized space
of spatial eigenmodes [corresponding to Eq. (7)], uses the
identification [dx¢,(x)|1,)=|n) to recast the parity operators
into the identical form of the pseudo-spin operators of Eq.
(4). When a parity operator is applied to the state in Eq. (7),
the result is

S Wy = clln), (B5)

r_ k
where ¢, =2, ,c, and

aﬁ,m = f f ddel ¢:(x)hk(xvx,)¢m(x,) . (B6)

In the third level of description, that of the 2D spatial
parity space [corresponding to Eq. (8)], the parity operators
can be recast into 2 X2 matrices isomorphic to the Pauli
spin—% operators. When a parity operator is applied to the
state in Eq. (8), the result is

SdWy = (rha+ niBlle’) + (hea+ 75 Bo’),  (B7)

where 77];3, 7]{;0’ 77]36, and 7/;0 are the components of the
2 X2 representation of S;, and {|e’),|o’)} is the new trans-
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formed basis. The parity operator S,, for example, when
applied to the state in Eq. (8), yields

SUWY =D copi|20) + D con2n+ 1) = Ble’) + afo’).
n=0 n=0

(B8)

APPENDIX C: LINEAR SPACES CLOSED
UNDER PARITY FLIP

Consider the Hermite-Gaussian basis {¢,(x)} consisting
of an alternating series of even and odd functions. Since the
set is complete over L,, and the even and odd functions are
orthogonal, we have

Rﬂ'(x) ¢2n(-x) = E R2n,2m+1 ¢2m+1 ()C) ’
m=0

R'n’(x) ¢Zn+l(x) = E R2n+1,2m¢2m(x) > (Cl)
m=0

where R,,,=[dx¢,(x)R(x)b,(x) and Rn’m=R:w. In other
words, the parity flip of an even function can be written as a
superposition of odd functions, and vice versa. Furthermore,
since R_(x)R_(x) ¢, (x)=¢,(x), Vn, we have

D Ru=1, VY (C2)
m=0

We denote every subspace of L, where the parity flip of
every even function can be written as a superposition of the
odd basis functions (and vice versa) closed under parity flip.
This property holds for any complete basis over L, since the
basis can be transformed through a unitary transformation to
the Hermite-Gaussian basis for which this property holds.
This property may also apply to suitably defined subspaces
of L,.

Consider a linear vector space of dimension 2N (a sub-
space of L, where N may be infinite) with a basis
{o-n(x)}ilzv(; ! consisting of alternating even and odd orthonor-
mal functions (not necessarily the Hermite-Gaussian func-
tions). Any even (odd) function in this space can be written
as a superposition of the even (odd) basis functions {o,(x)}
({02,+1(x)}). The space is closed under the parity flip opera-
tion R (x) if

Ul(x)

0'3(x)

U'Q(X)

R.(x)| 2 |=u, (C3)

where Uy is an SU(N) transformation. The right-hand side of
Eq. (C3) is a column of transformed odd basis functions that
we denote {07,,,;(x)}. We may now define a new orthonormal
basis for this subspace of L, consisting of the even-odd
alternating functions {o(x),o|(x),05(x),05(x),...}. Using
this new basis, the operator R_(x) has the following effect:
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05,01 (X) =R (x)03,(x) and o3, (x)=R(x)0},,,(x), Vn, ie.,
R (x)8(x—x") is the impulse response function of an optical
system associated with the parity operator S,. We thus con-
clude that if a space is closed under parity flip in the above

PHYSICAL REVIEW A 75, 052114 (2007)

defined sense, there is always a basis in which R_(x) corre-
sponds to the parity operator S,. Finally, we note that a sub-
space of L, with odd dimensionality cannot be closed under
the parity-flip operation.
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