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We propose a model, based on a quantum stochastic differential equation �QSDE�, to describe the scattering
of polarized laser light by an atomic gas. The gauge terms in the QSDE account for the direct scattering of the
laser light into different field channels. Once the model has been set, we can rigorously derive quantum
filtering equations for balanced polarimetry and homodyne detection experiments, study the statistics of output
processes, and investigate a strong driving, weak coupling limit.
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I. INTRODUCTION

Many recent experimental �1–4� and theoretical �5–10�
works have been based on a simple experimental scenario, in
which a polarized atomic gas is continuously probed with a
polarized off-resonant optical beam �Fig. 1�. By measuring
the Faraday rotation of the optical polarization resulting from
the interaction, one can in principle prepare conditionally
spin-squeezed states or perform quantum metrology tasks,
e.g., estimating a magnetic field that rotates the spins.

Central to the description of these experiments is the
quantum filtering equation, which propagates the expectation
value of the atomic gas observables conditioned on prior
measurement results. The conditional expectation is the
mean least squares estimate of an atomic gas observable
given the observations thus far. The conditional expectations
of “all” atomic observables can be summarized in an infor-
mation state �t. The filtering equation propagates this infor-
mation state in real time.

In quantum optics the filtering equation is often referred
to as the stochastic master equation �11�. For the polarimetry
example considered here, previous modelling efforts have
either produced an unconditional description �8� or arrived at
a conditional description by heuristically “adding the usual
measurement terms” �4� in analogy with a physicallly differ-
ent homodyne measurement scheme with only a single po-
larization mode �6,7�. In this paper we treat the conditional
evolution of the state �due to detection of Faraday rotation
with a polarimeter� in a rigorous manner, allowing the
atomic system to mediate exchange between two orthogonal
optical polarization modes. In particular, we derive the quan-
tum filtering equation from an underlying quantum stochastic
model, i.e., the quantum stochastic differential equation
�QSDE� governing the interaction of the atomic gas with the
laser light.

Formal quantum filtering theory was pioneered by Be-
lavkin in �12,13� using martingale techniques �see also �14��.
We here employ the reference probability method, based on
the quantum Bayes formula �15,16�, to obtain the quantum
filter from the QSDE �see also �17��.

The QSDE model we use here is based on a simple Far-
aday Hamiltonian, H=�FzSz, where � is a small interaction
strength prefactor, Sz is a Stokes operator measuring the cir-
cularity of optical polarization, and Fz is the z component of

the collective atomic spin. Under this Hamiltonian, photons
with a right circular polarization rotate the collective atomic
spin over a positive angle � along the z axis, while photons
with a left circular polarization rotate the collective spin over
a negative angle −�. With linearly polarized light, the angle
of linear polarization will Faraday rotate by a degree propor-
tional to the z component of the spin. Note that we entirely
neglect “tensor” terms of the interaction Hamiltonian �non-

FIG. 1. �Color online� Schematic depicting balanced polarimet-
ric detection of laser light after interacting with a polarized cloud of
atomic spins via the Faraday Hamiltonian. The light is initially lin-
early polarized along the x direction. After the interaction, the light
carries off information about the atomic gas encoded in a small
optical polarization rotation. The light is measured in the �-� basis
rotated 45° from the x-y basis, such that without the atomic gas the
mean output of the polarimeter is balanced to zero. The change of
measurement basis is achieved with the waveplate located just be-
fore the polarizing beamsplitter.
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linear in individual spin operators� which are important near
resonance with realistic atoms of spin greater than 1/2 �4�.
We have also omitted the evolution due to any driving mag-
netic field, e.g., H=�BFy, purely for reasons of simplicity, it
can easily be added at the end.

In our QSDE description, the Faraday interaction is de-
scribed as a “direct” scattering process, without coherent ab-
sorption and reemission. This is a consequence of the fact
that the interaction Hamiltonian is derived from an approxi-
mation in which the excited states are adiabatically elimi-
nated �4�. At present, however, no mathematically rigorous
treatment of this elimination is available in the literature �see
�18� for rigorous results on the adiabatic elimination of a
leaky cavity mode�. Therefore, we have chosen to directly
base our QSDE model on the Faraday Hamiltonian without
proceeding through a rigorous Markov limit �19,20� fol-
lowed by adiabatic elimination of the excited states. Math-
ematically, the direct scattering is represented by gauge
terms in the QSDE �21�.

Having set the underlying model, i.e., the QSDE, we rig-
orously derive the quantum filtering equation for the bal-
anced polarimetry setup and for homodyne detection of the
y-polarized channel. We investigate the statistics of the out-
put processes for these two experiments and take a limit
where the driving laser power �2 goes to infinity but where
the product M =�2�2 is kept constant �� is the parameter that
couples the field to the atomic gas�. We show that in this
strong driving, weak coupling limit the statistics of the out-
put processes for the balanced polarimetry experiment and
the homodyne detection experiment are equivalent. Further-
more, we show that in the strong driving, weak coupling
limit we obtain the quantum filter that has already been in-
tuitively assumed in the literature �4�.

The remainder of this paper is organized as follows. Sec-
tion II introduces the fundamental noises and the quantum
stochastic calculus, and Sec. III sets our QSDE model. Sec-
tion 4 derives the filter when counting in the 45°-rotated xy
basis �balanced polarimetry�, and Sec. V derives the quantum
filter for the homodyne detection experiment. In Secs. VI and
VII we study the statistics of the observation processes, and
investigate the strong driving, weak coupling limit. We close
the paper with a discussion of the results obtained.

II. THE QUANTUM CALCULUS

One polarized photon in a beam of light can be described
by the one particle space

H = C2
� L2�R� � L2�R;C2� ,

of C2-valued quadratically integrable functions on the real
line. The polarized light field is described by the bosonic
Fock space F�H� over H

F�H� = C � �
n=1

�

H�sn,

which enables arbitrary superpositions between states with a
different number of photons. Note that photons are bosons

and therefore need to be described by symmetric wave func-
tions. For an f �H we can define the exponential vector e�f�
in F�H� by

e�f� = 1 � �
n=1

� 1

�n!
f �n.

We call the span of the exponential vectors the exponential
domain. The exponential domain is a dense set in F�H� and
we allow ourselves the freedom to only provide the defini-
tion of the fundamental noises �a little further below� on this
domain. If we normalize the exponential vectors then we
obtain the coherent vectors ��f�=exp�− 1

2� f�2�e�f�. An im-
portant vector is the vacuum vector, given by 	=��0�
=e�0�=1 � 0 � 0¯. The vacuum state 
= �	 , ·		 is ob-
tained by taking inner products with the vacuum vector.

If we choose an orthonormal basis 
e1 ,e2� in C2 then we
can decompose every f �L2�R ;C2� along this basis, i.e., f
= f1e1+ f2e2 with f1 and f2 in L2�R�. We now introduce the
fundamental noises At

i, At
i*, and �t

ij on the exponential do-
main by �see also �21–23��

At
ie�f� = �


0

t

f i�s�ds�e�f� ,

�e�g�,At
i*e�f�	 = �


0

t

ḡi�s�ds��e�g�,e�f�	 ,

�e�g�,�t
ije�f�	 = �


0

t

ḡi�s�f j�s�ds��e�g�,e�f�	 . �1�

At
i and At

i* are called the annihilation and creation processes,
respectively. The processes �t

ij are called gauge processes.
Formally, we can write the noises as At

i=�0
t as

ids, At
i*

=�0
t as

i*ds, and �t
ij =�0

t as
i*as

jds where at
i and as

j are the usual
Bose fields. Mathematically, the objects at

i and as
j are ill-

defined and therefore we resort to the definition of Eq. �1�.
The formal expressions do show very explicitly though, that
the operator �t

ii counts the number of photons with a polar-
ization in the ei direction up to time t and that the operator
�t

ij scatters the polarization of a photon from the ej direction
to the ei direction.

We will usually work in the basis 
e�x ,e�y� which physically
corresponds to an orthonormal basis in the plane orthogonal
to the direction of propagation of the light. Apart from this
basis, we also use the circular basis given by 
e+=−�e�x

+ ie�y� /�2, e−= �e�x− ie�y� /�2�, and the 45 degrees rotated xy
basis given by 

e��= �e�x+e�y� /�2, e��= �e�x−e�y� /�2�. Given the
definitions in Eq. �1� it is easy to work out how the noises
transform under basis transformations. For example, we have

�t
++ = 1

2 ��t
xx + �t

yy − i�t
yx + i�t

xy� .

Denote by h the Hilbert space of the atomic gas. The
space of the combined system of atomic gas and field to-
gether is then given by h � F�H�. Define Ht�=C2

� L2�−� , t� and H�t=C2 � L2�t ,��. For all t the bosonic Fock
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space splits in a natural way as a tensor product F�H�
=F�H�t�� � F�H�t�. A process Ls, �s�0� on h � F�H� is
called adapted if Ls acts nontrivially only on h � F�H�s�� and
is the identity on F�H�s� for all s�0.

Hudson and Parthasarathy �22� defined stochastic inte-
grals of adapted processes Ls against the fundamental noises,
i.e., they gave meaning to the expression Xt=X0+�0

t LsdMs,
where Ms is one of the fundamental noises As

i , As
i* or �s

ij. The
expression can be written in shorthand as dXt=LtdMt. More
importantly, Hudson and Parthasarathy �22� provided the cal-
culus with which these stochastic integrals can be manipu-
lated in calculations. The calculus consists of the following.
Suppose Xt and Yt are stochastic integrals, i.e., dXt=Lt

1dMt
1

and dYt=Lt
2dMt

2 where L1 and L2 are adapted processes and
M1 and M2 are fundamental noises, then the product XtYt is
itself a stochastic integral. Moreover, the product XtYt satis-
fies the following quantum Itô rule �partial integration rule�:

d�XtYt� = XtdYt + �dXt�Yt + dXtdYt,

where to evaluate dXtdYt we use that the increment dMt of a
fundamental noise commutes with all adapted processes, and
products dMt

1dMt
2 are given by the following quantum Itô

table �22�:

and all products dMtdt and dtdMt are zero. As an example,
suppose dXt=Lt

1dAt
i and dYt=Lt

2dAt
i*, then d�XtYt�

=XtLt
2dAt

i*+Lt
1YtdAt

i+Lt
1Lt

2dt.
It can be shown �19,20� that in the weak coupling limit �a

Markov limit� QED models converge to quantum stochastic
models, i.e., in the limit the unitary time evolution Ut satis-
fies a quantum stochastic differential equation in the sense of
Hudson and Parthasarathy. Usually, the QSDE obtained via
the weak coupling limit can be simplified further by adia-
batic elimination of degrees of freedom of the initial system.
See for instance �18� for rigorous results on the adiabatic
elimination of a leaky cavity. We, however, are interested in
the adiabatic elimination of the excited states of the atoms in
the atomic gas. Unfortunately, at present, no rigorous results
on this kind of adiabatic elimination are available. Therefore
we choose not to go through a weak coupling limit and/or
adiabatic elimination procedure here, but rather write down a
phenomenological QSDE based on the Faraday interaction,
see Eqs. �3� and �6� below. See �4� for a derivation of the
Faraday Hamiltonian of Eq. �2� via usual nonrigorous adia-
batic elimination methods.

III. THE MODEL

The interaction between the laser light and the spin polar-
ized atomic gas is governed by the Faraday interaction given
by

Hdt = 2�FzSzdt = �Fz�d�t
++ − d�t

−−� . �2�

Here � is a coupling parameter, Fz is the z component of the
collective spin vector of the atoms, and 2Sz=at

+*at
+−at

−*at
− is

the z component of the Stokes vector S of the polarized light.
The time evolution of the coupled system of light and atomic
gas together is given by the exponential �the superscript 0
distinguishes Ut

0 from Ut to be introduced later�

Ut
0 = exp�i


0

t

�Fz�d�s
++ − d�s

−−�� .

Since �t
++ and �t

−− are jump processes, the Itô rule leads to a
quantum stochastic differential equation �22� that contains
the following difference terms �U0

0= I�:

dUt
0 = ��ei�Fz − 1�d�t

++ + �e−i�Fz − 1�d�t
−−�Ut

0. �3�

That is, right circular polarized photons rotate the collective
spin of the atoms over an angle � along the z axis, whereas
left circular polarized photons rotate the collective spin of
the atoms over an angle −� along the z axis. If we express
the gauge processes in the linearly polarized xy basis, then
Eq. �3� reads �U0

0= I�,

dUt
0 = 
�cos��Fz� − 1��d�t

xx + d�t
yy�

− sin��Fz��d�t
xy − d�t

yx��Ut
0. �4�

The second term shows that the interaction can scatter
x-polarized photons to y-polarized photons and vice versa.

Initially, the atomic gas is in an x-spin polarized state,
denoted 
, and the field is in an x-polarized coherent state
�x�f� which represents the driving laser. The function f
�L2�R+� gives the phase and amplitude of the driving laser
field at every time t�R+. In computations it is often conve-
nient to work with respect to the vacuum state 
= �	 , ·		
for the field. We can obtain a coherent state by acting with a
displacement or Weyl operator Wx�f� on the vacuum vector

�x�f� = Wx�f�	 .

If we work with respect to the vacuum state 
, then we must
sandwich all operators with the Weyl operator Wx�f�. An
observable S of the combined system of atomic gas and field
up to time t is therefore at time t given by

jt�S� = Wx�f�*Ut
0*SUt

0Wx�f� = Wx�f t�*Ut
0*SUt

0Wx�f t� . �5�

Here, f t denotes the function f truncated at time t, i.e., f t�s�
= f�s� for all s� t and f t�s�=0 for all s� t. The relation Eq.
�5� follows since all the operators split as a tensor product at
time t and Ut

0 and S act as the identity operator after time t.
Since Wx�f� is unitary, it then cancels against its adjoint for
the part that is after time t.

It can be shown �23� that Wx�f t� satisfies the following
QSDE �Wx�f0�= I�:

dWx�f t� = � f�t�dAt
x* − f̄�t�dAt

x − 1
2 �f�t��dt�Wx�f t� .

Defining Ut=Ut
0Wx�f t� and using the quantum Itô rule �22�,

we obtain �U0= I�
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dUt = 
�cos��Fz� − 1��d�t
xx + d�t

yy� − sin��Fz��d�t
xy − d�t

yx�

+ f�t�cos��Fz�dAt
x* − f̄�t�dAt

x + f�t�sin��Fz�dAt
y*

− 1
2 �f�t��2dt�Ut. �6�

Summarizing, we work in the state Pª
 � 
, the time evo-
lution of �adapted� observables S is given by jt�S�=Ut

*SUt,
with Ut given by Eq. �6�.

IV. THE QUANTUM FILTER

After the interaction, the light carries off information
about the atomic gas. Therefore, measuring the field will
enable us to make inference about the atomic gas observ-
ables. Let us suppose that we are counting the photons with
a polarization along the e��=1/�2�e�x+e�y� axis, and that we
are separately counting the photons with a polarization along
the e��=1/�2�e�x−e�y� axis, see Fig. 1. That is, our observa-
tions are given by

Yt
� = Ut

*�t
��Ut = 1

2Ut
*��t

xx + �t
yy + �t

xy + �t
yx�Ut,

Yt
� = Ut

*�t
��Ut = 1

2Ut
*��t

xx + �t
yy − �t

xy − �t
yx�Ut. �7�

Let X be an atomic gas operator, its time evolution is given
by

jt�X� = Ut
*XUt. �8�

Equation �8� is called the system. Together Eqs. �8� and �7�
form a system-observations pair.

It is easily checked that �Yt
� ,Ys

��=0 for all � ,�� 
� ,��
and for all t ,s�0. This is called the self-nondemolition prop-
erty and ensures that our observations are simultaneously
observable classical processes. Furthermore, it can be shown
that �jt�X� ,Ys

��=0 for all t�s�0 and �� 
� ,��. This is
called the nondemolition property. Together the self-
nondemolition and the nondemolition property ensure the ex-
istence of the conditional expectation P(jt�X� �Yt) of a system
operator at time t on the observations up to time t. Since the
conditional expectation is linear in the atomic gas operators
X, we can define an information state �t on the atomic gas
system by

�t�X� = P„jt�X��Yt… .

Note that �t is a stochastic state since it depends on the
observations Y� and Y� up to time t.

It is the goal of quantum filtering theory to obtain a re-
cursive stochastic differential equation that propagates the
information state �t in time. Our approach here is based on
the reference probability method �15,16�. In these references,
the interested reader can find further details on the exposition
below.

Our first step is one of mere convenience. It is a change of
picture that will simplify subsequent calculations. Let Wt be
given by W0= I and

dWt = � f̄�t�dAt
x − f�t�dAt

x* − 1
2 �f�t��dt�Wt.

Note that Wt is the adjoint of Wx�f t�. Now define Ut�=WtUt,
where Ut is given by Eq. �6�. It easily follows from the
quantum Itô rule �22� that

dUt� = 
�cos��Fz� − 1��d�t
xx + d�t

yy� − sin��Fz��d�t
xy − d�t

yx�

+ f�t��cos��Fz� − 1�dAt
x* − f̄�t��cos��Fz� − 1�dAt

x

+ f�t�sin��Fz�dAt
y* − f̄�t�sin��Fz�dAt

y

+ �f�t��2�cos��Fz� − 1�dt�Ut�. �9�

Define a new state on the combined system of atomic gas
and field by Qt�S�=P�Ut�

*SUt��. To complete our change of
picture we need to sandwich the observables with the oppo-
site rotation. That means that the system Eq. �8� is now sim-
ply given by Ut�Ut

*XUtUt�
*=WtXWt

*=X. In the last step we
used that X acts on the atoms and is the identity on the field
and vice versa for Wt. In the new picture the observations
read

Zt
� = Ut�Yt

�Ut�
* = Wt�t

��Wt
*,

Zt
� = Ut�Yt

�Ut�
* = Wt�t

��Wt
*.

Using the quantum Itô rule, it easily follows that

dZt
� = d�t

�� + 1
2 � f̄�t��dAt

x + dAt
y� + f�t��dAt

x* + dAt
y*�

+ �f�t��2dt� ,

dZt
� = d�t

�� + 1
2 � f̄�t��dAt

x − dAt
y� + f�t��dAt

x* − dAt
y*�

+ �f�t��2dt� . �10�

Denote Ct=Ut�YtUt�
*, i.e., Ct consists of the processes Z� and

Z� up to time t. It can easily be shown that the conditional
expectations in the two different pictures are related by
P�jt�X� �Yt�=Ut�

*Qt�X �Ct�Ut�. That completes our discussion
of the change of picture. We will now focus on deriving an
equation that propagates Qt�X �Ct�.

At the heart of the reference probability method is the
following quantum Bayes formula �15,16�. Let V be an op-
erator that commutes with Zs

� for all �� 
� ,�� and for all
0�s� t. Moreover, suppose that V*V�0 and that P�V*V�
=1. Then we can define a state Q by Q�S�=P�V*SV�, and for
all operators X that commute with Zs

� ��� 
� ,�� ,0�s� t�,
we have �see �15,16� for a proof�

Q�X�Ct� =
P�V�XV�Ct�
P�V�V�Ct�

.

We would like to apply the quantum Bayes formula to Qt,
i.e., with V=Ut�. However, Eq. �9� shows that Ut� is driven by
noises that do not commute with Zs

� ��� 
� ,�� ,0�s� t�,
i.e., Ut� itself does not commute with the Zs

�’s.
The following trick �17� solves this problem. Suppose Vt�

satisfies the QSDE,
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dVt� = 
�cos��Fz� + sin��Fz� − 1�dZt
�

+ �cos��Fz� − sin��Fz� − 1�dZt
��Vt�. �11�

Then, the coefficients of dAt
x*, dAt

y*, and dt are the same as in
Eq. �19�. Since dAt

� and d�t
�� �� ,�� 
x ,y�� are zero when

acting on the vacuum vector 	, we therefore have that for all
operators S �17�,

Qt�S� = P�Ut�
*SUt�� = P�Vt�

*SVt�� .

Moreover, since Vt� is driven by Zt
� and Zt

�, it commutes with
Ct, and we can therefore apply the Bayes formula with V
=Vt�. That is, summarizing what we have achieved thus far

P„jt�X��Yt… = Ut�
*Qt�X�Ct�Ut� =

Ut�
*P�Vt�

*XVt��Ct�Ut�

Ut�
*P�Vt�

*Vt��Ct�Ut�
.

�12�

The next step is to find the equation that propagates
P�Vt�

*XVt� �Ct� in time. Using the quantum Itô rule we find

dVt�
*XVt� = Vt�

*�L�XL� − X�Vt�dZt
� + Vt�

*�L�XL� − X�Vt�dZt
�,

�13�

with

L� = cos��Fz� + sin��Fz� ,

L� = cos��Fz� − sin��Fz� . �14�

We can write Eq. �13� in integral form and approximate the
stochastic integrals in the usual way with simple processes.
If we proceed by taking the conditional expectation P�·�Ct�,
then we can pull the integrators which are elements of Ct out
of the expectation. Furthermore, the conditional expectation
P�Ls �Ct� �0�s� t� of an adapted process L equals P�Ls �Cs�.
In this way we obtain

dP�Vt�
*XVt��Ct� = P„Vt�

*�L�XL� − X�Vt��Ct…dZt
�

+ P„Vt�
*�L�XL� − X�Vt��Ct…dZt

�.

Now define �t�X�=Ut�
*P�Vt�

*XVt� �Ct�Ut� for all atomic opera-
tors X. Using the quantum Itô rule, we obtain the linear ver-
sion of the quantum filtering equation

d�t�X� = �t„L�X�…dt + �t�L�XL� − X��dYt
� − 1

2 �f�t��2dt�
+ �t�L�XL� − X��dYt

� − 1
2 �f�t��2dt� , �15�

where the Lindblad generator L is given by

L�X� = �f�t��2�sin��Fz�X sin��Fz� + cos��Fz�X cos��Fz� − X� ,

�16�

for all atomic operators X. Now recall from Eq. �12� that
�t�X�=�t�X� /�t�I�, which is a quantum version of the clas-
sical Kallianpur-Striebel formula. Using the Itô rule once
more, we obtain the following quantum filter:

d�t�X� = �t„L�X�…dt + ��t�L�XL��
�t�L�L��

− �t�X��
��dYt

� −
1

2
�f�t��2�t�L�L��dt�

+ ��t�L�XL��
�t�L�L��

− �t�X��
��dYt

� −
1

2
�f�t��2�t�L�L��dt� .

The processes dYt
�− 1

2 �f�t��2�t�L�L��dt and dYt
�

− 1
2 �f�t��2�t�L�L��dt are called the innovations or innovating

martingales. It can indeed be shown �13,14� that the innova-
tions are martingales with respect to the filtration Yt and the
measure induced by P.

V. A DIFFERENT SETUP: HOMODYNE DETECTION

For the remainder of the paper we assume that f�t�
=�ei
t with � real and 
t in �0,2��. Now suppose that in-
stead of the balanced polarimetry setup described in the pre-
ceding section, we use a homodyne detection setup to mea-
sure the y component of the output light, see Fig. 2. It is well
known �11,24� that for such a homodyne detection setup the
observations are given by

Yt = Ut
*�e−i
tAt

y + ei
tAt
y*�Ut. �17�

That is, for homodyne detection of the y channel the system-
observations pair is given by Eqs. �8� and �17�. It is easily
checked that the homodyne system-observations pair satis-
fies the self-nondemolition and nondemolition properties,

FIG. 2. �Color online� In the homodyne detection setup, the
detection apparatus in the dashed box of Fig. 1 should be replaced
with the apparatus depicted schematically here. As in Fig. 1, the
light is initially polarized along x and the polarization rotates
slightly due to the interaction with the atoms. Here, however, the
strong x component is split off and ignored while the weak y com-
ponent is sent to a standard homodyne setup. The y component is
mixed at a 50/50 �nonpolarizing� beamsplitter with a strong local
oscillator beam also polarized along the y direction and derived
from the same laser as the probe beam. The photocurrent represent-
ing the interference signal is then derived from the difference be-
tween the outputs of the photodetectors.
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meaning that the conditional expectation P(jt�X� �Yt) is well
defined. Here Yt denotes the homodyne observations of Eq.
�17� from time 0 up to time t. We will now derive the filter
for the corresponding information state �t�X�=P(jt�X� �Yt).

Our first step is again one of convenience. We change to
the Schrödinger picture by defining the following state on the
combined system of atomic gas and field together Qt�S�
=P�Ut

*SUt�. In the Schrödinger picture our system is simply
given by Utjt�X�Ut

*=X and the observations are given by

Zt = UtYtUt
* = e−i
tAt

y + ei
tAt
y*.

Denote Ct=UtYtUt
*, i.e., Ct consists of the process Z up to

time t. It can easily be shown that the conditional expecta-
tions in the Heisenberg and Schrödinger pictures are related
by P(jt�X� �Yt)=Ut

*Qt�X �Ct�Ut.
To compute Qt�X �Ct� we would like to use the Bayes for-

mula. Suppose Vt satisfies the following QSDE �V0= I�:

dVt = �ei
t� cos��Fz�dAt
x* + � sin��Fz�dZt −

�2

2
dt�Vt.

�18�

Then, the coefficients of dAt
x*, dAt

y*, and dt are the same as in
Eq. �6�. Therefore we have Qt�S�=P�Ut

*SUt�=P�Vt
*SVt�. The

equation for Vt is driven by Z and Ax*, both commute with Ct,
i.e., Vt commutes with Ct. That means we can now apply
Bayes formula with V=Vt to obtain

P„jt�X��Yt… = Ut
*Qt�X�Ct�Ut =

Ut
*P�Vt

*XVt�Ct�Ut

Ut
*P�Vt

*Vt�Ct�Ut

.

Using the quantum Itô rule we find

dVt
*XVt = Vt

*L�X�Vtdt + �e−i
tVt
* cos��Fz�XVtdAt

x

+ �ei
tVt
*X cos��Fz�VtdAt

x* + �Vt
*�sin��Fz�X

+ X sin��Fz��VtdZt,

where L is given by Eq. �16�. Since dAt
x and dAt

x* are inde-
pendent of Ct and since vacuum expectations of stochastic
integrals with respect to dAt

x and dAt
x* are zero, we find in an

analogous way as before

dP�Vt
*XVt�Ct� = P„Vt

*L�X�Vt�Ct…dt + �P„Vt
*�sin��Fz�X

+ X sin��Fz��Vt�Ct…dZt.

Now introduce �t�X�=Ut
*P�Vt

*XVt �Ct�Ut for all atomic gas
operators X. Using the quantum Itô rule, we obtain the linear
homodyne filtering equation

d�t�X� = �t„L�X�…dt + ��t�sin��Fz�X + X sin��Fz��dYt.

�19�

Using �t�X�=�t�X� /�t�I� and the Itô rule, we find the fol-
lowing homodyne quantum filter:

d�t�X� = �t„L�X�…dt + �„�t�sin��Fz�X + X sin��Fz��

− 2�t�sin��Fz���t�X�…
dYt − 2��t�sin��Fz��dt� .

�20�

The process dYt−2��t�sin��Fz��dt is again called the inno-

vations or the innovating martingale. It can be shown �13,14�
that the innovations are a continuous martingale with respect
to the filtration Yt and the measure induced by P. It follows
from Levy’s theorem that the innovations for the homodyne
detection setup form a Wiener process.

VI. STRONG DRIVING, WEAK COUPLING

Define the measurement strength as the product M
=�2�2. In a typical experimental setting � will be very large
�strong driving� and � will be very small �weak coupling�.
The idea in this section will be to exaggerate this by taking
the limit �→� while keeping the product M =�2�2 constant.

Let us introduce the following scaled sum and difference
processes:

Yt
+ =

Yt
� + Yt

�

�2 , Yt
− =

Yt
� − Yt

�

�
. �21�

Note that we scaled the sum by �2 and the difference by �.
We will see that with these scalings we get finite output
processes in the limit. In practice the scalings are determined
by the experiment, i.e., they are chosen in such a way that
the photocurrents nicely fill the scales on the read out de-
vices. We are interested in the statistics of the processes Yt

+

and Yt
−. Therefore, following �24�, we introduce their char-

acteristic functionals

	+�k,t� = P�exp�− i

0

t

k�s�dYs
+��

= P�Ut
* exp�− i


0

t k�s�
�2 �d�s

xx + d�s
yy��Ut� ,

	−�k,t� = P�exp�− i

0

t

k�s�dYs
−��

= P�Ut
* exp�− i


0

t k�s�
�

�d�s
xy + d�s

yx��Ut� ,

where k is an arbitrary function in L2�R+�. The characteristic
functionals 	+ and 	− faithfully encode the complete statis-
tics of the processes Yt

+ and Yt
−.

Using the quantum Itô rule and the fact that vacuum ex-
pectations of stochastic integrals are zero, we find the fol-
lowing differential equation for 	+�k , t�:

d	+

dt
�k,t� = �2�exp�− i

k�t�
�2 � − 1�	+�k,t� ,

In the limit � to infinity �while keeping M =�2�2 constant�,
we therefore obtain

	+�k,t� = exp�− i

0

t

k�s�ds� .

This is the characteristic functional of the deterministic time
process t. In short, as � tends to infinity, dYt

+ tends to dt.
To calculate 	−�k , t�, define for all atomic gas

operators X,
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	−�X,k,t� = P�Ut
*X exp�− i


0

t k�s�
�

�d�s
xy + d�s

yx��Ut� .

Note that 	−�k ,s�=	−�I ,k ,s�. Using the quantum Itô rule
and the fact that vacuum expectations of stochastic integrals
are zero, we find the following system of differential equa-
tions �n�0�:

d	−

dt
„�n sinn�2�Fz�,k,t… = �2�cos� k�t�

�
� − 1�

�	−
„�n sinn�2�Fz�,k,t…

− i� sin� k�t�
�

�
�	−

„�n+1 sinn+1�2�Fz�,k,t… .

Note that although the atomic gas system might be very high
dimensional, the dimension is finite. That means that the
above system of differential equation is closed and consists
only of a finite number of equations. In the limit � to infinity
�while keeping M =�2�2 constant�, we obtain the following
finite system of coupled differential equations �n�0�:

d	−

dt
„��MFz�n,k,t… = −

k�t�2

2
	−

„��MFz�n,k,t…

− 2ik�t�	−
„��MFz�n+1,k,t… . �22�

In principle we could now try to solve this system of equa-
tions. However, instead of finding an explicit solution, let us
compare this with the statistics of the homodyne observa-
tions Yt defined in Eq. �17�. In analogy to the discussion
above, we define for all atomic gas operators X,

	�X,k,t� = P�Ut
*X exp�− i


0

t

k�s�d�e−i
tAs
y + ei
tAs

y*��Ut� .

Using the quantum Itô rule and the fact that vacuum expec-
tations of stochastic integrals are zero, we find the following
system of differential equations �n�0�:

d	

dt
„�n sinn��Fz�,k,t… = −

k�t�2

2
	„�n sinn��Fz�,k,t…

− 2ik�t�	„�n+1 sinn+1��Fz�,k,t… .

Taking the limit �→� �while M =�2�2 is held constant� then
again leads to the system of differential equations �22�.
Therefore we conclude that in the limit the processes Yt

− and
Yt have exactly the same statistics. This means that from the
point of view of statistical inference of the atomic gas system
from the observations, the balanced polarimetry experiment
and the y-channel homodyne detection experiment are
equivalent.

Rearranging terms, we can write the linear quantum fil-
tering equation �15� as

d�t�X� = �2
„�t�sin��Fz�X sin��Fz��

+ �t�cos��Fz�X cos��Fz�� − �t�X�…dYt
+

+ �„�t�cos��Fz�X sin��Fz��

+ �t�cos��Fz�X sin��Fz��…dYt
−.

Writing Ȳt for the limit process of Yt
−, and taking the limit of

the above equation, we obtain the following linear quantum
filtering equation:

d�t�X� = �t„L̄�X�…dt + �M�t�FzX + XFz�dȲt, �23�

where

L̄�X� = M�FzXFz − 1
2 �Fz

2X + XFz
2�� .

Moreover, we obtain the following normalized quantum fil-
ter:

d�t�X� = �t„L̄�X�…dt + �M��t�FzX + XFz� − 2�t�Fz��t�X��

��dȲt − 2�M�t�Fz�dt� . �24�

Since dȲt−2�M�t�Fz�dt is a continuous martingale �13,14�,
it follows from Levy’s theorem that it is a Wiener process.

That is, we find that dȲt=dWt+2�M�t�Fz�dt, with Wt a
Wiener process.

Furthermore, note that if we start from Eq. �19�, taking �
to infinity while M =�2�2 is held constant, then we also ob-
tain the linear filter Eq. �23�. Likewise, the homodyne filter
Eq. �20� converges to the filter in Eq. �24� when � is taken to
infinity while M =�2�2 is held constant.

VII. DECOUPLING THE x CHANNEL

Let us give a brief formal discussion to show what hap-
pens in the strong driving, weak coupling limit. As � in-
creases and �=�M /� decreases, the relative effect of the
atoms on the x-polarized channel also decreases. Therefore,
we can reasonably expect that the x channel remains in a
coherent state. Instead of working with respect to the state
P=
 � 
 we will now work with respect to the state

Q = 
 � ��x�f�, · �x�f�	 ,

with f�t�=�ei
t. Note that this means that the y channel is
still in the vacuum state. Working with respect to the coher-
ent state on the x channel means that the time evolution is
given by Eq. �4�. Formally we can write for �, �� 
x ,y�,

d�t
�� = at

�*at
�dt, dAt

� = at
�dt, dAt

�* = at
�*dt ,

and since for large � and small � the x channel is approxi-
mately in the coherent state ��f�, we can replace at

x by �ei
t

and at
x* by �e−i
t. This means that we obtain for large � and

small �,

dUt
0 = 
�cos��Fz� − 1���2dt + d�t

yy� − sin��Fz���e−i
tdAt
y

− ei
tdAt
y*��Ut

0.

Now, if we replace � by �M /� and take the limit � to infin-
ity, then the time evolution satisfies the following QSDE:

dŪt = ��MFz�e−i
tdAt
y − ei
tdAt

y*� −
M

2
Fz

2dt�Ūt.

That is, the x channel has been decoupled from the interac-
tion, see also �9,25�.
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In a similar way we easily see that in the strong driving,

weak coupling limit we have dYt
+=dt and for Ȳt, the limit of

Yt
−, we obtain

Ȳt =
Ūt

*��t
xy + �t

yx�Ūt

�

=
Ūt

*��e−i
tAt
y + �ei
tAt

y*�Ūt

�
= Ūt

*�e−i
tAt
y + ei
tAt

y*�Ūt.

�25�

This shows once more the equivalence of the balanced po-
larimetry experiment and the y-channel homodyne detection
experiment. It is easy to see that the characteristic functional

of the process Ȳ satisfies the set of coupled differential equa-
tions of Eq. �22�. Moreover, after decoupling the x channel

the system is given by jt�X�= Ūt
*XŪt and the observations by

Eq. �25�. Following essentially the same steps as in Sec. V,
we again obtain Eqs. �23� and �24� as the linear and normal-
ized filters, respectively.

VIII. DISCUSSION

We have provided a quantum stochastic model Eq. �6� to
describe recent polarimetry experiments in which polarized
laser light interacts with an atomic gas via the Faraday inter-
action. In our description the gauge process plays a promi-
nent role. It represents the scattering between different chan-
nels in the field and it provides us with counting processes
that can be observed. As in �21�, our quantum stochastic

model presents an application to quantum optics of the gauge
terms in a QSDE.

Once we set the model, we derived quantum filtering
equations for balanced polarimetry and homodyne detection
experiments, studied the statistics of output processes, and
obtained filters in the strong driving, weak coupling limit.
Our results in the limit confirm the ad hoc filter for the bal-
anced polarimetry experiment that has already been in use in
the literature �4�. Moreover, we showed that from the point
of view of statistical inference the balanced polarimetry ex-
periment and the homodyne detection experiment are equiva-
lent.

Using formal arguments we have seen that in the strong
driving, weak coupling limit the x channel decouples from
the description. Rigorous results on this decoupling are still
to be obtained.

Having an underlying model from which rigorous deriva-
tions can depart, is likely to be advantageous in future further
investigations. In particular, combining the model presented
in this paper with the results in �26� could prove useful for
investigating the situation where the laser beam passes
through the gas multiple times �10,27�.
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