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We analyze the dynamics of a system qubit interacting by means of a sequence of pairwise collisions with
an environment consisting of just two qubits. We show that the density operator of the qubits approaches a
common time-averaged equilibrium state, characterized by large fluctuations, only for a random sequence of
collisions. For a regular sequence of collisions the qubit states of the system and of the reservoir undergo
instantaneous periodic oscillations and do not relax to a common state. Furthermore we show that pure bipartite
entanglement is developed only when at least two qubits are initially in the same pure state while otherwise
also genuine multipartite entanglement builds up.
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I. INTRODUCTION

Quantum information is providing new perspectives and
is opening new issues in the analysis of the dynamics of open
quantum systems. For instance in �1� the loss of coherence of
a system of qubits has been shown to be linked to the irre-
versible flow of information between the system and the bath
due to a build up of entanglement between the two. Such
model has been extended to the case in which couplings
between the bath degrees of freedom are present �2–5�. In
particular it was shown that, due to the monogamy of en-
tanglement �6�, the presence of intrabath entanglement can
inhibit decoherence processes. The irreversible dissipation of
a qubit has been analyzed in �7–9� in terms of an exchange of
information by means of repeated collisions between a single
qubit and a reservoir of an arbitrarily large number N of
identical independent qubits all prepared in the same state. In
most of the existing literature an irreversible dynamics is
obtained under the assumption that the reservoir has a large
number of degrees of freedom. For instance, in the derivation
of master equations the Born-Markov approximation is jus-
tified on the basis of a weak coupling with a basically unaf-
fected large reservoir. On the other hand, the dynamics of a
system interacting with a small environment can have rich
new features ranging from memory effects, Poincaré recur-
rences, etc. Our work is somehow in the same spirit of the
works by Mahler and co-workers �10�, in which the interac-
tion of various quantum systems with finite environments,
like finite quantum networks or quantum Turing machines,
has been analyzed with particular focus on the onset of quan-
tum chaos. In the present paper we will address the problem
whether, and under which conditions, an irreversible dynam-
ics can appear when a system interacts with very small res-
ervoirs, a situation often encountered in the physics of me-
soscopic systems �11� and of quantum information
processing �12,13� and of growing interest. To this goal we
will use a repeated collision model to analyze the time evo-
lution of a qubit interacting with the smallest nontrivial res-
ervoir consisting of just two qubits. In spite of the apparent
simplicity of the model, the system dynamics shows interest-

ing new features. Due to the small size of the environment,
the reduced dynamics of the system is characterized by large
fluctuations. However an irreversible dynamics is retrieved
when the system dynamics is averaged over a sufficiently
large number of collisions �as we will discuss later this is
different from the usual time coarse grained introduced in the
derivation of a master equation�. We will show that a time-
averaged equilibrium state is reached only for a random se-
quence order of collisions. This is not a priori an obvious
result. It is important to stress that the reduced dynamics of
the system qubit cannot, in this case, be described in terms of
a Markovian master equation, as we will show below.

II. THE MODEL

To set the scenario and to illustrate the approach of our
work let us review the repeated collision model. Consider a
set of N+1 qubits, the first of which is the system qubit and
the remaining N are the reservoir. The interaction between
system and environment is due to pairwise collisions be-
tween the system and a singe reservoir qubit. Each collision
is described in terms of a unitary operator Ui. After t colli-
sions the overall state of the system plus reservoir is

�SE
�t� = Uit

¯ Ui2
Ui1

�SE
�0�Ui1

† Ui2
†
¯ Uit

† , �1�

where �SE is the total density operator and the sequence of
labels i1¯ it specify the order with which the environment
qubits collide with the system one. In general each collision
modifies the entanglement between the system and the envi-
ronment qubits, in particular initially separable qubits will
become entangled. Such model was considered to analyze
the processes of thermalization �7� and of homogenization
�8,9�. These were shown to be achieved when the collisions
are described by the partial swap operator

Ui = cos � 1 + i sin �Si, �2�

where Si is the swap operator between the system qubit and
the ith environment qubit defined by the relation Si���
� ���= ��� � ��� �here ��� � ��� is an arbitrary product of
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single-qubit pure states�. The environment was assumed to
consist of a set of N qubits all initially prepared in the �gen-
erally mixed� state �. For instance in �7� � is a thermal state
of a single spin. The initial density operator was therefore
�SE

�0�=�S
�0�

� ��N. The number N of environment qubits was
assumed to be infinite in order to neglect repeated collisions
between the system qubit and the same environment qubit.
Under these assumption the system qubit was shown to relax
to thermal equilibrium. More in general, such model de-
scribes a homogenization process in which the qubit system
approaches state � �8�. Such relaxation mechanism can be
understood easily if one notes that this models contains all
the ingredients used in standard derivations of a master equa-
tion: the system interacts with an environment which rapidly
“forgets” the effects of the coupling with the system and
returns to its stationary state.

Here we will look at the model from an entirely different
viewpoint analyzing the system dynamics in the opposite
limit of the smallest nontrivial environment, namely the limit
N=2. The reason for this choice is twofold. On the one hand,
although thermalization or homogenization are clearly not
possible for such small environment we would like to know
if, and under which conditions, the system and the environ-
ment reach some form of equilibrium. Furthermore, since the
entanglement dynamics among the three qubits can be fol-
lowed and characterized in detail, it is possible to analyze
under which conditions bipartite entanglement and genuine
tripartite entanglement builds up.

III. SMALL ENVIRONMENT

The major new feature of the small reservoir limit is
clearly the fact that the system qubit collides repeatedly with
the same environment qubits. In our case Eq. �1� reduces to

�012
�t� = Uit

¯ Ui2
Ui1

�012
�0� Ui1

† Ui2
†
¯ Uit

† , �3�

where the label 0 refers to the system qubit while 1,2 refer to
the environment qubits. We will not restrict ourselves to the
case in which �012

�0� =�0 � �1 � �2 but we will consider also
the case in which some entanglement is initially present be-
tween the environment qubits. The order with which the t
collisions take place is specified by the string of indices
i1¯ it. We have considered two limiting cases: a completely
random sequence, corresponding to the situation in which the
system qubit collides with equal probability with each of the
environment qubits, and the regular periodic sequence
1212¯12¯, corresponding to the situation in which the sys-
tem qubits collides alternatively with the two environment
qubits.

A. Approach to equilibrium

In order to characterize the approach to equilibrium we
will make use of an important feature of our system: the total

Bloch vector, defined as B� =�i=0
2 b� i, where b� i is ith qubit

Bloch vector, is a constant of motion. If the state of both
system and environment qubits approach the same equilib-
rium reduced density operator, after a sufficiently long num-

ber of collisions we must have b� i→B� /3. In Fig. 1 we show
the time evolution of the z component of the system qubit

Bloch vector b�0, for a random and an ordered sequence of
collisions. A similar behavior is shown by the x and y com-
ponents �data not shown�. The system qubit is assumed to be
in the state cos� �

2
��0�+sin� �

2
��1� while the environment is as-

sumed to be initially in the state �00� or in the Bell state
1
�2

��00�+ �11��. Such choice has been made to illustrate the
new features of the dynamics for two different instances of
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FIG. 1. Time evolution of the z
component of the system qubit

Bloch vector b�0, for a random
�left� or an ordered �right� se-
quence of collisions. The initial
condition for the environment is
the separable state �00� �above� or
the Bell state 1

�2
��00�+ �11�� �be-

low�. Parameter values: �= 1
10�,

�= 2
5�.
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environment in a pure state with an equal reduced density
operator for the two environment qubits and with different
bipartite initial entanglement.

The figures clearly show that while for the ordered se-
quence of collisions the z component of the Bloch vector
exhibits periodic oscillations, strong and rapid fluctuations
appear for a random sequence of collisions, due to the ex-
tremely small size of our reservoir. This is very different
from what happens in the large reservoir limit, where, for
sufficiently weak collisions, i.e., for � small enough, the en-
vironment qubits are hardly modified by the interaction with
the system, while, after a sufficiently large number of colli-
sions the density operator of the system qubit becomes
monotonically arbitrarily close to � �7,8�.

In our system a steady state is however reached if one
looks at time-averaged dynamics. In order to explore the
emergence of a time-averaged equilibrium state, we have
evaluated the components of the vector

	�b� i��t� =
1

t + 1 �
t�=0

t 
b� i�t�� −
B�

3
� = 	b� i��t� −

B�

3
, �4�

where 	A��t� denotes the time average of the quantity A from
time 0 to time t and i labels the qubits. In Fig. 2 the length

�	�biz�� of the z component of the vector 	�b� i�, for the sys-
tem and the environment qubits is plotted, for the same ini-
tial conditions and parameter values as in Fig. 1. It is impor-
tant to note that in the time-averaged dynamics one loses
knowledge of the exact sequence of collisions. If the same
time average were done in the homogenization process de-
scribed in �8�, all sequence of collisions would give origin to
the same irreversible dynamics. This is not at all the case in
the small reservoir limit. Our results suggest that the ap-

proach to a time-averaged equilibrium state depends on how
random—i.e., how compressible in the Kolmogorov sense
�14�—the string identifying the sequence of collisions is.
When a regular pattern exists in the collision sequence then
the time-averaged dynamics of the system and the reservoir
qubits settle on different values. Note incidentally that while
in the large N limit, thanks to the fact that the system qubit
collides with “fresh” reservoir qubits, the system dynamics
can be analyzed in terms of completely positive �CP� maps
forming a semigroup leading to an effective Lindblad time
evolution �9�, this is not possible in our case, since, due to
the repeated collisions among the same qubits, the state of
reservoir qubits involved in the collision changes each time
and an irreversible dynamics is obtained only after time av-
erage. We emphasize that our time average is different from
the typical coarse graining introduced in the derivation of a
Markovian master equation. Such coarse graining amounts to
looking at the system dynamics over a time scale longer than
the time needed for the reservoir to reset to its steady state.
In the repeated collision model with an infinite reservoir
model the environment sets to its equilibrium value after
each individual collision as the system collides with different
fresh reservoir qubits.

The straight lines in the left-hand plots of Fig. 2 show a
decay �biz� t−1/2 for a random sequence of collisions. This
implies that the cumulative sum obtained by adding the vec-

tors �b� i�t��=b� i�t��− B�
3 from time t�=0 to time t�= t grows

�t1/2. Such diffusive growth is the same as for Brownian
motion or for coin-tossing sequences and suggests that, given

t1 and t2, the vectors �b� i�t1� and �b� i�t2� are in practice un-
correlated, provided �t1− t2� is sufficiently large.

Further insight into the approach to equilibrium is gained
by evaluating the self-correlation defined as
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FIG. 2. Length �	�biz�� of the z

component of the vector 	�b� i�, for
the system qubit �i=0, solid
curves� and the environment qu-
bits �i=1,2, dashed and dotted-
dashed curves, respectively�. The
straight lines show a decay �t−1/2.
Same initial conditions and pa-
rameter values as in Fig. 1.

REVERSIBLE AND IRREVERSIBLE DYNAMICS OF A … PHYSICAL REVIEW A 75, 052110 �2007�

052110-3



C� ik�t� = lim
T→	

1

T + 1 �
t�=0

T

�bik�t���bik�t� + t� , �5�

where k=x ,y ,z. In Fig. 3, we show the decay of the corre-
lation function Ciz �left-hand plots, corresponding to random
sequence of collisions� versus the oscillations of the same
correlation function in the case of a regular sequence of col-
lisions �right-hand plots�. The insets show the exponential
decay of �Ciz� when the sequence of collisions is random.
Note that �Ciz� eventually oscillates around a value �T−1/2

due to the finite sequence of data considered in computing
the correlation function �in these plots, T=106�. This is again
compatible with normal diffusive dynamics.

B. Entanglement dynamics

Interesting features of our model appear when the time
evolution of bipartite and multipartite entanglement is ana-
lyzed. To this end let us first introduce the tangle as a mea-
sure of bipartite entanglement. Given the density operator 
ab
of a bipartite system of two qubits, the tangle �a�b is defined
as

�a�b�
� = �max�0,�1 − �2 − �3 − �4�2, �6�

where ��i �i=1, . . . ,4� are the square roots of the eigenval-
ues �in nonincreasing order� of the non-Hermitian operator

̄=
�y � y�
*�y � y�, y is the y-Pauli operator and 
* is
the complex conjugate of 
, in the eigenbasis of z � z op-
erator. In our model the tangle � j�k can be used to quantify the
entanglement between the pair of qubits i , j for an arbitrary
reduced density operator 
ij. Furthermore, when the overall
state of the system is pure, the amount of entanglement be-
tween qubit j and all the remaining can be quantified by the

tangle � j�rest=4 det 
 j. We have numerically computed the
tangles �0�1, �0�2, and �1�2 of the two-qubit reduced density
matrices and the three-tangle �i�j�k=�i�jk−�i�j −�i�k, where
i , j ,k can take values 0, 1, 2 and where the tangle �i�jk mea-
sures the entanglement between the ith qubit and the rest of
the system, i.e., qubits j ,k. The three-tangle �0�1�2 is a mea-
sure of the purely tripartite entanglement and is invariant
under permutations of the three qubits �6�. Our numerical
results of Fig. 4 show that, for a random sequence of colli-
sions, the time-averaged tangles 	�0�1�, 	�0�2�, and 	�1�2� satu-
rate to the same limiting value. This confirms once more the
approach to statistical equilibrium for our system. Moreover,
we can see from Fig. 4 that genuine multipartite entangle-
ment, i.e., 	�0�1�2��0, is created when the two environment
qubits are initially prepared in a Bell state, but not if they are
described by the same separable initial state. More generally,
purely bipartite entanglement builds up among the qubits
when at least two qubits �either both environment qubits or
system and one environment qubit� are in the same state and
the initial state is a pure separable state. Indeed, if the initial
state ��SE

�0�� is �����, or �����, or �����, then after t colli-
sions we obtain ��SE

�t� �=��t������+��t������+��t������,
where the coefficients � ,� ,� are determined by the collision
sequence. Using local unitary transformations only, i.e., with
a tensor product of single-qubit unitary transformations, we
can map this state into a�t��000�+b�t��100�+c�t��010�
+d�t��001�, where a ,b ,c ,d�0 and a2+b2+c2+d2=1. This
latter is the standard form for the states of the W class �15�,
which are characterized by purely bipartite entanglement.
However, for general initial conditions, genuine multipartite
entanglement builds up, as is the case when the two environ-
ment qubits are initially in a Bell state. We point out however
that the initial presence of bipartite entanglement in the res-
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FIG. 3. Decay of the correla-
tion function Ciz �left-hand plots,
corresponding to a random se-
quence of collisions� versus oscil-
lations of the same correlation
function in the case of a regular
sequence of collisions �right-hand
plots�. Same meaning of the
curves as in Fig. 2, initial condi-
tions and parameter values as in
Fig. 1. Insets: �Ciz� vs time �semi-
logarithmic plot�.
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ervoir is not a necessary condition for the appearance of
multipartite entanglement. Indeed, as should be clear from
the symmetry argument outlined above, a nonzero time-
averaged three tangle 	�0�1�2��0 builds up as long as the
three qubits are initially in different pure states. On the other
hand, if the initial state of the three qubits is of the
Greenberger-Horne-Zeilinger �GHZ� family the multipartite
entanglement would remain purely tripartite. This of course
is due to the fact that the partial swap operator does not
change the overall number of �0� and �1� states.

IV. CONCLUSIONS

In summary, we have shown that relaxation �in time av-
erage� to statistical equilibrium is possible for a system of
just three qubits undergoing purely unitary evolution, pro-
vided that randomness is present in the sequence of pairwise
collisions. We point out that the results of this paper can be
easily extended to the case in which the environment consists
of a finite number N of qubits. In particular, a time-averaged
equilibrium state characterized by purely bipartite entangle-
ment is approached if the initial state is separable and N
qubits are in the same state �either all N environment qubits

or the system and N−1 environment qubits�. In this case, the
N+1-qubit state evolves in a subspace of states of the W
class �spanned by the “ground state” �0¯0� and the “single-
qubit excitations” �10¯0�,�010¯0�,…,�0¯01��, whose di-
mension is N+1, much smaller than the overall dimension
2N+1 of the Hilbert space. Therefore, the equilibrium state
can be attained even though genuine multipartite entangle-
ment is not developed. This implies that in a small, unitarily
evolving quantum system statistical relaxation is possible
even though the dynamics is restricted to a subspace whose
states are characterized by purely bipartite entanglement.
Since randomly chosen pure states in a many-qubit Hilbert
space typically exhibit large multipartite entanglement �16�,
it follows that relaxation to equilibrium is possible without
exploiting the full complexity of the Hilbert space.
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