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Relativistic differential equations for bound states of n Dirac particles �n=1,2 ,3� are put into forms that
depend only on the square of the total center-of-mass system energy. Instead of coupling 4n Dirac components,
they decompose into two equivalent equations for 4n /2 components � and � of total chiralities +1 and −1,
respectively. Their time-dependent versions are of the Klein-Gordon type; they reproduce the relativistic
kinematics for the emission of photons or pions. Although the equations are presently extended to mesons and
baryons within perturbative QCD only, the necessity of free Klein-Gordon equations for closed systems implies
E2 spectra not only for mesons, but also for baryons. For binaries, there exists an intricate transformation which
turns the equation for � into an effective one-body Dirac equation. The corresponding transformation for � is
derived here.
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I. INTRODUCTION

Some years ago, an eight-component equation has been
derived for the bound states of two fermions, in the first
place for fermions with small anomalous magnetic moments
�1�. Similar equations have recently been found for n fermi-
ons, which have 4n /2 components instead of the 4n compo-
nents of Dirac-Breit and Bethe-Salpeter equations �2�. By
eliminating half of the Dirac components, one finds that the
equations actually have the square of the total center-of-mass
system �c.m.s.� energy E as eigenvalues, not E itself. Finally,
time-dependent forms have been found in which E2 is re-
placed by −�t

2 ��t=� /�t, units �=c=1�, precisely as in a
Klein-Gordon equation �3�. It has also been shown that −�t

2 is
necessary for the relativistic recoil in radiative decays �4�.
The energy of a photon emitted in the transition from an
atomic state of c.m.s. energy E to the ground state of energy
Egr in its own c.m.s. is

� = �E2 − Egr
2 �/2E . �1�

The deviations from the recoil-free �=E−Egr are so small in
atoms that they can be treated as nonrelativistic corrections.
Although this paper uses atomic notation, the E2 spectrum
must also apply to mesons and baryons. In Sec. IV, Eq. �1�
will be generalized to pion emission by the baryon “reso-
nances,” which via unitarity and analyticity also affects the
baryon mass splittings themselves, as a kind of “pionic Lamb
shift.”

The linear, 4n-component equations i�t�=H� contradict
relativity except for n=1, where the Dirac equation has an
equivalent two-component Kramers version �5–7�. As the
present formalism assumes the conservation of energy and
momentum, the only relevant equation is that of a free elec-
tron, which is known to imply a free Klein-Gordon equation.
However, a discrete electron spectrum does appear in Landau
levels, where the energies of the emitted photons also follow

Eq. �1� �3� �the relativistic Landau levels are equidistant in
E2�.

The Kramers equation is recalled here because it displays
an unusual property of all equations with only 4n /2 compo-
nents: it is not Hermitian. For n=1, this follows simply from
the elimination of components of the Dirac equation. De-
composition of the Dirac spinor �D into components �r and
�l of chirality +1 and −1 �eigenstates of the chirality matrix
�5� produces two coupled equations. With the momentum
operators ��= p�+eA�, the Dirac equation assumes the form

��0 − ����r = m�l, ��0 + ����l = m�r, �2�

where the � are Pauli matrices. Using the first equation for
the elimination of �l, one obtains a second-order equation for
�r alone:

��0 + �����0 − ����r = m2�r. �3�

The product of operators in Eq. �3� is not Hermitian; the
Hermitian conjugate operator appears in the equation for �l.
The expectation value of its anti-Hermitian component van-
ishes.

For n�1, one may similarly derive the second-order
equations from the Dirac-Breit equations �8�. However, these
derivations are only approximate. They fail for the inclusion
of vacuum polatization and contain incorrect squares of Breit
operators which are normally eliminated by “positive-energy
projectors.” The correct derivation of the interaction uses
instead the Born series of quantum electrodynamics �QED�.
It produces a non-Hermitian operator M2, which occurs in
two equivalent equations,

�� = M2�, �� = �M2�†�, � = �R
2 − �t,lab

2 . �4�

� and � have total chirality +1 and −1, but M2 does not
factorize as in Eq. �3�.

The Kramers equation �3� is invariant under a
somewhat complicated parity transformation, �r�
=m−1��0�+�����r�−r�, which is another way of exchanging
�r�r� with �l�−r� �in Dirac notation, this is simply �D�
=	�D�−r�, where 	=�0 is the matrix which exchanges �r

with �l�. As M2 does not factorize for n=3, that equation is
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not parity invariant: � must be exchanged with �. For even
n, however, the total chirality operator �tot

5 =�1
5 . . .�n

5 com-
mutes with the parity operator 	=	1 . . .	n, such that the
separation into � and � is parity invariant. The binary equa-
tion �n=2� is rederived in the next section. The derivation of
the corresponding equation for � is new to the best of my
knowledge.

Difficulties with the 4n-component formalism have pro-
moted a very different approach for n=2, namely nonrelativ-
istic expansions of the QED and QCD �quantum chromody-
namics� field couplings �“NRQED,” “NRQCD”�, by which
one can calculate the energy levels to a certain order in 

=e2, using perturbation theory of the two-body Schrödinger
equation, with the �nonrelativistic� reduced mass, H
=p2 /2�nr+V, V=−
 /r12 �9�. The method ends presently at
second-order perturbation theory, which gives the energy
levels to the order 
6. Encouraged by this success, an old
claim �10� has been revived that relativistic equations for
fixed numbers of particles cannot exist. It is true that the
form �2� of the Dirac equation is not exact, but there exists a
form with a more precise g factor, ge=2+
 /�+. . .. The cor-
rections to ge=2 are calculated by the relativistic Feynman
rules with a precision that remains to be reached by NRQED.
The leading 
8 term of the muonium �e−�+� hyperfine struc-
ture follows from first-order perturbation theory of the Dirac
equation, and for uranium atoms, the equation can be solved
numerically if necessary.

II. THE BINARY EQUATION

The equation is best constructed by first adding the Dirac
Hamiltonians for two free fermions, then by reducing the
result in the c.m.s. �p1+p2=0� to an eight-component equa-
tion, and finally by adding the interaction as the Fourier
transform of the Born series of elastic c.m.s. scattering, after
it has also been reduced to an 8�8 matrix �1�. However, this
interaction has not yet been found from the scattering of
three particles. We therefore use the less precise Dirac-Breit
equation as a starting point �8�. It also contains the sum H0 of
the free Dirac Hamiltonians. With �i=�i

5�i,

H0 = m+ + �i�i
5�ipi, m+ = �imi	i. �5�

The zero component of the total four-momentum operator
enters as

�tot
0 = i�i�ti − �ijVij, Vij = qiqj/rij, q1 = − e . �6�

The only other interaction is provided by the Breit operator
HB, to be specified below,

��tot
0 − �i�i

5�ipi − HB��DB = m+�DB. �7�

The equation is now split into two equations for the compo-
nents ��+� and ��−� of �DB which have total chirality +1 and
−1, respectively,

��tot
0 − �i�i

5�ipi − HB���+� = m+��−�, �8�

��tot
0 − �i�i

5�ipi − HB���−� = m+��+�. �9�

In Eq. �8�, �i�i
5=1 is understood, and in Eq. �9�, �i�i

5=−1.

For n=2, one may define �1
5=�5, which implies �2

5=
+�5 and −�5 in Eqs. �8� and �9�, respectively. The Breit
operator may be written as

HB = �1
5�2

5b, b = −
1

2
V12��1�2 + �1r�2r� , �10�

with �ir=r�i /r and r=r1−r2. This leads to the following
forms in Eqs. �8� and �9�:

��tot
0 − �5��1p1 + �2p2� − b���+� = m+��−�, �11�

��tot
0 − �5��1p1 − �2p2� + b���−� = m+��+�. �12�

Elimination of ��−� by means of the first equation gives an
equation for ��+� alone. With the abbreviations

�1 + �2 = �, �1 − �2 = ��, p = 1
2 �p1 − p2� ,

P = p1 + p2, �13�

the equation becomes

��tot
0 − �5��p + 1

2��P� + b�m+
−1

���tot
0 − �5���p + 1

2�P� − b���+� = m+��+�. �14�

For p1
2=p2

2, the product of the two inner brackets follows
from the original expressions as

��1p1�2 − ��2p2�2 = p1
2 − p2

2 = 0. �15�

This cancellation reduces the second-order differential opera-
tor to a first-order one, which has no longer the product form.
The stationary solutions have �tot

0 =E−V, V=V12. The V2 of
�E−V�2 is eliminated by a shift of the distance, r12=r
+
 /2E �11�. This entails a change in the angular part of b,
which is canceled by the “retardation” part of the Breit op-
erator. There remains the unretarded Gaunt interaction,

bG = − V�1�2. �16�

The b2 does not cancel, but it must be omitted anyway. One
reason is that b is expected to be valid as a first-order per-
turbation only. The decisive fact, however, is that b2 is as
large as V2 and leads to wrong results �12�. In the standard
Dirac-Breit equation, b2 is eliminated by “positive-energy
projectors.” An alternative approach, avoiding these prob-
lems with the Gaunt term was done by Van Alstine and Cra-
ter �15�. They constructed a form of the two-body Dirac
equation which has an interaction structure quite similar to
that of the Gaunt term but differing at higher orders so that
the same spectral results as the Breit interaction would be
produced. In the QED derivation, the interaction of Eq. �14�
arises from the first Born term of elastic scattering,

Tif
�1� = − 4�q1q2j1

�g��j2
�/�− q2�, ji

� = �̄i��i
��i, �17�

after its reduction to an 8�8 matrix. The second Born term
Tif

�2� does not contribute to V2, i.e., all V2 terms including b2

are absent. The consistent equation derived from Eq. �14� is
thus

�E2 − 2EV − ��p + 1
2��P��E − V−��̃5

− �E − V+��5���p + 1
2�P����+� = m+

2��+�, �18�
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V± = V�1 ± �1�2�, �̃5 = m+�5/m+. �19�

The algebra of Pauli matrices gives

��1�2��1 = �2 + i��, ��1�2��2 = �1 − i��,

�� = �1 � �2. �20�

Next, we use the c.m. system, P�=0. The remaining combi-
nations of Pauli matrices are

��1 − �1�2� = 0, �1 + �1�2��� = 2i��. �21�

As a result, Eq. �18� is simplified as follows:

�E2 − 2EV − Ep��̃5� + �5��� + 2i�5Vp�����+� = m+
2��+�.

�22�

The �̃5 of Eq. �18� satisfies the same Dirac algebra as �5,
but it is not Hermitian,

��̃5�2 = 1, ��̃5,	� = 0, 	 � 	1	2. �23�

Notice that 	1 and 	2 occur in m+
2 in the combination

m+
2 = m1

2 + m2
2 + 2m1m2	 . �24�

There exists a very special transformation which makes
�̃5 Hermitian,

��+� = C1�, C1 = �m+m−�−1/2�m2	2 + m1	1Pspin� , �25�

m± = m1	1 ± m2	2, Pspin =
1

2
�1 + �1�2� . �26�

The spin exchange operator Pspin is diagonal in the triplet-
singlet spin basis, with eigenvalues +1 and −1, respectively.
As � operates only between triplet states, one may here set
Pspin=1, C1= �m+ /m−�1/2. Both �� and �� are antidiagonal
in this basis, which implies opposite signs of Pspin to their
right and left, C1��=��C1

−1. Multiplication by C1
−1 from

the left and using C1
−1�5=�5C1 thus removes the tilde from

�̃5�, without affecting the other operators. The result is a
one-body Dirac equation with somewhat different units,

�E2 − m1
2 − m2

2 − 2EV − 2E�5p�1 + 2i�5Vp����

= 2m1m2	� . �27�

It may be compared with the nonrelativistic one-body reduc-
tion, which uses p1

2 /2m1+p2
2 /2m2=p2 /2�nr. In both cases,

the reduction breaks down in the presence of a magnetic
field, but not for an electric dipole field. After division by 2E,
Eq. �27� takes a familiar form,

�� − V − �5p�1 − Vhf�� = �	�, � = m1m2/E , �28�

where Vhf =−i�5Vp�� /E is a hyperfine operator. The solu-
tions of Eq. �27� have been discussed extensively �8�. They
are symmetric under the exchange m1↔m2 and contain the
signs of m1 and m2 only in the combination m1m2. The sum
m12=m1+m2 which occurs in the “external field approxima-
tion” �13� becomes replaced by E, as in the reduced mass �
of Eq. �28�. The only exception is another factor �m1−m2�, in
which case even powers of m1

2−m2
2 are allowed, as in the

“Salpeter shift.” The first-order perturbative energy shift
�E2=2E�E contains only even powers of E.

An extra factor P12 in front of C1 in Eq. �25� exchanges
�1 with �2. The E2 dependence appears after a rescaling of
r=r1−r2:

rE = r/E, pE = Ep = − i�rE, VE = − 
/rE. �29�

The time-independent version of M2 in Eq. �4� is thus

M0
2 = m+

2 + 2VE + 2�5pE�1 + 2i�5VEpE��/E2. �30�

The spinor notation has been modified in this paper; the ��+�

and ��−� of Eqs. �8� and �9� were originally called � and �;
the � of Eq. �27� was called �1. This entailed an error in the
definition of the � entering Eq. �4� �3�, which will now be
corrected.

As in the Kramers equation for �l, the equation for ��−�

follows from Eq. �14� by exchange of the two brackets. The
resulting changes in Eq. �4� are the replacement of Vp by pV
and the exchange of �5 with �̃5. As explained above, the tilde
can only be removed from the combination �̃5�. This re-
quires an extra transformation,

��−� = m+�̃�−�. �31�

Multiplication by m+
−1 from the left now replaces �5� by

m+
−1�5m+�= ��̃5�†�. The ��̃5�† is tranformed to �5 by the

inverse of Eq. �25�,

�̃�−� = �m+m−�−1/2�m2	2 − m1	1Pspin�� = C1
−1� . �32�

As a result, � now obeys the Hermitian conjugate of Eq.
�27�,

�E2 − m1
2 − m2

2 − 2EV − 2E�5p�1 − 2i�5p��V�� = 2m1m2	� .

�33�

This guarantees identical eigenvalues E2 of Eqs. �27� and
�33�.

The QED Born series is now brought into the form of an
8�8 matrix,

Tif = �̃ f
�−�†T8�i

�+� = � f
�−�†m+

−1T8�i
�+�, �34�

where the indices i and f refer to in- and outgoing free two-
body states in the c.m.s. The m+

−1 arises from Eq. �31�; it was
previously justified only by the successful construction of the
interaction from T8 �1�.

Turning now to the quarkonium model of heavy mesons,
it seems clear that the calculation of energy levels from per-
turbative QCD should also profit from the binary formula-
tion. A major improvement is the strict absence of special
retardation operators. In principle, the equation could be
solved numerically when the coupling becomes too strong,
as in the case of uranium atoms. However, QCD calculations
on a space-time lattice �14� show essential deviations from
this picture. For the light mesons, they indicate an E2 spec-
trum which is linear in mi in the limit mi→0, E2=B0�m1

+m2�. As the invariance of Eq. �33� under the sign change of
any of the mi follows directly from the QCD Lagrangian, the
terms B0imi require that B0i automatically changes sign with
mi. Simply adding such terms in Eq. �27� is forbidden. A
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valid extension of the quarkonium model to the light mesons
seems not possible.

On the other hand, one may obtain terms like B0imi by
using different right- and left-handed masses in the free
single-particle Dirac equations, mi

2=mirmil. Taking, for ex-
ample, m1r=m2r=B0�mil, one obtains m+

2 =B0�m1l+m2l

+2�m1lm2l�1/2	�. This gives the desired result only for �		
=0. If on the other hand one adds the Dirac operators of
particles 1 and 2 without using the explicitly parity-invariant
forms �3,8�, m+

2 becomes

m+
2 = B0�m1l + m2l��1 + 2	� . �35�

A more explicit connection of this trick with broken chiral
symmetry is still missing, however.

III. TERNARY EQUATIONS

The derivation of equations for n=3 uses again the Dirac-
Breit equation �7�, for which there is presently no alternative.
The HB of Eq. �10� is replaced by three Breit operators,

HBi = �i
5� j

5bij, bij = −
1

2
Vij��i� j + �ir� jr� , �36�

In Eqs. �8� and �9�, one may then replace �i
5� j

5 by �k
5 and

−�k
5, respectively, with k� i� j. The product �14� is replaced

by

��tot
0 − �i�̃i

5�ipi + �ij�̃k
5bij���tot

0 − �i�i
5�ipi − �ij�k

5bij���+�

= m+��+�, �37�

�̃i
5 = m+�i

5/m+ = �i
5�1 − 2mi	i/m+� . �38�

A useful combination is

�̃i
5 + �i

5 = 2�i
5mjk+/m+, mjk+ = mj	 j + mk	k. �39�

Several simplifications arise from �pk ,Vij�=0, for example,

�E − V12 + �̃3
5b12��3

5�3p3 + �̃3
5�3p3�E − V12 − �3

5b12�

= 2�E − V12��3
5�3p3m12+/m+. �40�

The generalization of Eq. �30� to rij brings also Eq. �37� into
a form with only even powers of E.

The number of remaining products is still large and be-
comes familiar only in one of the static limits, for example,
for m3�m1+m2. This limit has

�̃1
5 = �1

5, �̃2
5 = �2

5, �̃3
5 = − �3

5. �41�

The operator �40� vanishes in this limit, and the Dirac-Breit
operator for heliumlike systems appears as expected.

IV. THE ENERGIES OF EMITTED PIONS AND PHOTONS

The energy of a particle emitted from a closed system of
total c.m.s. energy E follows from the conservation of mo-
mentum and energy alone, without any knowledge of the
interaction. The particle will be called “pion,” with E�

2 −P�
2

=m�
2 . Photons are included by setting m�=0.

The final state of the emitting system will be called
“ground state,” with Egr,lab

2 −Pgr
2 =Egr

2 . The decay leaves the
ground state with a recoiling momentum Pgr=−P�, such that
Egr,lab exceeds Egr which refers to the new c.m.s. With Pgr

2

=P�
2 , one finds Egr,lab

2 −Egr
2 =E�

2 −m�
2 , or �Egr,lab−E���Egr,lab

+E��=Egr
2 −m�

2 . Energy conservation requires Egr,lab+E�=E,
which then gives Egr,lab and E� separately,

Egr,lab = �E2 + Egr
2 − m�

2 �/2E, E� = �E2 − Egr
2 + m�

2 �/2E .

�42�

The second equation reduces to Eq. �1� for m�=0.
It will now be shown that this consequence of momentum

and energy conservation follows from Eq. �4� using first-
order time-dependent Dirac perturbation theory. � is Lorentz
transformed to the c.m.s. where it reduces to −�t

2 �t= c.m.s.
time�. Separation of a factor e−iEt from � and � gives

− �t
2e−iEt = e−iEt�E2 + 2iE�t − �t

2� . �43�

The second-order derivative is neglected, and after a time
scaling,

t = E�, E�t = ��, �44�

Dirac’s perturbation theory for the � dependence can be
adopted. The result is 2EE�=E2−Egr

2 , which gives the factor
�2E�−1 in Eq. �1�. As both equations �42� contain Egr

2 −m�
2 ,

the time-independent equation for the final state must be gen-
eralized to

M0
2�gr = �Egr

2 − m�
2 ��gr. �45�

Reabsorption of the pion or photon is treated accordingly.
The residual E2 dependence of M0

2 is not converted to �t
2. In

the hyperfine operator of Eq. �30� and in the running cou-
pling constant 
s�E2� of QCD, one may take E2=Egr

2 .

V. SUMMARY

The relativistic two-body equation can be reduced to a
one-body equation, under the same conditions as the nonrel-
ativistic one. In first-order perturbation theory, the anti-
Hermitian part of its differential operator must be included
only for degenerate states. The free eight-component spinors
�i

�±� of the Dirac equation are both needed for the construc-
tion of the interaction; the general relation between between
��−� and the � of Eq. �4� is derived in Eqs. �31� and �32� as
��−�=m+C1

−1�. The stationary ternary equation has also E2 as
eigenvalues. This implies that symmetry relations within
baryon multiplets contain the squares of masses, just as in
meson mulitplets. The equation remains complicated, but be-
comes manageable in the static limit of heliumlike states.
The extension to states containing light quarks is question-
able but perhaps not impossible. However, the E2 result fol-
lows already from Lorentz invariance and should apply to all
states.

For binaries, the absence of energy transfer between the
external fermion legs in the c.m.s. eliminates the extra retar-
dation operators of Breit �14�. Corresponding simplifications
are expected for the ternary equation, but they remain to be
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derived. Finally, first-order perturbation theory of the time-
dependent equations �4� gives simple expressions for the en-
ergies of emitted particles which cannot be derived from
first-order time-dependent equations of the type i�t�=H�.
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