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Quantum state transfer in spin-1 chains
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We study the transfer of a quantum state through a Heisenberg spin-1 chain prepared in its ground state. We
characterize the efficiency of the transfer via the fidelity of retrieving an arbitrarily prepared state and also via
the transfer of quantum entanglement. The Heisenberg spin-1 chain has a very rich quantum phase diagram.
We show that the boundaries of the different quantum phases are reflected in sharp variations of the transfer
efficiency. In the vicinity of the border between the dimer and the ferromagnetic phase (in the conjectured
spin-nematic region), we find strong indications for a qualitative change of the excitation spectrum. Moreover,
we identify two regions of the phase diagram that give rise to particularly high transfer efficiency; the channel
might be nonclassical even for chains of arbitrary length, in contrast to spin-1/2 chains.
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Since the early works of Osborne and Nielsen [1] and
Osterloh er al. [2], displaying an intertwined relation be-
tween entanglement and quantum phase transitions, the fields
of condensed matter and quantum information have devel-
oped a strong synergy, further motivated by the spectacular
advances reached in the area of ultracold atomic physics and
ion traps [3]. Among the broad scope of problems that nowa-
days can be addressed with ultracold atomic gases, spin
models are particularly appealing. These relatively simple
models exhibit the most fundamental physics associated with
magnetic ordering, criticality, and quantum phase transitions,
but mostly lack an analytical solution. Although spin models
have been constructed as idealizations or toy models of real
systems, ultracold atoms allow for an almost perfect realiza-
tion of many of them. An example is the one-dimensional
(1D) spin-1 system, which can be realized through confining
an S=1 spinor condensate in an optical lattice [4,5]. Restrict-
ing to nearest-neighbor interactions, the most general isotro-
pic Hamiltonian for the spin-1 chain is the bilinear-
biquadratic Hamiltonian (BBH)

H(0) =T [cos O(S; - S;) +sin 6(S;-S)*]. (1)
(ij)

Here S =(S7,57,55) are the spin operators on the ith site, and
cos 6 (sin ) gives the strength of the bilinear (biquadratic)
coupling. The properties of the ground state as well as of the
excitations are determined by the angle 6. The phase diagram
is shown in Fig. 1(a). In the whole range -37/4 <0< /2,
the ground state is antiferromagnetic, i.e., has vanishing

magnetization: M =(E,~S,>=6. Since the Haldane conjecture
that 1D isotropic antiferromagnets with integer spin must
have a unique massive, i.e., gapped, ground state with expo-
nentially decaying correlations, the BBH has been exten-
sively studied. The Haldane conjecture was rigorously
proven for the Affleck-Kennedy-Lieb-Tasaki (AKLT) point
(tan #=1/3), for which Affleck er al. explicitly constructed
the ground state and proved the existence of a gap [6]. At
f=m/4 (the Uimin-Lai-Sutherland point [7,8]) the system
enters into a critical (gapless) phase (7/4< 6<m/2) with
unique ground state and diverging correlation length. At 6
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=—m/4 the gap vanishes [9], but it reopens for §<-m/4,
where the system enters into a dimerized phase. The exactly
solvable point #=-37/4 marks the border to the ferromag-

netic phase (characterized by M #0). The existence of a
small spin-nematic region between the dimerized phase and
0=-3m/4 has been actively discussed since a conjecture of
Chubukov [10].

In the field of quantum information, spin chains have been
intensively studied regarding their usefulness as quantum
channels [11-13]. Attention has been devoted nearly exclu-
sively to spin-1/2 chains, where it has been shown that a
general quantum state can be transferred with relatively high
fidelity between the two end points of a ferromagnetic chain
with nearest-neighbor interactions [11,12]. As models with
more complex ground states, spin-1/2 chains in the vicinity
of a quantum phase transition [14], spin-1/2 ladders [15],
and Peierls-distorted chains [16] have been employed as
quantum channels.

Here we investigate the usefulness of the spin-1 chain as a
quantum channel. With this aim, we study the transmission
of an arbitrary quantum state, either pure or entangled with a
further subsystem, through the chain prepared in its ground
state for the whole phase diagram. Compared to previous
works studying either the ground-state magnetic order or the
excitation spectrum of the BBH, our approach combines both
aspects simultaneously. We find that the transfer does
strongly depend on the nature of the ground state. When
crossing the phase boundaries, the quality of the transfer
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FIG. 1. (a) Quantum phases of the spin-1 chain. (b) Scheme for
state transfer with an underlying ferromagnetic state and (c) with

the channel initialized to the ground state of A (0), and (d) transfer
of quantum entanglement.

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.75.050303

ROMERO-ISART, ECKERT, AND SANPERA

changes sharply. Inside the Haldane phase (around the AKLT
point) transfer is very inefficient. On the other hand, high
transfer fidelities can be achieved by preparing the spin-1
chain in either the dimerized (gapped) or the critical (gap-
less) phase. In those cases, transfer fidelities are clearly
larger than for a ferromagnetic initial state. Finally, we find a
strong reduction of the transfer efficiency for §=-37/4,
where a spin-nematic phase has been conjectured. This find-
ing supports recent studies showing a qualitative change in
the low-energy excitations as compared to the dimerized
phase.

Our scheme for quantum communication generalizes the
one usually employed for spin-1/2 systems [Fig. 1(b)]: we
consider a chain of N sites with the first spin in an arbitrary
state |§>I=Em=0,11§m|m>l (SZ m>=m|m>’ Em|§m|2=1) and de-
coupled from the rest of the chain. The other N—1 sites are,
for a given 6, prepared in the ground state |g.8.p),  y of
H(6). The initial state reads |4:(60,1=0))=]8), ®|g.5.002.. N3
see Fig. 1(c). At t=0, we abruptly switch on the interaction
between the first and second spins and let the system evolve,
obtaining |¢§(0,t)):exp[—itlfl(ﬂ)]wg(0,0)) (h=1). At time t,
the quality of the transfer of |£) to the last spin of the chain
is evaluated by the fidelity of retrieving |&) at site N, i.e.,
(gpn(0,1)|€). The state of site N is given by tracing out the
state of the whole chain over all the other sites, py(6,1)
=try . y-1|(0,0)he(6,1)|. The channel fidelity [17] is ob-
tained by averaging the fidelity over all pure input states |&):

F(6,1) = f d&Elpn(0.0)16), 2)

where d¢ is the SU(3) invariant measure. Notice that for spin
1 always 1/3<F=1, where the lower bound corresponds to
pn(0,6)=1/3. We define F(6)=F(0,t*), where * is the time
for which the perturbation arrives at the end of the chain for
the first time (i.e., we ignore later maxima from multiple
reflections on the boundaries).

We also analyze entanglement transfer, considering that
the spin at the first lattice site is entangled with a spin outside
of the chain, say at lattice site O [see Fig. 1(d)]. As a particu-
lar case we take a singlet state |s)o;=(|1,=1);—]0,0),
+|-1,10)/y3, such that initially |i4,(6,0))=|s)o,
® |g.s.,9>2,._.,N. As before, at =0 the coupling between sites 1
and 2 is switched on, while site O always remains uncoupled.
We quantify the transfer of entanglement by computing the
entanglement between sites 0 and N through the logarithmic
negativity [18]

LN(6,7) = log,|pon (.01, 3)

where poy(0,0)=tr) . y_1|th(6,0),(6,1)], T denotes partial
transposition, and [|A[|;=Vtr A"A. As defined here, 0<LN
<log,(3) gives an upper bound for the number of spin-1/2
singlets that can be distilled from poy(6,). Again we will use
LN(6)=LN(8, ).

We have computed F(6) and LN(6) for chains of up to
N=73 sites using matrix product states (MPS) algorithms
[19]. Our results for 25 sites and —7< #<r are shown in
Fig. 2. The different quantum phases of the model are well
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FIG. 2. Channel fidelity F (open circles) and entanglement mea-
sured via logarithmic negativity LN (filled circles) for the transfer
between the end points of a chain with 25 sites (obtained with the
MPS methods, using D=20-25). The dashed horizontal line de-
notes the maximal fidelity Fj,,=1/2 that can be obtained through
classical communication. Vertical dashed lines indicate the quantum
phase boundaries. (See Fig. 4 for a zoom into the region —0.767
<0<-0.7m.)

reflected in the transfer efficiency. Before discussing several
interesting points in detail, it is useful to rewrite Eq. (1) in
terms of two-site projectors PEfT)=Em|ST,m>,-j(ST,m| onto
states with total spin S; (m=Sr,...,=Sy),

H(0) = T2 Hy(0) = T2 NP + N P+ 0P,
(ij) (ij)
Here MNg=-2cos +4sinf, A\;=—cos f+sinf, and N\,
=cos #+sin 6. We start our discussion at the border of the
critical phase and follow the phase diagram in a counter-
clockwise order.

(a) Uimin-Lai-Sutherland point (60=m/4) and critical
phase (/4 < 6</2). The fidelity F and logarithmic nega-
tivity LN attain their maximum at 6=/4, and decrease to-
ward the ferromagnetic phase. For §=7/4, the BBH takes a
particularly simple form,

A 1 - > - - 1 (- 5
Hij(7T/4) = ?[Si : Sj +(S;- Sj)z] = ?(Wij + _L'j) , (4
V2 V2 7

where Wi]:(—1)2S2§;0(—1)STFA’ST) is the operator swapping
sites i and j, and 1;; is the identity operator. For N=4, the
initial state is |(7/4,0))=|£); ® |g.5. 14)234, With the trimer
state

1
|28 miada3a = 1234 = _gz (- DPP1L- 1,00,  (5)
V6 p

which has total spin zero [20] (P runs over permutations of
{2,3,4}, and Pp permutes the sites accordingly). As
|14, Jt=m))=[1)13®|&)y, perfect transfer [F=1, LN
=log,(3)] occurs. For N>4, transfer efficiency decreases
[dark circles in Figs. 3(a) and 3(b)]. For small N the transfer
is better for chains of length N=1 mod 3, pointing to a tri-
merized order in the ground state. As N increases this differ-
ence vanishes. The average velocity v=N/r* at which the
excitation propagates grows as N increases. From simula-
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FIG. 3. Fidelity F (left column) and logarithmic negativity LN
(right column) versus chain length N for (a), (b) the spin-1 chain at
0=m/4; (c), (d) the spin-1 chain at #=—17/2; and (e), (f) the spin-
1/2 Heisenberg chain. Dark circles correspond to the channel pre-
pared in the ground state; open circles in (a), (b) to a ferromagnetic
initial state. F is fitted through an exponentially decaying function.
Dashed lines indicate the classical communication limit F g
=1/2 (2/3) for spin-1 (-1/2). [Results obtained with MPS simula-
tions using up to D=25 (24) for =m/4 (-m/2).]

tions for N<28, we extrapolate limy_,..v=~1.59J sites, a
value close to the velocity of sound in the infinite system
v =27/ (3V2)J sites =~1.48J sites [8].

To emphasize the role of the initial state of the
channel, we use a ferromagnetic state |¢p(t=0))=|&),

®|1,1,...,1), n to compare with. As I:Iij swaps adjacent

sites, this reproduces the usual situation for spin-1/2 chains
[11,12]. At time ¢,

N
lgp(mld,n)) = E[1, . 1)+ 2 y(0) 2 Elny, (6)
n=1

i=0,-1

where |n;) represents the state with all spins in state 1, but the
nth spin being in i=0,—1. The corresponding probability am-
plitudes vy,,(7) can be calculated as an infinite sum of Bessel
functions [21]. Already, for N>2, |y, y(t*)| <1, and thus also
F<1. As visible from the open circles in Figs. 3(a) and 3(b),
the transfer efficiency for the ferromagnetic initial state is
much below the efficiency of the chain initialized to its
ground state.

(b) Ferromagnetic phase {0 (mw/2,m|U[-m,-3m/4)}.
This region is characterized by A, <\y,\;. The ground state
has ferromagnetic order and broken rotational symmetry:
lg.s.o(F, @))=®,|15 ). The state |14,); has maximal spin
projection in the direction specified by (9, ¢). Throughout
the whole phase, transfer efficiency is very small. The point
0=1r/2 at the border to the critical phase (where for the finite
chain the ground state is ferromagnetic) allows us to identify
two reasons: (i) for fixed (3, @), |€)= |0,9’¢>, having vanishing
z projection in the corresponding direction, is not trans-
ported; (ii) the transfer of |£)= |_11.‘>,¢> is not via swaps (as for
spin-1/2 or at §=7/4), but through an intermediate state.

(c) Dimer phase (-37/4<6<-/4). Inside this region,
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FIG. 4. (a) F (open circles) and LN (filled circles) around the
region for which a spin-nematic phase has been conjectured (for
N=25). The transfer efficiency is strongly reduced for —0.757< 0
=0.72m, as most clearly visible from LN=0. To characterize

the ground state we plot (b) the dimerization Dy_yy, (D,«:(I—AILM)
~(Hirs2). () the parameter  Q
=maxQEﬁ2[<(ﬁQ-5,-)2>—2/3]/(N— 1) (nq is the unit vector pointing
in  direction Q), and (d) the magnetization M
=maxQEﬁ2<ﬁQ«§i>/(N— 1).

nematic order

F and LN increase strongly and reach a maximum at 6
=—m/2. At this point N\g<<\;=\,; thus the two-site ground
state is a singlet. As [€); ® [s),3%]s)1,®|&); are both eigen-

states of H(—/2) (with different eigenvalues), for N=3 per-
fect transfer occurs. For larger (odd) N the ground state of
the last N—1 spins is dimerized [5,24], i.e., the expectation
values of §;;,1=|s);;.i(s| are different on even and odd
bonds. This is not the case for even N, and correspondingly
transfer fidelities vary strongly between even and odd N [see
Figs. 3(c) and 3(d)]. Note that H(-m/2)=—H(m/2), i.c., the
ground state of one model is the state with highest energy of
the other, but the fidelities observed in both cases are very
different. This observation, which indeed can be made also at
other points in the phase diagram, is a clear manifestation of
the dependence of the transfer on the underlying magnetic
order and the nature of low excitations.

Conjectured spin-nematic phase (=0.757<0=<-0.72m).
Near the border to the ferromagnetic phase, Fig. 2 shows a
remarkable drop-off in transfer efficiency. Figure 4(a) shows
a zoom into this region where a spin-nematic phase has been
suggested [10]. This claim has been actively discussed re-
cently, but a complete characterization of this region is still
under discussion [5,22-27]. The dip for F and LN, however,
is consistent with the results of Liuchli et al. [26] and Porras
et al. [27], who found a qualitative change in the excitation
spectrum for values -37/4<6<6, with 6 between
—0.7 and —0.67. To better characterize the ground state in
this region, we calculate the dimerization, nematic order pa-
rameter, and magnetization [see Figs. 4(b)-4(d)].

(d) Haldane phase (—mw/4<6</4). A large region in
this phase shows poor transfer with fidelities close to the
lower limit F=1/3. At the AKLT point (tan =1/3) this can
be understood from the equivalence of the spin-1 chain to a
model of two coupled spin-1/2 chains [22]: while the cou-
plings between the two chains are completely symmetric, the
AKLT ground state presents an asymmetry due to the bound-
ary spin-1/2’s [6]. This may lead to low transfer efficiency.
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Let us finally discuss quantitative features by comparing
to the spin-1/2 chain without local engineering of couplings
[28]. Contrary to Ref. [11], where such a system was intro-
duced, we always calculate F and LN for the first maximum,
disregarding better values at (possibly much) later times due
to multiple reflections and constructive interference [29]. F
and LN for the spin-1/2 chain initialized to a ferromagnetic
state and using a Heisenberg Hamiltonian are plotted in Figs.
3(e) and 3(f). A good criterion to evaluate the efficiency of
the channel is to compare its fidelity with the highest fidelity
for transmission of a quantum state through a classical chan-
nel F,,=2/(d+1), d being the dimension of the quantum
system [17]. In particular, we can compute the maximal
length of the channel, i.e., the maximal number of sites for
which F>F .. According to our numerical results, for the
spin-1/2 chain we obtain F < F,,=2/3 for N=<33. For spin
1 at §=—m/2 we find that F> F,,,=1/2 for all our simula-
tions, i.e., for N=<73. From fitting the fidelity through an
exponentially decaying function, we extrapolate F.,
=limy_,..FF=~0.56, indicating that the channel is always su-
perior to any classical channel (we cannot exclude a different
decay for larger chains, though N=73 is well above the
dimer coherence length Nj,=20 [25]). At O=/4, fidelities
are even larger. Considering chains of N<28 sites, we find

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 75, 050303(R) (2007)

that the fidelity decays exponentially with the asymptotic
limit F,,=0.72 well above the classical value (again, we can-
not exclude a different decay for larger chains).
Summarizing, we have studied state and entanglement
transfer in spin-1 Heisenberg chains. We have shown that the
quality of transfer, characterized by the average fidelity and
the logarithmic negativity, undergoes sharp changes at the
phase boundaries. The critical (gapless) and the dimerized
(gapped) phases permit state transfer with high fidelities;
from extrapolating our data the channel might even be non-
classical for any number of sites. In contrast, transfer effi-
ciency is significantly lower in the ferromagnetic phase, and
attains a minimum in the Haldane phase (around the AKLT
point) and in a small region at the border between the dimer-
ized and the ferromagnetic phases, where the existence of
spin-nematic order is controversially discussed.
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