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We investigate the nonclassicality of photon-added coherent states in the photon-loss channel by exploring
the entanglement potential and negative Wigner distribution. The total negative probability defined by the
volume of the negative part of the Wigner function reduces with the decay time. The total negative probability
and the entanglement potential of pure photon-added coherent states exhibit the similar dependence on the
beam intensity. The reduce of the total negative probability is consistent with the behavior of entanglement
potential for the dissipative single-photon-added coherent state at short decay times.
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Nonclassical optical fields play a crucial role in under-
standing fundamentals of quantum physics and have many
applications in quantum information processing �1�. Usually,
the nonclassicality manifests itself in specific properties of
quantum statistics, such as the antibunching �2�, sub-
Poissonian photon statistics �3�, squeezing in one of the
quadratures of the field �4�, partial negative Wigner distribu-
tion �5�, etc.

When the nonclassical optical fields propagate in the me-
dium, they inevitably interact with their surrounding envi-
ronment, which causes the dissipation or dephasing �6�. It is
well known that the dissipation or dephasing will deteriorate
the degree of nonclassicality of the optical fields. A quanti-
tative measure of nonclassicality of quantum fields is neces-
sary for further investigating the dynamical behavior of their
nonclassicality. Many authors have investigated the relations
between nonclassicality of optical fields and the entangle-
ment and shown that nonclassicality is a necessary condition
for generating inseparable state via the beam splitter �7�.
Based on them, a measure called the entanglement potential
for quantifying the nonclassicality of the single-mode optical
field has been proposed �8�. The entanglement potential is
defined as the entanglement achieved by 50:50 beam splitter
characterized by the unitary operation UBS=e��/4�i�a†b+ab†�

acting on the target optical mode a and the vacuum mode b.
Throughout this paper, log negativity is explored as the mea-
sure of entanglement potential. The log-negativity of a den-
sity matrix � is defined by �9�

N��� = log2���� , �1�

where �� is the partial transpose of � and ���� denotes the
trace norm of ��, which is the sum of the singular values of
��.

Nevertheless, experimental measurement of the entangle-
ment potential is still a challenge task. How to quantify the
variation of the nonclassicality of quantum fields based on
the current mature laboratory technique is an interesting
topic. The Wigner function is a quasiprobability distribution,
which fully describes the state of a quantum system in phase

space. The partial negativity of the Wigner function is indeed
a good indication of the highly nonclassical character of the
state. Reconstructions of the Wigner functions in experi-
ments with quantum tomography �10–12� have demonstrated
appearance of their negative values, which cannot be ex-
plained in the framework of the probability theory and have
not any classical counterparts. Therefore, to seek certain pos-
sible monotonic relation between the partial negativity of the
Wigner distribution and the entanglement potential may be
an available first step for experimentally quantifying the
variation of nonclassicality of quantum optical fields in dis-
sipative or dephasing environments.

Here, for clarifying the feasibility of this idea, we inves-
tigate the nonclassicality of photon-added coherent states in
the photon-loss channel by exploring the entanglement po-
tential and negative Wigner distribution. The total negative
probability defined by the volume of the negative part of the
Wigner function is adopted, and our calculations show it re-
duces with the increase of decay time. The total negative
probability and the entanglement potential of pure photon-
added coherent states exhibit the similar dependence on the
beam intensity. The reduce of total negative probability is
consistent with the behavior of entanglement potential for
the dissipative single-photon-added coherent state at short
decay times.

The photon-added coherent state was introduced by Agar-
wal and Tara �13�. The single photon-added coherent state
�SPACS� has been experimentally prepared by Zavatta et al.
and its nonclassical properties have been detected by homo-
dyne tomography technology �14�. Such a state represents
the intermediate non-Gaussian state between quantum Fock
state and classical coherent state �with well-defined ampli-
tude and phase� �15�. For the SPACS, a quantum to classical
transition has been explicitly demonstrated by ultrafast time-
domain quantum homodyne tomography technique. Thus, it
is timely to analyze how the photon loss affects the nonclas-
sicality of such kind of optical fields.

Let us first briefly recall the definition of the photon-
added coherent states �PACSs� �13�. The PACSs are defined
by 1

�N��,m�a
†m���, where ��� is the coherent state with the

amplitude � and a† is the creation operator of the optical
mode. N�� ,m�=m!Lm�−���2�, where Lm�x� is the mth-order
Laguerre polynomial. When the PACS evolves in the photon-*Electronic address: stephenli74@yahoo.com.cn
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loss channel, the evolution of the density matrix can be de-
scribed by �6�

d�

dt
=

�

2
�2a�a† − a†a� − �a†a� , �2�

where � represents dissipative coefficient. The corresponding
nonunitary time evolution density matrix can be obtained as

��t� =
1

m!Lm�− ���2�	k=0

�
�1 − e−�t�k

k!
L̂�t�aka†m���
��ama†kL̂�t� ,

�3�

where L̂�t�=e−�1/2��ta†a. For the dissipative photon-added co-
herent state in Eq. �3�, the total output state passing through
a 50/50 beam splitter characterized by the unitary operation
e��/4�i�a†b+ab†� with a vacuum mode b can be obtained or

�tot = Da�t�Db�t�
e−m�2te���2�e−�2t−1�

m!Lm�− ���2� 	
k=0

�
�e�2t − 1�k

k!
ÊkÊ†m�00�

�
00�ÊmÊ†kDa
†�t�Db

†�t� , �4�

where Da�t�=e��2/2���t�a†−��2/2��*�t�a and Db�t�
=e��2i/2���t�b†+��2i/2��*�t�b are the displacement operators of the

modes a and b, respectively, where ��t�=�e−�2t/2. Ê=
�2
2 a

−
�2i
2 b+�e−�1/2��2t. The local unitary operators can not change

entanglement, therefore, we only need to consider the en-
tanglement of the mixed state given as follows:

�tot� =
e−m�2te���2�e−�2t−1�

m!Lm�− ���2� 	
k=0

�
�e�2t − 1�k

k!
ÊkÊ†m�00�
00�ÊmÊ†k.

�5�

The log negativity of the above density matrix can be ana-
lytically solved for the case of single photon excitation, i.e.,
m=1, but its expression is still lengthy. The corresponding
entanglement potential of the SPACSs quantified by log
negativity is given in Fig. 4�b�.

On the other hand, the presence of negativity in the
Wigner function of the field is also the indicator of nonclas-
sicality. The Wigner function, the Fourier transformation of
characteristics function �16� of the state can be derived by
�17�

W��� = �2 	 ��Tr��Ôe − Ôo�D̂����D̂†���� , �6�

where Ôe�	n=0
� �2n�
2n� and Ôo�	n=0

� �2n+1�
2n+1� are the
even and odd parity operators, respectively. In the photon-
loss channel described by the master equation �2�, the time
evolution Wigner function satisfies the following Fokker-
Planck equation �18�:

�� 	 �t�W�q,p,t� = �� 	 2���� 	 �q�q + �� 	 �p�p�W�q,p,t�

+ �� 	 8����2 	 �q2� + ��2 	 �p2��W�q,p,t� ,

�7�

where q and p represent the real part and imaginary part of
�, respectively. Substituting the initial Wigner function of a
SPACS �13�

W�q,p,0� =
− 2L1��2q + 2ip − ��2�

�L1�− ���2�
e−2�q + ip − ��2 �8�

and the initial Wigner function of a two photon-added coher-
ent state �TPACS� �13�

W�q,p,0� =
2L2��2q + 2ip − ��2�

�L2�− ���2�
e−2�q + ip − ��2 �9�

into Eq. �7�, we can obtain the time evolution Wigner func-
tion. In Fig. 1, the phase space Wigner distributions at p=0
of the SPACSs in the photon-loss channel are depicted for
several different values of �t and �, from which the influ-
ence of photon loss on the partial negativity of the Wigner
function is explicitly shown. For the cases of �=0.1,1.5, it is
found that those curves W�q ,0� at decay times �t
=0,0.2,0.4,0.6 exhibit partial negativity. The further photon
loss will completely destroy the partial negativity. The pure
TPACSs exhibit more nonclassicality than the pure SPACSs
when the entanglement potential is adopted as the measure of
nonclassicality �19�. Figure 2 shows that the photon loss de-
teriorates the partial negativity of the Wigner function of the
TPACS. For more explicitly observing the details, we plot
W�q ,0� of the TPACSs with different values of �t and � in
Fig. 3. Different from the cases of SPACSs, here, W�q ,0� of
these pure TPACSs with ���
1 have two explicit negative
local minimal values. As ��� increases, the absolute value of
the negative local minimum at the left more rapidly de-
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FIG. 1. The Wigner distribution function at p=0 of the SPACSs
with two different values of initial amplitudes � ��a� �=0.1; �b�
�=1.5� in the photon-loss channel are depicted for several decay
times �t. From bottom to top, the decay times �t are 0, 0.2, 0.4, 0.6,
0.8, 1, 1.2, respectively. The absolute value of negative minimum of
the Wigner function decreases with decay time for two cases.
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creases than the one at the right. As �t increases, the absolute
value of negative minimum of W�q ,0� decreases which im-
plies the decreases of the nonclassicality of the states. When
�t exceeds a threshold value, the partial negativity of the
Wigner distribution cannot be explicitly observed from this
figure.

A natural question arises whether the partial negativity of
the Wigner function can be used to quantitatively measure
the nonclassicality of certain kinds of nonclassical fields. It is
obvious that the negative minimum of the Wigner function
cannot appropriately quantitatively measure the nonclassical-
ity. For example, comparing Figs. 1�a� and 3�a�, the absolute
value of the negative minimum in the Wigner function of the
pure SPACS with �=0.1 is larger than the one of the pure
TPACS with �=0.1. The further calculations show the abso-
lute value �Min�W�� of negative minimum of the Wigner
function of the pure SPACSs with �� � �1.85 is larger than
the one of the pure TPACSs with the same ���, and �Min�W��
of the pure TPACSs is not the monotonically decreasing
function of ��� �see Fig. 5�b��. However, there was already
the evidence that the pure TPACSs possesses larger nonclas-
sicality �quantified by entanglement potential� than the pure
SPACS with the same ��� �19�. Therefore, the absolute value
of negative minimum of the Wigner function is not coinci-
dent with entanglement potential. Nevertheless, the absolute
value PNW of the total negative probability of the Wigner
function may be a better choice for quantifying the nonclas-
sicality than the negative minimum of the partial negative
Wigner function �20–22�. PNW is defined by

PNW = �
�

W�q,p�dqdp� , �10�

where � is the negative Wigner distribution region and �x�
represents the absolute value of x. In Fig. 4�a�, we can see
that PNW of the SPACSs with different values of � decreases
with �t, and becomes zero after a threshold value of �t
=ln 2. In Fig. 4�b�, the entanglement potential quantified by
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FIG. 2. The Wigner functions of the TPACS with �=0.5 in
photon-loss channel are depicted for two different values of decay
time �t.
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FIG. 3. The Wigner distribution function at p=0 of the TPACSs
with two different values of initial amplitudes � ��a� �=0.1; �b�
�=1.5� in the photon-loss channel are depicted for several decay
times �t. From bottom to top, the decay times �t are 0, 0.2, 0.4, 0.6,
0.8, 1, 1.2, respectively. The absolute value of negative minimum of
the Wigner function decreases with decay time for two cases.
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FIG. 4. �a� The absolute values PNW of negative Wigner distri-
bution probability of the SPACSs with several different values of
initial amplitude � are plotted as the function of decay time �t in
photon-loss channel. From top to bottom, �=0,0.5,1 ,1.2,1.5. �b�
The entanglement potential measured by log negativity of the
SPACSs in photon-loss channel are plotted as the function of �t.
From top to bottom, �=0,0.5,1 ,1.2,1.5.
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log negativity of SPACSs in the photon-loss channel is plot-
ted. The entanglement potential also decreases with �t.
These calculations partially elucidate the consistent between
PNW and the entanglement potential of the dissipative
SPACSs at short time. Currently, the experimental quantita-
tive investigation of the nonclassicality of the quantum opti-
cal fields is still an open issue, and the experimental mea-
surement of entanglement potential has still several technical
difficulties. So, the measurement of PNW may be adopted as
a replaced approach to investigate the influence of photon
loss on the nonclassicality of the SPACSs. In Fig. 5�a�, we
also investigate the effect of photon loss on PNW of the
TPACSs with various values of �. At short decay times �t

1, the values of PNW of the TPACSs are larger than those
of the SPACSs with the same beam intensity ���2. However,
PNW of the TPACSs is more fragile against photon loss than
the one of the SPACS. As an illustration, for �=0.1 and �t
�0.34, the PNW of TPACSs is smaller than the one of
SPACS. From Fig. 4�b�, we can also find that the entangle-
ment potentials of SPACSs with different values of ����1
more rapidly decrease than the ones of SPACSs with ���
�1 in the photon-loss channel. Both the pure SPACSs and
pure TPACSs are non-Gaussian nonclassical states with par-
tial negativity of the Wigner distributions for any large but
finite values of ���. In Fig. 5�b�, the dependence of PNW of
the pure SPACSs and the pure TPACSs on ��� are shown. It
is found that both the PNW of the pure SPACSs and the pure
TPACSs reduce with the increase of ���, and the TPACS
possesses larger PNW than the SPACS with the same value of
���. This property is also coincident with the dependence of
entanglement potentials of the pure SPACSs and the pure
TPACSs on ��� �19�.

In summary, we have investigated the nonclassicality of
photon excitation of classical coherent field in the photon-
loss channel by exploring both the entanglement potential
and the partial negativity of the Wigner function. Consistent
behaviors of the total negative probability defined by the
volume of the negative part of the Wigner function and the
entanglement potential of single quantum excitation of clas-
sical coherent fields are found for the short time photon-loss
process. Similar dependence of the total negative probability
and the entanglement potential on the beam intensity is re-
vealed for few photon-added coherent states. The partial
negativity of the Wigner function can not be observed when
the decay time exceeds a threshold value, while the entangle-
ment potential always exists for any large but finite decay
time. In the future tasks, it is interesting to investigate the
variation of nonclassicality of general nonclassical states in
Gaussian channel or non-Gaussian channel.
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FIG. 5. �a� The absolute values PNW of negative Wigner distri-
bution probability of the TPACSs with several different values of
initial amplitude � are plotted as the function of decay time �t in
photon-loss channel. From top to bottom, �=0,0.5,1 ,1.2,1.5. �b�
The absolute values �Min�W�� of negative minimum of the Wigner
functions and PNW of the pure SPACSs and the pure TPACSs are
plotted as the function of ���. �Solid line� PNW of the pure TPACSs;
�dash line� PNW of the pure SPACSs; �dot line� �Min�W�� of the pure
SPACSs; �dash-dot line� �Min�W�� of the pure TPACSs.
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