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We study the dynamics of a Bose-Einstein condensate in a double-well potential in the mean-field approxi-
mation. Decoherence effects are considered by analyzing the couplings of the condensate to the environment.
Two kinds of coupling are taken into account. With the first kind of coupling dominating, decoherence can
enhance self-trapping by increasing the damping of the oscillations in the dynamics, while decoherence from
the second kind of condensate-environment coupling leads to spoiling of the quantum tunneling and
self-trapping.
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Bose-Einstein condensates �BECs� in a double-well po-
tential exhibit many fascinating phenomena that are absent in
thermal atomic ensembles, for example, quantum tunneling
and self-trapping �1–6�. Quantum tunneling through a barrier
is a paradigm of quantum mechanics and usually takes place
on a nanoscopic scale, as in two superconductors separated
by a thin insulator �7� or two reservoirs of superfluid helium
connected by nanoscopic apertures �8,9�. Recently, tunneling
on a macroscopic �micrometer� scale in two weakly linked
Bose-Einstein condensates in a double-well potential has
been observed �10�. Similar to tunneling oscillations in su-
perconducting and superfluid Josephson junctions, Josephson
oscillations are observed when the initial population differ-
ence is chosen to be below a critical value. When the initial
population difference exceeds a critical value, an interesting
feature of the coherent quantum tunneling between the two
BECs is observed, i.e., tunneling oscillations are suppressed
due to nonlinear condensate self-interactions. This phenom-
enon is known as macroscopic quantum self-trapping.

The interactions between the condensate and nonconden-
sate atoms lead to decoherence. Describing decoherence by
fully including the quantum effects requires sophisticated
theoretical studies that include the effect of noncondensate
atoms. Treating the noncondensate atoms as a Markovian
reservoir, master equations that govern the dynamics of the
condensate atoms might be derived �11–13�. In fact, in the
experiments on BECs, trapped atoms are evaporatively
cooled and they continuously exchange particles with the
noncondensate atoms. Thus, standard procedure in quantum
optics for open systems would naturally lead to master equa-
tions for treating atomic BECs. This Markovian treatment for
BECs also can be understood as the presence of lasers for
trapping or detection of atoms, which will polarize the atoms
and thus couple them to the vacuum modes of the electro-
magnetic field �14�. On the other hand, due to the unavoid-
able interaction of a BEC with its environment, decoherence
is always there in a BEC; hence the characterization of de-
coherence in this system is interesting. Because different de-
coherence may have different effects on the dynamics of the
BECs, the character of decoherence in BECs may be read out

from the dynamics of the BECs. Indeed, as we shall show,
different BEC-environment coupling leads to different final
population imbalance of the BEC in a double-well potential.
This may be used to characterize the decoherence in double-
well systems.

In this Brief Report, we study the effect of decoherence
on the dynamics of a BEC in a double-well potential by
studying the evolution of the master equation for the BEC
within a mean-field framework, where the number of atoms
in the condensates is supposed to be infinity and the quantum
fluctuation is negligible. To derive the master equation, we
need to model the environment and BEC-environment cou-
pling. However, this is not an easy task and we do not ad-
dress it at present. Instead, we write the master equation by
analyzing the effects of environmentally induced decoher-
ence. When analyzing decoherence effects on the dynamics
of a BEC in a double-well potential, we are interested in
answering two basic questions: �1� What effects are caused
by the decoherence on self-trapping in the BEC? And �2�
how does the decoherence affect the quantum tunneling in a
BEC in a double-well potential?

Consider a BEC in a double-well potential. The wave
function of the BEC can be expressed as the superposition of
the individual wave functions in each well,

��� = aR�R� + aL�L� , �1�

where �R� and �L� denote the wave functions of the right and
left wells, respectively. The coefficients aR and aL of the
expansion satisfy the two-mode Gross-Pitaevskii equation
�1,2� �setting �=1�,
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where � is the energy bias between the two wells, c stands
for the nonlinear parameter describing the condensate self-*Electronic address: yixx@dlut.edu.cn
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interaction, and V, which depends on the height of the bar-
rier, is the coupling constant between the two condensates. In
this paper, we shall focus on �=0, i.e., the case of a BEC in
a symmetric double-well potential. This situation is interest-
ing because the amplitude distributions of all eigenstates are
symmetric, leading to Josephson oscillations in the absence
of decoherence. With the Markov approximation, the master
equation that results from the condensate-environment cou-
pling takes the form

i
�

�t
� = �H�,�� + L��� ,

L��� = i
�

2
�2A�A† − �A†A − A†A�� , �4�

where � denotes the decoherence rate of the condensate, and
A stands for an operator of the condensate. This master equa-
tion can be derived by assuming that the condensate-
environment couplings take the form HI�� jgj�Abj

†+H.c . �,
where gj denotes the constant of interaction between the con-
densate and the environmental mode bj. The condensate op-
erator A in general is expressed as a linear superposition of
three Pauli operators, i.e., A=�x�x+�y�y +�z�z, with the no-
tation �z= �R�R �−�L�L�, �x= �R�L � + �L�R�, and similarly
for �y. The values of �� ��=x ,y ,z� depend on the source of
decoherence and its couplings to the environment. For ex-
ample, for �y =�x=0 the environment couples dephasingly to
the condensate, while for �z=0 the environment causes the
BEC to dissipate. H� takes the same form as in Eq. �3�,
except for the change �ax�2→�xx= x �� �x�, x=R ,L.

To start with, we consider the case of A=�+=�x+ i�y.
This situation happens in the case where the double-well
potential is formed by using a Raman scheme to couple two
hyperfine states in a spinor BEC. The condensate in the up-
per hyperfine states decays into the lower one, reminiscent of
atomic spontaneous emission. The dynamics of the master
equation is studied by numerical simulations; the results are
presented in Figs. 1 and 2. In Figs. 1�a� and 1�b�, we have
plotted the population of condensates in the left and right
wells, respectively. In the initial state all the condensate at-
oms are in the right well, and the decoherence rate has been
set to be �=0.1V. In contrast, the dynamics of the conden-
sate in the left well without decoherence ��=0� is presented
in Fig. 1�c�. Clearly, the decoherence increases the damping
of the oscillations. When the nonlinearity characterized by c
is small compared to the tunneling V, the oscillations of the
population are suppressed, and the condensate finally re-
mains in the two wells with equal probability. If the nonlin-
earity is large with respect to the tunneling V and the popu-
lation imbalance exceeds a critical value, the condensate will
be locked in one of the wells, depending on the initial popu-
lation. We note that the population changes drastically in the
vicinity of the critical value c=2V; this is due to the suppres-
sion of population oscillations by decoherence. With increas-
ing decoherence, the jumplike change near the critical value
in the population becomes unclear, as Fig. 2 shows. That
means the decoherence may determine the final population
imbalance between the two wells. On the other hand, the

nonlinear interaction together with the initial population and
the relative phase can affect the decoherence, which may be
characterized by ��12�, i.e., the norm of the off-diagonal ele-
ment of the density matrix. This effect is shown in Fig. 3. We
note that the jumplike change in Fig. 1 might appear at dif-
ferent c, depending on the fixed points around which the
population imbalance and the relative phase oscillate. For
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FIG. 1. �Color online� Populations of the condensates in the left
well �L� ��a�, �c�� and right well �R� ��b��. The condensates were
initially prepared in the right well; the decoherence rate was chosen
�=0.1V in �a� and �b�, and �=0 in �c�. A jumplike change at c
=2V in �a� and �b� clearly appears due to the decoherence effect.
The nonlinear coupling constant is plotted in units of V, and the
time in units of 1 /V in all figures in this paper.
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FIG. 2. �Color online� As Fig. 1�b� but with larger �, �=0.3V
for the upper panel, 0.5V for the lower panel. The jumplike change
in the population disappears with increasing �.
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example, our simulations show that the jumplike change
could appear at c=V with initial relative phase 	=
 and
nonzero population imbalance �6�.

Next, we take A=�x, corresponding to a BEC in a spatial
double-well potential. The tunneling is driven by an environ-
ment �or by fluctuational fields�, leading to decay in the
quantum tunneling. An alternative BEC system can be
formed by using a Raman scheme to couple two degenerate
hyperfine states in a spinor BEC. The driving fields may
fluctuate, resulting in decoherence in quantum tunneling. We
have performed extensive numerical simulations for the mas-
ter equation �4�. Selected results, divided into three regimes
by the nonlinearity, are presented in Figs. 4–6. Figure 4
shows the dynamics of the condensate in the self-trapping
regime. The decoherence clearly increases the amplitude of
oscillations in the population first, then increases the damp-
ing of the amplitude of oscillations; meanwhile on average it
decreases the population imbalance, and finally spoils the
self-trapping. In the self-trapping regime, the frequency of

the oscillation depends on the nonlinear parameter c, the ini-
tial population imbalance and relative phase, as well as the
coupling constant V between the BECs. This can be found by
comparing Figs. 4–6. With c and V fixed, the decoherence
changes the population imbalance; this results in a frequency
change as shown in Fig. 4�a�. In the quantum tunneling re-
gime �Fig. 5�, decoherence increases the damping of the os-
cillations, as expected. Finally, in Fig. 6, we have plotted the
dynamics of the condensate in the regime between quantum
tunneling and self-trapping. We see that decoherence in-
creases the tunneling at the beginning of its evolution, and
then destroys the quantum tunneling or self-trapping after a
few cycles of evolution.

In summary, we have studied the dynamics of a Bose-
Einstein condensate in a double-well potential. The dynamics
is governed by master equations with a condensate operator
that comes from the condensate-environment coupling. Two
kinds of decoherence characterized by �+ and �x are consid-
ered. By numerically solving the master equation, we show
that there is a jumplike change in the BEC population due to
the first kind of decoherence ��+�. With increasing decoher-
ence rate, the jumplike change in the population becomes
unclear, resulting in decoherence-rate-dependent self-
trapping. When the second kind of decoherence ��x� domi-

0
100

200

0
1

2

0

0.2

0.4

Time [1/v]

c[v]

ρ 12

FIG. 3. �Color online� Norm of the off-diagonal element of the
density matrix ��12� as a function of time and c, which is usually
used to characterize the decoherence. The parameter chosen is �
=0.1V, and the condensates were initially in the right well.
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FIG. 4. �Color online� Change of population of the condensate
with time. The parameters chosen are �a� c=3V, �=0.01V, and �b�
c=3V, �=0. Self-trapping occurs in the absence of decoherence, as
�b� shows. The decoherence first drives the BEC from the self-
trapping regime to the quantum tunneling regime, and then it de-
stroys the quantum tunneling.

0 200 400 600 800 1000
0

0.5

1 (a)

0 200 400 600 800 1000
0

0.5

1

Time [1/v]

pr
ob

ab
ili

ty

(b)

FIG. 5. �Color online� As Fig. 4, but with c=V. Solid line is
plotted for the population of BEC in the right well, while dotted line
is for the left.
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FIG. 6. �Color online� Population of the condensate at the criti-
cal value c=2V. �a� is plotted for �=0.01V, while �b� is for �=0. It
confirms that the decoherence first leads the BEC from the self-
trapping regime to the quantum tunneling regime, and then spoils
the quantum tunneling.
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nates, the decoherence first drives the BEC from the self-
trapping regime to the quantum tunneling regime; then it
destroys the quantum tunneling in the double-well system.
The limitation of this paper is that we have treated the envi-
ronment as Markovian and have ignored the quantum fluc-

tuation in the condensate atoms. This may limit the applica-
tion of the formalism to real double-well systems.
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