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A scheme is proposed to realize a two-qubit quantum phase gate for the intracavity modes. In the scheme,
two qubits are encoded in zero- and one-photon Fock states of two intracavity modes, and the three-level
�-type atom trapped in a high-Q cavity mediates the conditional phase gate within a given interaction time.
The influence of cavity decay and atomic spontaneous emission on the gate fidelity is also discussed.

DOI: 10.1103/PhysRevA.75.044302 PACS number�s�: 03.67.Lx, 42.50.�p

The existence of quantum algorithms for specific prob-
lems shows that a quantum computer can in principle pro-
vide a tremendous speedup compared to classical computers
�1�. This discovery motivated an intensive research into this
mathematical concept which is based on quantum logic op-
erations on multiqubit systems. It is well known that two-
qubit controlled phase gate and one-qubit gate are universal
for constructing quantum computer, i.e., any unitary transfor-
mation can be decomposed into these elementary gates �2�.
In order to implement quantum computer into a real physical
system, a quantum system is needed, which makes the stor-
age and the readout of quantum information and the imple-
mentation of the required set of quantum gates possible. The
isolation of the quantum system from the environment
should be very well in order to suppress decoherence pro-
cesses. Several physical systems were suggested to imple-
ment the concept of quantum computing: Trapped ions �3�,
cavity quantum electrodynamics �QED� �4,5�, liquid state
nuclear magnetic resonance �6�, etc.

Among these systems being explored for hardware imple-
mentations of quantum computers, cavity QED is favored
because of their demonstrated advantage when subjected to
coherent manipulation �4,5�. By encoding quantum informa-
tion into atomic states, a number of proposals for realizing
quantum phase gate �QPG� have been proposed by using
cavity mode as data bus �7�. Since cavity QED systems also
hold great promise as basic tools for quantum networks since
they provides an interface between computation and commu-
nication, i.e., between atoms and photons, it is necessary to
look for techniques to manipulate and control quantum state
of the intracavity fields �8–12�. In fact, two different schemes
have been proposed to use cascade-, or V-type three-level
atom to realize quantum phase gate of two intracavity modes
�8,9�. References �10–12� showed that a single �-type three-
level atom can be used to realize quantum logic gate and
quantum state transfer between atom and cavity mode.

In this paper, we present a scheme to realize the quantum
phase gate of two polarization modes by using a �-type
three-level atom as data bus. Our scheme differs from Ref.
�10� in two points. First, in their scheme, the internal states
of an atom represent one qubit and the quantum states of the
field inside the cavity represent the other. However, experi-
mental realization of typical quantum algorithms may require

the two qubits to be treated on equal footing, so in our
scheme the two qubits are represented by the zero- and
single-photon states of two different polarization modes of
the radiation field inside the cavity. Second, the quantum
phase gate operation can be performed successfully by re-
quiring the two-photon resonance condition. A precise con-
trol of the interaction time between the three-level atom and
the cavity modes will yield the conditional evolution needed
to implement the quantum phase gate.

We now consider the system of a �-configuration three-
level atom interacting with two orthogonal polarization
modes of the same frequency. The energy level configuration
of the atom is depicted in Fig. 1. For concreteness, we
consider a possible implementation using 87Rb in an
optical Fabry-Perot �FP� cavity. As shown in Fig. 1, the
ground states �g−1� and �g1� correspond to Zeeman levels
�F=1,m=−1� and �F=1,m=1� of 5S1/2 electronic ground
state, while the excited state �e0� is denoted by the Zeeman
level �F�=1,m�=0� of the 5P1/2 electronic excited state. The
lifetime of the atomic levels �g−1� and �g1� is comparatively
long so that spontaneous decay of these states can be ne-
glected. The atomic transitions �e0�↔ �g−1� and �e0�↔ �g1� are
coupled to two opposite circular polarization modes �± with
coupling strengths gL and gR, respectively. Similar model has
been invoked for generating multiphoton entangled states
�13,14�.

In the rotating-wave approximation and the interaction
picture, the Hamiltonian can be written as

H = q �gL�e0��g−1�aLe−i�Lt + gR�e0��g1�aRe−i�Rt + H.c.� ,

�1�

where aL and aR are the annihilation operators of the two
opposite circular polarizations �± respectively; �J=�e0l−�c
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FIG. 1. �Color online� �-type three-level atom interacting with a
bimodal cavity field, where �L and �R are the respective one-
photon detunings.

PHYSICAL REVIEW A 75, 044302 �2007�

1050-2947/2007/75�4�/044302�4� ©2007 The American Physical Society044302-1

http://dx.doi.org/10.1103/PhysRevA.75.044302


is the detuning between the atomic transition and the relevant
cavity mode aL or aR �J=L ,R�; �c is the frequency of the
cavity mode and �e0,l is the atomic transition frequency be-
tween states �e� and �l� �l=g−1 ,g1�, which can be adjusted by
external magnetic field. To realize the quantum phase gate,
we assume �L=�R=�. The effect of the difference between
two detunings on the quantum phase gate will be studied at
the end of the paper.

In this paper, we adopt the notation �i , j ,k���i��j�aL
�k�aR

,
where �i� �i=g−1 ,g1 ,e0� denotes atomic state while �j�aL

and
�k�aR

denote that cavity fields have j photons in mode aL and
k photon in mode aR. In the scheme, two qubits are encoded
in zero- and one-photon Fock states of two different polar-
ization intracavity modes. Initially, we assume that the atom
is prepared in ground state �g−1�, and two cavity modes are in
computational basis, i.e., system is initially prepared in the
states �g−1 , j ,k� �j ,k�0,1�. The quantum phase gate we
want to realize is given by

Û = exp�i�� j1�k1��g−1, j,k��g−1, j,k� , �2�

which means that the cavity states remain unaffected for the
initial states �0, 0�, �0, 1�, and �1, 0�, and acquire a � phase
shift only for the state �1, 1�.

It is apparent that the states �g−1 ,0 ,0� and �g−1 ,0 ,1� do
not evolve with the time, since these states remain com-
pletely decoupled from interaction of Eq. �1�

H�g−1,0,0� = 0, �3a�

H�g−1,0,1� = 0. �3b�

In the following, we only give the detail analysis of the time
evolution of states �g−1 ,1 ,0� and �g−1 ,1 ,1�.

If the initial state of the system is �g−1 ,1 ,0�, the Hamil-
tonian of Eq. �1� can be reduced to the form

H1 = gL�e0,0,0��g−1,1,0�e−i�t + gR�e0,0,0��g1,0,1�e−i�t + H.c.

�4�

After interaction time t, the state of the system is given by

���t�� = b10�g−1,1,0� + c00�e0,0,0� + d01�g1,0,1� . �5�

On the other hand, if the initial state of the system is
�g−1 ,1 ,1�, the Hamiltonian can take the form

H2 = gL�e0,0,1��g−1,1,1�e−i�t + 	2gR�e0,0,1��g1,0,2�e−i�t

+ H.c. �6�

and time evolution of initial state is given by

���t�� = b11�g−1,1,1� + c01�e0,0,1� + d02�g1,0,2� . �7�

For different initial states, we solve Schrödinger equation
i�t���t��=H���t��, and obtain expression of bjk�t� as follows

bjk�t� � �g, j,k���t�� =
ei�t/2

2

�1 −

�

	 jk
�ei	jkt/2

+ �1 +
�

	 jk
�e−i	jkt/2 , �8�

with 	10=	�2+4�gL
2 +gR

2� and 	11=	�2+4�gL
2 +2gR

2�.

Therefore, to implement the quantum phase gate in Eq. �2�,
one needs to choose the experimental parameters to satisfy
the following conditions

�t

2
= 2m�,

	10t

2
= 2n�,

	11t

2
= �2p + 1�� , �9�

where using the definition of 	10 and 	11, the integers m, n,
and p should satisfy the inequality 2p+1
2n
2m�0. If
we set gL=gR=g, we have

�2p + 1�2 = 6n2 − 2m2. �10�

From Eq. �9�, for a fixed n, the value of m is determined
through the detuning � and g according to the relation
�2 / �2g2�=4m2 / �n2−m2�. The problem is then reduced to
finding the p closest to an integer value that satisfies Eq.
�10�.

We report in Table I the best numerical solutions of Eq.
�10�. Note that the values for the detuning and the interaction
time given in Table I are made dimensionless through the
vacuum Rabi frequency g, which means that these results are
general in the sense that they do not rely on any specific
physical implementation.

In order to check the validity of our proposal, we define
the following fidelity �9� to characterize the deviation of how
much the output states ���t�� deviate in amplitude and phase
from the ideal phase gate transformation for the four differ-
ent input states �g−1 ,0 ,0�, �g−1 ,0 ,1�, �g−1 ,1 ,0�, and
�g−1 ,1 ,1�:

F = �� �
j,k=0,1

�bj,k�t��2ei��jk�2� , �11�

where �� j,k is the difference between the phase acquired
during the gate operation and the ideal phase of the gate
defined in Eq. �2�. Figure 2 plots the numerical calculation of
Eq. �11�, in which the time evolution of the fidelities for two
different � are shown. Fidelities oscillate with peak values
close to F=1 for the particular interaction time values
predicted in Table I.

It is necessary to give a brief discussion on the dissipative
processes �15� to examine with how much efficiency the de-
sired outcome can be produced because the interaction of the
atom and the cavity with the environment causes them to
decay and results in decoherence. The decoherence mecha-
nisms arise through two dominant channels: �i� Cavity decay
rates a and b and �ii� atomic spontaneous emission rate �.
A single trajectory in the quantum jump mode �16� is well
suitable for evaluating the effects on the gate fidelity. Subject

TABLE I. Best numerical solutions to Eq. �10�, sorted by the
required interaction time gt.

q n m p � /g1 g1t

1 10 6 10.9891 2.12 35.58

1 17 5 20.0183 0.87 72.14

1 21 11 27.0153 1.74 79.45

1 20 0 23.9949 0 88.83
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to no decay being recorded in the detectors, under the rotat-
ing wave approximation, the system conditionally evolves in
the interaction picture according to a non-Hermitian Hamil-
tonian which is given by

Hcon = gL�e0,0,0��g−1,1,0� + gR�e0,0,0��g1,0,1� + gL�e0,0,1�

��g−1,1,1� + 	2gR�e0,0,1��g1,0,2� + H.c.

− �� +
iaL

2
�aL

†aL − �� +
iaR

2
�aR

†aR −
i�

2
��e0,0,0�

��e0,0,0� + �e0,0,1��e0,0,1�� , �12�

where aL
and aR

denote the rate of decay of the cavity
mode fields aL and aR; � is spontaneous emission rate of the
excited states. Figure 3 plots the numerical calculation of the
fidelity vs  /g. For � /g=2.12, Table I shows that the maxi-
mum fidelity is obtained at gt=35.58. We see the gate fidelity
remains more than 0.90 for =0.001g and �=0.001g. It
monotonically decreases when  /g and � /g grows.

In reality the detunings �L and �R are likely to be differ-
ent for both transitions due to the little difference between
the two cavity polarization modes or the nondegenerate
atomic ground states, where the magnetic field plays in gen-
eral a negative role as it breaks the degeneracy between the
atomic ground states. Figure 4 shows the fidelity for imple-

mentation for the QPG as a function of �� /�L, where ��

=�L−�R.
Finally, We give a brief discussion of the experimental

feasibility of the proposed scheme within optical cavity
QED. As with any proposal for quantum computing imple-
mentation, its success ultimately depends on being able to
complete many coherent dynamics during the decoherence
time, so the atomic and cavity lifetimes should be larger than
the interaction time of the atoms with the cavity fields. The
three important cavity QED parameters describing the
cavity-atom interaction system have been obtained as
�g , ,�� /2�= �16,1.4,3� MHz �17�, which would imply
cavity lifetime �cav is of the order of 1 �s. For the QPG
discussed in this paper the gate times tgate is also of the order
of 1 �s. Thus to match the condition tgate��cav and guaran-
tee higher fidelity,  should at least be smaller than g by
approximately two orders of magnitude. This can be realized
through adjusting the length L and finesse F of the cavity:
g�L−3/4 and �FL−1. If we can increase the cavity finesse
F of Ref. �17� by one order of magnitude, �g ,� /2�
= �16,0.14� MHz can be obtained, which satisfies the
requirement of the present scheme.

Furthermore as the vacuum Rabi frequency g is not con-
stant throughout the cavity mode volume in current optical
cavity QED systems, the FP cavity has a general mode func-
tion described by ��r��=sin�kz�exp�−�x2+y2� /�0

2� �18�, and
g�r��=g0��r��, where �0 and k=2� /� are, respectively, the
waist and the wave vector of the Gaussian cavity mode, and
r��x ,y ,z� describes the atomic locations; z is assumed to be
along the axis of the cavity. In the above description we need
the coupling rate gL�r��=gL and gR�r��=gR. Optimal results
will be obtained for an atom trapped at the antinode of the
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FIG. 5. �Color online� Variation of the fidelity F vs �g /g when
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FIG. 2. �Color online� Time evolution of the fidelity F for the
quantum phase gate, where �=2.12 �solid curve� and �=0 �dashed
curve�.
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cavity field. This is experimentally viable, as shown in Refs.
�19�, where trapping times up to 1 s have been reported in
the strong-coupling regime. If we take the deviation of g into
account by the value �g, that is g�=g+�g, we can see in Fig.
5 the fidelity exceeds 0.98 when �g /g is smaller than 10−3.
We also note that our scheme requires an efficient source of
single photons �20� and their injection into an optical cavity.
Recently, Fattal, Beausoleil, and Yamamoto �21� proposed a
significant scheme to achieve photon injection from the out-
side to the inside of an optical cavity and then store it in the
atomic internal state even with highly imperfect hardware.
However, the storage of single photon information and feed-
ing of single photons into or out of cavities are still experi-
mental challenges for large-scale quantum computation.

In conclusion, we have presented a scheme to carry out a
two-qubit quantum phase gate in which a three-level �-type
atom interacts with a high-Q bimodal optical cavity and the
two qubits are represented by the vacuum and single-photon
states of two polarization modes of the cavity. We also dis-
cuss the influence of the atomic spontaneous emission, cavity
decay, and deviation of g on the gate fidelity.
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