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The local density of states �LDOS� of the electromagnetic field on the surface of an absorbing dielectric
microsphere at frequencies of the whispering-gallery modes �WGMs� is evaluated using the dyadic Green
tensors of the electric and magnetic fields. In the calculation, the morphology-dependent resonances in the
frequency dependence of the Mie coefficients are described analytically in terms of the resonant frequency and
the partial quality factors which allow for light radiation and absorption. The Purcell factor of LDOS enhance-
ment by WGMs is calculated to be proportional to the product of the quality factor and the squared ratio of the
light wavelength to the sphere diameter. The ultimate values of the electric-field LDOS enhancement are
estimated to be of the order of 107 for a fused-silica microsphere in air. The efficiency of radiation of the
resonant spontaneous emission from electric dipoles located near the surface outside of a sphere is determined.
The characteristics of a dielectric microsphere are compared with those of other cavities.
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I. INTRODUCTION

Many experiments in optics study or apply spatial or
spectral concentration of the energy of the electromagnetic
field. In particular, such a concentration can be described by
a parameter commonly called the local density of states
�LDOS� �1,2�. This parameter is the number of the field
states per unit volume and unit frequency intervals. A varia-
tion of the LDOS brings about an alteration of rates of opti-
cal transitions. Thus, it is possible to enhance or inhibit vari-
ous physical processes including spontaneous emission,
fluorescence, Raman scattering, and energy transfer.

An enhancement of spontaneous emission in a cavity was
predicted by Purcell in far 1946 �3�. In fact, he estimated the
density of states related with the Einstein A coefficient. Ac-
cording to Purcell, in a cavity with the quality factor Q and
the volume V, the density of states on a resonant frequency is
higher than in free space by a factor of �3�

f =
3Q�3

4�2V
, �1�

where � is the wavelength of the emission in vacuum. This
note of Ref. �3� gave an inceptive impulse for diverse optical
research and was appreciated in studies of photonic crystals
�4�, light-emitting diodes �5�, micrometer-sized cavities �6�
�such as dielectric microspheres �7�, toroidal �8� and micro-
post cavities �9��, nanocavities �10,11�, noble-metal nanopar-
ticles �12�, complexes of semiconductor nanoparticles and
dielectric microspheres �13�, 2D-photonic-crystal defect
nanocavities �14�, dielectric nanowires �15�, metal-dielectric
interfaces, refractive media, dielectric slabs �see references
in Ref. �1��, etc.

In particular, it was shown that a micrometer-sized dielec-
tric sphere can increase the LDOS by orders of magnitude
due to the whispering-gallery modes �WGMs� �16–18�. Such
an enhancement is of importance in a single-quantum-dot
laser �19�, complexes of micrometer- and nanometer-sized

particles �13�, single-molecule sensors �20–22�, and cavity
quantum electrodynamics �CQED� atom-microsphere sys-
tems �23,24�.

The next section briefly reviews modifications of the Pur-
cell formula in studies of microspheres. Relevant calcula-
tions executed without characterization of the factor f are
also referred to. According to Sec. II, it is desirable to gain
insight into the Purcell’s estimate. This paper aims at a rig-
orous derivation of the Purcell factor and evaluation of the
ultimate value of the normalized LDOS upon the surface of a
dielectric microsphere. For that, Sec. III cites known rela-
tions between the LDOS and the dyadic Green tensors of the
electric and magnetic fields. Section IV defines the LDOS on
the surface of a sphere. Section V gives an approximate for-
mula for calculating a Mie coefficient at frequencies in the
region of a morphology-dependent resonance in an absorbing
dielectric sphere. As a result, an analog of the Purcell for-
mula describing resonant properties of the sphere is obtained.
Section VI presents numeric illustrations and their discus-
sion. Finally, a brief conclusion is given in Sec. VII.

II. HISTORICAL BACKGROUND

Chew �16,17�, Ching et al. �18� were among the first who
revealed the phenomenon of LDOS enhancement in
micrometer-sized dielectric spheres. They studied emission
from electric dipoles embedded in the spheres. The theoreti-
cal models applied the classical electromagnetic theory �16�,
a quantum-physics expression of the Einstein A coefficient
through the dyadic Green tensor of the electric field �16�, and
a procedure of quantization of the electromagnetic field
�18,25�. In the latter approach, a sphere of an ideal dielectric
was considered as a part of a closed cavity of an infinite size.

Later, a quantum formalism for describing spontaneous
decay of an excited two-level atom in the presence of dis-
persing and absorbing dielectric bodies was developed
�26–28�. It was established how the Einstein A coefficient
relates with the classical dyadic Green tensor of the field in a
medium with a complex permittivity. The general theory was
applied to study spontaneous decay of an excited atom in*Electronic address: datsyuk@univ.kiev.ua
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spherical cavities �26,28�. References �16,28� provided for-
mulas for calculating the transition rates of an excited atom
inside or outside of a sphere.

Lange and Schweiger showed a role of microsphere
WGMs in the process of Raman scattering �29�. They calcu-
lated the external Raman-scattering efficiency defined as the
ratio of the Raman- or fluorescence-scattered power radiated
by molecules in the vicinity of a sphere to the scattered
power of the same molecules in the homogeneous space. For
instance, this ratio was computed to be 2�106 if a sphere
with a refractive index n=1.5 was placed in air and had a
radius a=10 �m, Raman-active molecules were located on
the surface of the sphere, the input emission was not in reso-
nance with a particle WGM, and the output emission was in
resonance with the TM60

1 mode �the size parameter x
=2�a /� was equal to 64.0 for the input emission and
44.877 376 006 for the output one�. In the numeric calcula-
tions �29,30�, some quantities were likely to be in error be-
cause light absorption within a particle was neglected. For
example, it was implicitly presumed that widths of
morphology-dependent resonances �MDRs� can be as narrow
as approximately x /1014 for the TM88

1 and TE88
1 modes. �The

correspondent external efficiency was calculated to be about
1011 for the double-resonance scattering.� The anticipated Q
factors of the order of 1014 were much larger than the record
value 0.8�1010 of Q found experimentally for fused-silica
spheres in air �31�.

None of the preceding calculations gave an estimate for
the ultimate value of the LDOS enhancement. In addition,
the role of light absorption was not clearly established. Be-
cause of the deficiencies of the numeric simulations, it is
useful to apply a simple analytical estimate, like Eq. �1�.
However, for a cavity with surface modes, the Purcell factor
should be modified.

As a rule, the electromagnetic field is not uniform within
the cavity. Therefore, the value V is commonly replaced by
an effective mode volume Vm. This parameter is frequently
introduced as

Vm =
� � � E2�r�dr

max E2 , �2�

where E is the electric field of the mode. If the mode is
degenerate, components of the multiplet can have different
maxima in different points of space. Therefore, a definition
and computation of Vm for a degenerate mode is not a trivial
exercise. Nevertheless, the right-hand side of Eq. �1� is often
merely multiplied by the mode degeneracy g. In addition, the
Purcell factor �1� should be decreased three times if one av-
erages over the radiating-dipole direction. Using these specu-
lations, the following formula is achieved:

f = gQ
�3

4�2Vm
. �3�

There are several definitions of the parameter Vm for
WGMs of a sphere. Braginsky, Gorodetsky, and Ilchenko
defined �32�

Vm = 3.4�3/2� �

2�n
�3

l11/6�l − m + 1�1/2, �4�

where l is the angular momentum, or the mode number, m is
the azimuthal mode number. This equation was applied at
m= l in Ref. �20� and m=1 in Ref. �33�. Lin, Eversole, and
Campillo �34� also used, with reference to Ref. �35�, Vm
�V / �g1/2n2�, here and below V=4�a3 /3 and g=2l+1. In
Refs. �24,36–38�, values Vm were calculated numerically. A
generalization of the calculations in a review paper �36� gave
Vm� /V=0.24/ l1.159 for TE modes and Vm� /V=0.63/ l1.142 for
TM modes. The effective volumes were defined as �36�
Vm�=			E�s

2 �r�dr /max E�s
2 , where � denotes a field projec-

tion, s is a set of the mode indexes. The above cited equa-
tions of Ref. �36� imply that m= ± l and the WGMs are of the
first order. In Ref. �37�, a dependence similar to Eq. �4� with
m= l was adopted,

Vm = 
1.02�2a�11/6��/n�7/6 for TE mode,

1.08�2a�11/6��/n�7/6 for TM mode.
� �5�

Note that in the strictest sense, the integration on the right-
hand side of Eq. �2� or similar definitions should be over the
volume of the universe if a cavity is open. A finite value of
Vm cannot be obtained without restrictions imposed on the
integrals �39�.

Thus, there are distinctions in the characterization of the
mode volume Vm and, hence, the factor f . Below in this
paper, it is shown that the quantity Vm is an elucidative pa-
rameter and can be omitted in a rigorous calculation of f .
The normalized LDOS upon the surface of a dielectric mi-
crosphere, in fact f , is found without calculating and even
introducing the modal volume. The factor f is established to
be in inverse proportion to the surface area S=4�a2 of a
spherical cavity,

f � Q
2�2

�S
. �6�

Neither the above-mentioned numeric calculations nor es-
timates of the quantities Vm and Q have determined the up-
per limit of the Purcell factor. In addition, the known ap-
proaches could hardly propose ways to increase f allowing
for a destructive physical process. In the next sections, the
ultimate value of f is evaluated and consequences of light
absorption are investigated.

III. NORMALIZED LOCAL DENSITY OF STATES

The local density of electromagnetic states ��r ,	� is gen-
erally expressed through the dyadic Green tensors of the

electric and magnetic fields, GJE�r ,r ,	� and GJH�r ,r ,	�, re-
spectively �2�,

��r,	� =
	

�c2 Im Tr�GIE�r,r,	� + GIH�r,r,	�� , �7�

where 	 is the angular light frequency, c is the speed of light
in vacuum. The density � is often normalized to the free-
space value �v=�v

E+�v
H, where �v

E=�v
H=	2 / �2�2c3�.
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If one studies electric-dipole transitions, then only the
quantity

�E�r,	� =
	

�c2 Im Tr�GIE�r,r,	�� �8�

is of importance. For instance, a calculation of the Einstein A
coefficient for spontaneous emission, in accordance with the
Fermi’s golden rule, yields

�A
Av

=
�E

�v
E . �9�

Here, Av is the rate of spontaneous emission in vacuum, �¯
means averaging of the rate over the dipole direction. It
should be mentioned that Eq. �9� is valid if dipole’s environ-
ment has no influence on the moment of the electric-dipole
transition.

If a cavity is examined, factor f�r���E�r ,	s� /�v
E can be

called the space-dependent Purcell factor, here 	s is a fre-
quency of a cavity mode s. Note that for a dielectric sphere,
quantities averaged over location r inside the sphere are �18�
��Er���Hr and, consequently, �fr��Fr, where F�r�
���r ,	s� /�v is a generalized Purcell factor.

IV. FIELD ENHANCEMENT ON THE SURFACE
OF A SPHERE

Consider a sphere �medium 2� with a complex electric
permittivity 
 and a magnetic permeability �=1 placed in
the free space �medium 1� where 
=�=1. To study the es-
sence of the problem, let us consider only the LDOS on the
external surface of the sphere. In this way, on the one hand,
it will be possible to evaluate the field enhancement in a
WGM cavity by the order of magnitude. On the other hand,
such a specific calculation is of particular importance in pro-
cesses involving molecules �20–22�, atoms �24� or quantum
dots �13,19� located on the sphere surface.

Using the formulas for the dyadic electric-field Green ten-
sor of a sphere presented elsewhere �26,40�, the normalized
LDOS at r�a are found to be

�

�v
= 1 +

1

4y2�
l=1

�

�2l + 1�Re
�a0l + a1l�

���1 +
l�l + 1�

y2 �l
2�y� + �l��y��2�� �10�

and

�E

�v
E = 1 +

1

2y2�
l=1

�

�2l + 1�Re�a0ll
2�y� + a1l��l��y��2

+
l�l + 1�

y2 l
2�y��� . �11�

Here,

apl = −
k2−p�l��z��l�x� − k1+p�l�z��l��x�
k2−p�l��z�l�x� − k1+p�l�z�l��x�

�12�

are the Mie coefficients for the transverse magnetic �TM, p
=1� and transverse electric �TE, p=0� modes. The function

�l is a Riccati-Bessel function of the order l, l�x�
���x /2Hl+1/2

�1� �x� is a Riccati-Hankel function, related with
the Hankel function Hl+1/2

�1� of the first kind. Arguments in
Eqs. �10�–�12� are x�k1a, y=k1r, and z�k2a, where k1 and
k2 are the wave numbers in the surrounding medium and the
sphere, respectively.

It is worth noting that Eq. �11� can be obtained from
above Eq. �9� and Eqs. �6��, �7�� of Ref. �16� or Eqs. �A1�,
�A2� of Ref. �28� giving �A= 1

3A�+ 2
3A�, where A� and A�

are the rates of transitions with radially and tangentially ori-
ented dipole moments, respectively.

V. MIE SCATTERING RANGE

In the region of the Mie scattering, sharp spikes com-
monly called MDRs appear in spectra of spontaneous emis-
sion, elastic and inelastic �fluorescent and Raman� scattering
�7�. The MDRs originate from resonant excitation of WGMs.
Under the resonance, just one term in each series of Eqs. �10�
and �11� exceeds the sum of the rest by orders of magnitude.
The dominant coefficient apl can be calculated analytically, if
one solves Bessel equations using the WKB approximation
�41�. The correspondent asymptotic expressions for the
Bessel functions applicable at large l read as �42�

�l�z� � ��� Ai���, �l��z� � − ��/� Ai���� , �13�

where z= l+ 1
2 −��, Ai is the Airy function, ��� 1

2
�l+ 1

2
��1/3,

����� l. For the Riccati-Hunkel function the Debye expan-
sion �42� can be applied,

l�y� � − ieT�1 +
i

2
e−2T��sinh ��−1/2, �14�

l��y� � ieT�1 −
i

2
e−2T��sinh ��1/2, �15�

where y= �l+ 1
2

� / cosh �, T= �l+ 1
2

���−tanh ��, T2/3�1.
If x is about a resonant size parameter xs, Mie coefficient

�12� expressed through functions �13�–�15� can be written in
the following form:

as = −
1

Qs0
� 1

Qs
− i2

x − xs

x
�−1

, �16�

where index s designates the set of quantum numbers p, l,
and the order q of a WGM,

xs =
1

nr
�l +

1

2
− tq� − nr

1−2p�nr
2 − 1�−1/2� , �17�

nr is the real part of the light refractive index, tq is the qth
root of the equation Ai�tq�=0. The quality factor Qs of the
mode s is expressed through the partial quality factors Qs0
and Qa,

1/Qs = 1/Qs0 + 1/Qa. �18�

Factor Qs0 is the radiative quality factor �41� that describes
radiative energy losses by a sphere of an ideal spherical
shape made of an ideal dielectric,
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Qs0 = 1
2xse

2Tnr
2p�nr

2 − 1�1/2, �19�

see a discussion of the accuracy of Eq. �19� in Ref. �24�. The
factor Qa takes into account the process of light absorption,
Qa=nr / �2ni�, where ni is the imaginary part of n.

Equation �16� is one of the prime original results of this
study. It permits to explain many features of the MDRs. For
instance, Eq. �16� gives as�xs�=−Qs /Qs0 at x=xs. On substi-
tuting the obtained real number into Eqs. �10� and �11� with
allowance of Eqs. �14� and �15�, the Purcell factors F and f
can be found. Namely, they become

F�a + 0� =
2

xs
2Qs

nr
3−2p

nr
2 − 1

. �20�

f�a + 0� =
2

xs
2Qs� nr

nr
2 − 1

+
p

nr
� , �21�

Disregarding the dependence of the above factors on nr and
p, one gets Eq. �6� for both quantities F and f .

Formulas �20� and �21� determine LDOS in the near-
surface region, at r=a+0. If the distance from the surface of
the sphere increases, the both quantities ��r� and �E�r� de-
crease approximately by an exponential law,

ln
��r�

��a + 0�
� ln

�E�r�
�E�a + 0�

�
4�

�
�nr

2 − 1�a − r� , �22�

where a�r�nra.

VI. NUMERIC EXAMPLES AND THEIR DISCUSSION

To illustrate the obtained relations, factor �21� was calcu-
lated for spheres with a refractive index n=1.5�1+ ı10−10�.
The highest possible value of the Q factor at such n is equal
to 5�109 close to a value Q=8�109 measured for fused-
silica microspheres in air �31�. The result of the calculation is
presented in Fig. 1�a�. The estimated factor f�a+0� can be as
large as 106–107. The effect that hampers the LDOS en-
hancement is light absorption that is extremely important at
Qa�Qs0.

It should be noted that Eq. �9� describes the acceleration
of the spontaneous transition in a local area. Despite the
great enhancement of LDOS, some MDRs shall be elimi-
nated from spectra of spontaneous emission, fluorescence,
and Raman scattering. If a dipole located outside of a sphere
radiates power �	�A then only power �	�R is detectable in
the far-field zone. The rest power shall be absorbed by the
sphere. In this paper, the ratio �= �R / �A is called the effi-
ciency of radiation of spontaneous emission.

In the framework of the classical electromagnetic theory
from Eqs. �6� and �7� of Ref. �16�, the normalized rate �R
= 1

3R�+ 2
3R� is found to be

�R
Av

=
1

2y2�
l=0

�

�2l + 1����l�y� + a0ll�y��2 +
l�l + 1�

y2 ��l�y�

+ a1ll�y��2 + ��l��y� + a1ll��y��2� . �23�

For the resonant emission, terms with a single coefficient as

are dominant in Eqs. �23� and �11�, and the relations
Re l

2�y��−�l�y��2 and Re�l��y��2�−�l��y��2 take place at y
near xs. The efficiency of radiation of mode s is hence ap-
proximately equal to

�s = −
�as�2

Re as
=

Qs

Qs0
. �24�

Here, the value of �s is independent of the distance r�a in
the range where approximations �14� and �15� are valid.
Thus, at Qa�Qs0 a weakly absorbing dielectric body cap-
tures almost all resonant emission from a neighboring
source. The efficiency identical to Eq. �24� has been found
for the resonant emission from electric dipoles located inside
a sphere, r�a �43�. The ratio Qs /Qs0 was also called the
mode efficiency �44�.

To show up the importance of light absorption let us cal-
culate � for WGMs of a fused-silica sphere. For the TM88

1

and TE88
1 modes values Qs0=0.92�1014 and Qs0=1.06

�1014 predicted by Eq. �19� are close to the ratios x /�x of
the values x and �x computed in Refs. �29,30�. If n
=1.5�1+ ı10−10�, the efficiency of radiation of these modes is
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FIG. 1. �a� Peak values of the normalized electric-field LDOS
predicted by Eq. �21� and �b� the normalized rate for the output
resonant spontaneous emission �R /Rv on the surface of a sphere
with a refractive index of 1.5 �1+ ı10−10� versus the resonant size
parameter xs. The TE ��� and TM ��� whispering-gallery modes of
five orders are taken into account.

VITALY V. DATSYUK PHYSICAL REVIEW A 75, 043820 �2007�

043820-4



��5�10−5. Such a feature should be allowed for in simu-
lations.

The calculated values of the resonant enhancement of the
rate �R is presented in Fig. 1�b�. According to Fig. 1, at
equal factors f only the mode with higher orders can be seen
in spectra of spontaneous emission from dipoles located on
sphere surfaces at x�70. Nevertheless, the lowest-order
mode should be dominant in lasing spectra �21�.

Let us briefly compare the predicted Purcell enhancement
with those found in other media. Current nanotechnologies
widely apply optical properties of noble-metal nanoparticles.
It is the LDOS enhancement that results in anomalous optical
processes such as surface-enhanced Raman scattering and
metal-enhanced fluorescence �see, for example, Refs.
�12,45,46��. It has been shown that decompositions in forms
of Eqs. �10� and �11� turn out to be unphysical for x in the
Rayleigh scattering range and ni�0 �47,48�. For example,
Eq. �11� predicts �→� on the surface of a noble-metal
sphere at x=0.2 �49� due to the unlimited contribution from
spherical harmonics of unbounded orders. However, a par-
ticle cannot be polarized by an electric field if a dimension of
the surface angular field oscillation is lower than a certain
microscopic value �47,50,51�. A consideration of space dis-
persion of the permittivity �by means of a dielectric function
depending on the light wave vector� has defined a cutoff
number lc of the multipole polarizabilities �50�. In practice,
only the TM1 mode sometimes called the Fröhlich mode
�giving rise to the dipolar plasmon polariton� was expected
to be the most important in single metal spheres at a
�20 nm �52�. For a single noble-metal nanosphere, the ulti-
mate value of the Purcell factor was thought to be 103 �45�.
�The factor of the electromagnetic SERS enhancement pro-
portional to f2 was hence in the range of six to seven orders
of magnitude �53�.� Thus, the Purcell factor characteristic for
single noble-metal nanospheres is much less than values f
=106–107 found for dielectric microspheres. Moreover, the
LDOS increases on the whole microparticle surface which is,
of course, much larger than that of a nanoparticle. However,
the enhancement occurs in narrow spectral intervals.

Recently, it has been demonstrated that toroidal micro-
cavities with WGMs are promising candidates for the imme-
diate use in strong-coupling CQED studies �8�. Letter �54�
reported Q=4�108 measured and Vm�180 �m3 calculated
for a toroid with a principle diameter of 29 �m and a minor
diameter of 6 �m at �=1.55 �m. According to Ref. �54�, an
inferred value of f in excess of 2�105 was over values ob-
tained at other cavity geometries.

This paper predicts even higher values of f . For example,
f�a+0�=7.0�106 at p=1, l=70, q=1 and n=1.5 �1
+ ı10−10�, according to Eq. �21�. One could find the Purcell
factor numerically directly from Eq. �11�. For good conver-
gence of the Mie series it required to take lmax=1.1 �z�+50
terms �55�, lmax=135 in the considered case. The resonant
frequency of the mode should be determined using a suffi-

cient number of the significant decimal digits, x
=51.799 860 733 7525 for the above example. In a numeric
calculation with the above parameters, it was established that
one term in the series of Eq. �11� is higher than the sum of
the rest in 6.7�106 times �this number remained constant if
lmax was increased in 100 times�. The normalized LDOS
computed from Eq. �11� was equal to �E /�v

E=6.3�106. In
this case, Qs=4.76�109 according to the numeric calcula-
tion and Qs�4.67�109 according to analytic Eqs. �18� and
�19�. Though the factor f is maximal for the given absorp-
tion, the efficiency of radiation �24� is low, �s=0.067 ac-
cording to Eqs. �18� and �19�.

The Purcell factor can be thought to consist of a spectral
energy density Qs and a spatial energy density 1/Vm �11�. It
is the high value of Qs that causes the large enhancement of
the LDOS. In addition, the morphology factor �3 / �4�2V� of
Eq. �1� turns out to be replaced by 2�2 / ��S� for the surface-
mode cavity. It is worth noting that this study has not yet
reported a record value of f�r�. The normalized LDOS at-
tains even higher maximum inside the sphere.

From Eqs. �3� and �5� it could be expected that f is
roughly proportional to the product of the factor Q�2 /S and
the mode degeneracy g=2l+1. Despite the common Eq. �3�,
the factor g is not present in the obtained Eq. �21�. Thus, the
algorithm of the calculation of f�r� proposed in this paper
has an advantage over intuitive estimates.

VII. CONCLUSION

This paper has, at first, introduced the space-dependent
Purcell factors through the resonant local densities of
electromagnetic- and electric-field states. Then, for studying
a spherical cavity, the asymptotic formula of the Mie coeffi-
cient applicable at resonant excitation of a WGM by an in-
cident plane wave has been derived allowing for light ab-
sorption. Owing to this formula, the peak values of LDOS
upon the surface of a micrometer-sized dielectric sphere have
been analytically calculated. The Purcell factor f�a+0� has
been found to be proportional to the product of two factors,
the cavity Q factor and the squared ratio of the wavelength to
the sphere diameter. The upper limit of f�a+0� of the order
of 107 has been evaluated for a realistic fused-silica micro-
sphere in air. The LDOS enhancement is constrained by the
process of light absorption within the cavity. This process
also reduces the efficiency of radiation of the resonant spon-
taneous emission even for dipoles located in the exterior of
the sphere.

The predicted factor f�a+0� is more than one order of
magnitude over the recently demonstrated Purcell factor of a
toroidal microcavity.
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