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We study both dynamical and steady responses of a coherently driven four-level tripod-type atomic system,
which may be either open or closed. With all three driving fields being on Raman resonance, this tripod system
can quickly evolve into a complicated steady dark state decoupled from both coherent and dissipative inter-
actions. In the open model, this tripod system is sensitive to all parameters in its dynamical evolution while the
steady dark state only depends on the initial population distribution and the relative Rabi frequency values. In
the closed model, however, relative values of spontaneous decay rates also play an important role in generating
the steady dark state. Analytical results based on the quantum jump theory show that the steady dark state is
always multiple �from twofold to sixfold� degenerate and usually comes into existence through both coherent
and incoherent superpositions.
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I. INTRODUCTION

In the past few decades, quantum coherence was shown to
be essential for many applications of multilevel quantum
systems driven by laser fields and have resulted in a lot of
interesting phenomena. Electromagnetically induced trans-
parency �EIT� �1,2�, stimulated Raman adiabatic passage
�STIRAP� �3,4�, subluminal and superluminal light propaga-
tion �5,6�, resonant enhancement of optical nonlinearity
�7–9�, spontaneous emission control �10–12�, switching be-
tween normal and anomalous dispersion �13–15�, and light
induced chiralty in a nonchiral medium �16� are a few ex-
amples demonstrating the significance of quantum coher-
ence. Besides the common atomic media, quantum coher-
ence based phenomena can also be realized in certain solid
media such as N-V color center materials �17,18�, rare-earth-
ion-doped crystals �19,20�, and low-dimension semiconduc-
tor nanostructures �21,22�. These solid materials are certainly
preferred for real applications due to the obvious advantages
of compactness and stability, absence of atomic diffusion,
simplicity and scalability during assembling, etc.

EIT is usually regarded as the basis of other quantum
phenomena mentioned above and thus of great importance
for modifying light-matter interactions. In a �-type EIT me-
dium, when all particles evolve into a dark state �23,24� de-
coupled from both coherent and dissipative interactions, the
cw driving fields �one probe and one coupling� can propagate
through them without loss. In particular, a weak probe pulse
can have an ultraslow group velocity due to the extremely
steep spectral dispersion, or become at rest by mapping its
quantum state onto collective atomic excitations as a result
of adiabatica modulation of the coupling field and vice versa
�25,26�. Disturbing weakly the EIT system to deviate a little
from the dark state by a third field, one can obtain the so-
called interacting double dark states, an ultranarrow spectral

line, and greatly enhanced nonlinear optical processes
�27–29�. But these interacting double dark states cannot be
simultaneously established because they correspond to dif-
ferent frequencies of the driving fields, and each of them has
the same structure or composition as in the typical � system.
So far the dark state in a � system is clear for us as a
coherent superposition of two ground levels determined just
by field Rabi frequencies, while those composed of three or
more ground levels in relatively complicated multilevel
quantum systems are not well examined or identified yet.

In this paper, we will try to derive the general analytical
expression for the dark states in a coherently driven tripod-
type atomic system, a good candidate for exploring effective
approaches to problems on dark states involving more than
two ground levels. It has been shown that there may exist
two degenerate dark states in the tripod system and adiabatic
transitions between them may give rise to rich and compli-
cated dynamics �30–32�. Aiming at the tripod system, Unan-
yan et al. described an efficient and robust technique for
creating and probing an arbitrary coherent superposition of
two atomic states �30�, which was experimentally demon-
strated by Vewinger et al. later on �31�. Paspalakis et al.
investigated instead the pulse propagation dynamics in a co-
herently prepared tripod system and showed that a single
incident pulse could parametrically generate two additional
pulses �33�. Mazets further extended their work to the adia-
batic regime and found two different modes �one slow and
one fast� of shape-preserving pulse propagation �32�. The
tripod system may also be used, as suggested by Rebic et al.
�34�, to realize a polarization quantum phase gate via coher-
ently enhanced cross-Kerr nonlinearity. Last but not least,
Petrosyan and Malakyan showed that optically dense vapors
of tripod atoms could support ultrasensitive magneto-optical
polarization rotation and entanglement of orthogonally polar-
ized quantum fields �35�. To the best of our knowledge, how-
ever, no one has investigated the dynamical evolution of a
tripod system from different initial states toward diverse
steady dark states and how dark states of a tripod system*Corresponding author. Email address: wujinhui0431@sina.com
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depend on various parameters besides Rabi frequencies.
We first consider an open model where excited atoms only

spontaneously decay to an external level of the tripod sys-
tem. By numerical calculations based on the density matrix
formalism, we find that the open system cannot definitely
evolve into a simple dark state with two ground levels when
two of the driving fields are on Raman resonance. If all driv-
ing fields are on two-photon resonance, however, a compli-
cated dark state consisting of three ground levels will be
established leading to a part of the population reserved in the
open system. This complicated dark state depends critically
on Rabi frequencies of the driving fields as well as the initial
population distribution, but is irrelevant to field detunings
and the outward spontaneous decay rate. Via the quantum
jump method �36,37�, we have derived the exact analytical
expression for this complicated dark state and also deter-
mined the population loss as a result of spontaneous decay,
which are consistent with the numerical calculations. Our
analytical results reveal that this complicated dark state is a
coherent superposition of two simple dark state when all
atoms are initially at a single ground level, but in general it is
contributed by all three simple dark states both coherently
and incoherently. Using the same numerical and analytical
methods, we then alternatively investigate the closed model
where spontaneous emission occurs only toward internal lev-
els of the tripod system. Numerical results show that the
internal spontaneous decay rates can also alter the compli-
cated dark state corresponding to three resonant fields having
the same detunings, and the closed system will surely de-
velop into a simple dark state in the case of two driving
fields being on Raman resonance. These distinct characteris-
tics relative to the open model can be attributed to the ran-
dom population redistribution resulted from the internal
spontaneous emission. Analytical results indicate that the
complicated dark state is always superposed by all three
simple dark states in both coherent and incoherent ways, and
its structure is determined by the initial population distribu-
tion, relative values of Rabi frequencies, and relative values
of spontaneous decay rates.

This paper is organized as follows. In Sec. II we describe
our considered atomic system interacting with coherent fields
and derive density matrix equations governing its dynamical
evolution. In Sec. III, we discuss the generation of multiple
degenerate dark states in an open model via both numerical
simulations and quantum jump analysis. Section IV is de-
voted to the opposite closed tripod model where the same
topic is examined again with quite different results yielded.
Our conclusions are finally summarized in Sec. V.

II. THE TRIPOD SYSTEM AND DENSITY
MATRIX EQUATIONS

We consider a coherently driven four-level atomic system
in the tripod configuration as shown by Fig. 1, which has one
excited level and three ground levels. The excited level �3� is
coupled to the ground levels �0�, �1�, and �2� by three laser

fields with carrier frequencies �amplitudes� �0 �E� 0�, �1 �E� 1�,
and �2 �E� 2�. �0=�0−�30, �1=�1−�31, and �2=�2−�32 are

one-photon detunings of the three driving fields from respec-
tive dipole-allowed optical transitions. Atoms at level �3� de-
cay via spontaneous emission to levels �0�, �1�, �2�, and the
outside levels �not shown here� at rates 2�0, 2�1, 2�2, and
2�3, respectively. Simply setting �3=0 or �0=�1=�2=0, we
can make the tripod system either completely closed or
purely open.

Under the rotating-wave and electric-dipole approxima-
tions, with the assumption of �=1, we can write the interac-
tion Hamiltonian in the interaction picture as

HI = �
0 0 0 − �0

*

0 �1 − �0 0 − �1
*

0 0 �2 − �0 − �2
*

− �0 − �1 − �2 − �0

� �1�

where �0=E� 0 ·d�03/2, �1=E� 1 ·d�13/2, and �2=E� 2 ·d�23/2 de-

note Rabi frequencies of the respective laser fields. d�03, d�13,

and d�23 are dipole matrix elements on the optical transitions
labeled �0�↔ �3�, �1�↔ �3�, and �2�↔ �3�, respectively.

To examine both transient and steady responses of the
tripod-type atomic system to the three driving fields, we
should resort to the well-known density matrix formalism.
By the standard procedures �38�, we can derive from Eq. �1�
and ��

�t =−i�HI ,��+�� the following density matrix equations

��00

�t
= 2�0�33 + i�0

*�30 − i�0�03,

��11

�t
= 2�1�33 + i�1

*�31 − i�1�13,

��22

�t
= 2�2�33 + i�2

*�32 − i�2�23,

��33

�t
= − 2�3�33 −

��00

�t
−

��11

�t
−

��22

�t
,

��01

�t
= − i��0 − �1��01 + i�0

*�31 − i�1�03,

��02

�t
= − i��0 − �2��02 + i�0

*�32 − i�2�03,

22γ12γ02γ

2∆

32γ

0∆ 1∆
3

2ω
1ω

0ω
2

1
0

FIG. 1. Schematic diagram of a four-level tripod-type atomic
system driven by three coherent laser fields.
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��12

�t
= − i��1 − �2��12 + i�1

*�32 − i�2�13,

��03

�t
= − �̃03�03 − i�1

*�01 − i�2
*�02 + i�0

*��33 − �00� ,

��13

�t
= − �̃13�13 − i�0

*�10 − i�2
*�12 + i�1

*��33 − �11� ,

��23

�t
= − �̃23�23 − i�0

*�20 − i�1
*�21 + i�2

*��33 − �22� , �2�

where �̃i3= i�i+�i3 with �i3=�0+�1+�2+�3 denoting the
dephasing rate on transition �i�↔ �3�. We note that the popu-
lation conservation formula �00+�11+�22+�33=1 is not valid
again if �3�0, although above density matrix equations are
still constrained by the Hermitian relation �ij =� ji

* .
From Eqs. �2� we find that, in the case of �0=�1=�2

=� �i.e., all three driving fields have the same one-photon
detunings�, the tripod system will finally evolve into a steady
state ���	�� where all density matrix elements related to
level �3� become zero while others should satisfy

�0�00�	� + �1�01�	� + �2�02�	� = 0,

�0�10�	� + �1�11�	� + �2�12�	� = 0,

�0�20�	� + �1�21�	� + �2�22�	� = 0. �3�

It is clear that the steady state ���	�� is irrelevant to level
�3�, i.e., decoupled from the spontaneous emission processes,
so we can view it as a dark state �a nonabsorbing state�. We
cannot obtain analytical solutions for �ij�	� and thus exactly
define this dark state just from Eqs. �3�, which implies that
the dark state may depend on other parameters, such as the
initial population distribution and spontaneous decay rates,
besides Rabi frequencies of the driving fields. In the next two
sections, assuming the Rabi frequencies are real valued with-
out loss of generality, we will first check how the tripod
system evolves from a certain initial state into the final
steady dark state by numerical simulations based on Eqs. �2�,
and then try to obtain the exact expression of the steady dark
state for different initial atomic conditions and spontaneous
decay rates via appropriate analytical methods.

III. DARK STATES IN THE OPEN TRIPOD MODEL

Here we focus on the relatively simple case of �0=�1
=�2=0, i.e., excited atoms only spontaneously decay to lev-
els outside of the tripod system. Just for simplicity, we as-
sume in the following that atoms at level �3� decay to a
single outside level �f�.

Under the specific initial population condition �00�0�=1,
we plot the dynamical evolution of atomic population and
coherence for some parameters in Fig. 2 and Fig. 3, respec-
tively. As can be seen from Figs. 2�a� and 3�a�, all atoms will
decay to the external level �f� after a short damped oscilla-
tion and no population can be trapped in the tripod system if

�0��1��2. But when �0=�1��2, partial population trap-
ping is realized, leading to some atoms coherently reserved
at levels �0� and �1� �see Figs. 2�b� and 3�b��. The dark state
for trapped atoms is depicted by ���	��= ��1�0�
−�0�1�� /	�0

2+�1
2 as in a � model, which can be confirmed

by �00�	� :�11�	�=�1
2 :�0

2 and �01�	�=−	�00�	��11�	�.
Contrary to our intuition, coherent population trapping can-
not be achieved for �0��1=�2 �see Figs. 2�c� and 3�c��.
This can be understood as follows: atoms at level �0� cannot
evolve into ���	��= ��2�1�−�1�2�� /	�1

2+�2
2, a dark state

composed of levels �1� and �2�, before they spontaneously
decay to �1� or �2� and simultaneously become dephased with
�0�, which is unfortunately forbidden here. If all driving
fields are on two-photon resonance, we find from Figs. 2�d�
and 3�d� that much more population can be trapped in the
tripod system and the dark state becomes ���	��=a0�0�
+a1�1�+a2�2� with ai undetermined yet. Although
�ii�	� :� j j�	�=� j

2 :�i
2 is not true again, we note that the for-

mula �0i�	�=−	�00�	��ii�	� still holds true for levels �1�
and �2�, which is a signal for ���	�� being purely coherent.

FIG. 2. �Color online� Dynamical evolution of atomic popula-
tion at the ground levels with �0=�1=�2=0, �3=1.5�, �0=�1

=2.0�, �2=1.0�, �00�0�=1.0, and �11�0�=�22�0�=�33�0�=0.0.
Solid curves—�00; dashed curves—�11; dash-dotted curves—�22.

FIG. 3. �Color online� Dynamical evolution of atomic coherence
at the ground levels with the same parameters as in Fig. 2. Thick
solid, dashed, dash-dotted curves—Re��01�, Re��02�, Re��12�; thin
solid, dashed, dash-dotted curves—Im��01�, Im��02�, Im��12�.
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In Fig. 4 and Fig. 5, we further investigate the dark state
with �0=�1=�2=� under another initial population condi-
tion �00�0�=0.5 and �11�0�=�22�0�=0.25. From Figs. 4�a�
and 5�a�, we can see that different initial population distribu-
tions will surely lead to distinct steady dark states. Just
modulating the one-photon detuning �, we find from Figs.
4�b� and 5�b� that the tripod system finally evolves into the
same dark state as in Figs. 4�a� and 5�a�, though the dynami-
cal evolution process becomes a little different. Figures 4�c�
and 5�c� further show that the steady dark state and the popu-
lation loss rate, defined as �1−
0

3�ii�	��, do not depend on
the unique spontaneous decay rate 2�3. Figures 4�d� and 5�d�
clearly demonstrates that, however, one can greatly modify
the steady dark state by changing Rabi frequencies of the
driving fields. Moreover, we remark that the formula �ij�	�
=−	�ii�	�� j j�	� does not work again, which indicates that

the steady dark state ���	�� be a partial coherent one involv-
ing incoherent interaction.

So far we have obtained some qualitative information
about dark states in the open tripod system. To achieve a
much deeper physical insight, we now try to obtain their
exact solutions via analytical methods. One straightforward
method is to diagonalize the interaction Hamiltonian and find
its eigenstates having zero eigenvalues. The Hamiltonian
shown by Eq. �1� has two null eigenvalues when �0=�1
=�2, which implies that the corresponding dark state can be
twofold degenerate. Meanwhile, probability amplitudes ai�	�
should satisfy

�0a0�	� + �1a1�	� + �2a2�	� = 0 �4�

for the two degenerate dark states.
The tripod system can be regarded as three partially over-

lapped subsystems in the � configuration, whose dark states
are respectively given by

��0� = ��2�1� − �1�2��/	�1
2 + �2

2,

��1� = ��0�2� − �2�0��/	�0
2 + �2

2,

��2� = ��1�0� − �0�1��/	�0
2 + �1

2. �5�

Choosing ��i� as one of the two possible dark states because
they fulfill Eq. �4�, we can obtain the other one limited by the
orthogonality requirement 
�i ��i�=0 as

��0� = ���1
2 + �2

2��0� − �0�1�1� − �0�2�2��/�A
2 ,

��1� = ���0
2 + �2

2��1� − �1�0�0� − �1�2�2��/�B
2 ,

��2� = ���0
2 + �1

2��2� − �2�0�0� − �2�1�1��/�C
2 , �6�

with �A,B,C
2 =	�2��1,0,0

2 +�2,2,1
2 � and the effective Rabi fre-

quency �=	�0
2+�1

2+�2
2. It is straightforward to find that

��0� is a coherent superposition of ��1� and ��2�, i.e.,

��0� = ��1
	�0

2 + �1
2��2� − �2

	�0
2 + �2

2��1��/�A
2 , �7�

and similar results can be obtained for ��1� and ��2�. These
results are clearly shown by the three-dimensional vector-
graphs in Fig. 6, where two of the bare state vectors generate
a nondegenerate dark state vector, e.g., �1� and �2� generate
��0�, and two of the nondegenerate dark state vectors further
produce a twofold degenerate dark state vector, e.g., ��1� and
��2� produce ��0�.

Currently we have found three pairs of orthogonal dark
states ��i� and ��i�, but their superposition way to generate
the final dark state ���	�� is not clear for us yet. To solve
this problem and determine how much population is lost
through spontaneous emission, we can resort to the quantum
jump approach �36,37�, a poweful tool for distinguishing be-
tween coherent oscillation and dissipative processes.

Using a full quantum description, we can group the
“atom+laser” system into manifolds 
�N0 ,N1 ,N2� composed
of four quasidegenerate states �see Fig. 7�a��:

FIG. 4. �Color online� Dynamical evolution of atomic popula-
tion at the ground levels with �00�0�=0.5, �11�0�=�22�0�=0.25, and
�33�0�=0.0. Other parameters, if not shown, are the same as in Fig.
2�d�. Solid curves—�00; dashed curves—�11; dash-dotted curves—
�22. In Fig. 4�d�, curves for �11 and �22 fully overlap due to the
symmetrical parameters.

FIG. 5. �Color online� Dynamical evolution of atomic coherence
at the ground levels with the same parameters as in Fig. 4. Thick
solid, dashed, dash-dotted curves—Re��01�, Re��02�, Re��12�; thin
solid, dashed, dash-dotted curves—Im��01�, Im��02�, Im��12�. In
Fig. 5�d�, curves for Re��01� and Re��02� fully overlap due to the
symmetrical parameters. We also note Im��01�=Im��02�=Im��12�
�0 when �=0.
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�N0,N1,N2� = ��3,N0,N1,N2�, �0,N0 + 1,N1,N2�, �1,N0,N1

+ 1,N2�, �2,N0,N1,N2 + 1�
 , �8�

with Ni denoting photon numbers of laser field �i. Within a
certain manifold, one atom can be transferred from a ground
level �i� to the excited level �3� by absorbing a �i photon or
directly to another ground level �j� by simultaneously emit-
ting a second � j photon. In the absence of spontaneous emis-
sion, this reversible coherent oscillation can never stop and
the “atom+laser” system will remain forever in the initial
manifold. Only when the atom randomly decays to the ex-
ternal level �f�, can the “atom+laser” system stops its coher-
ent evolution by jumping into the decoupled state �f ,0 ,0 ,0�,

so the initial state of a quantum jump must be level �3�.
Consequently, there are three possible coherent periods char-
acterized by the entry state �i� and the exit state �j�: period
�0,3�, period �1,3�, and period �2,3�. The dynamical evolution
of atomic states within a manifold is governed by an effec-
tive non-Hermitian Hamiltonian Hef f, which is of the same
form as Eq. �1� except the last element −�0 should be re-
placed by −�0− i�3. From Hef f, one can calculate the prob-
ability amplitude cij���= 
j�exp�−iHef f���i� for finding an
atom in state �j� of 
�N0 ,N1 ,N2� at time t+� given that it is
in state �i� of the same manifold at time t. Multiplying
�cij����2 by 2�3d� then gives the conditional probability

Wij���d� = 2�3�cij����2d� �9�

that the system leaves 
�N0 ,N1 ,N2� by a quantum jump from
�j� at the time interval d�. The Schrödinger equation associ-
ated with Hef f leads to the following differential equations:

�ci0���
��

= − i�0ci3��� ,

�ci1���
��

= − i��0 − �1�ci1��� − i�1ci3��� ,

�ci2���
��

= − i��0 − �2�ci3��� − i�2ci3��� ,

�ci3���
��

= − �̃3ci3��� − i�0ci0��� − i�1ci1��� − i�2ci2��� ,

�10�

with �̃3=�3+ i�0. Under the two-photon resonance condition
of �0=�1=�2=�, one can find from Eq. �10� by integration
that

�
0

	

�ci3����2d� =
1

2�3

�i
2

�2 , �11�

which clearly does not depend on the common one-photon
detuning �.

For our purpose, two important quantities are P�i� and
P�j � i�, the probability of a coherent period starting at level
�i� and the conditional probability of such a period ending at
�j�. In the open model, atoms can only spontaneously decay
to the external level �f�, the atoms decayed to �f� cannot go
back to the tripod system again, and there is no population
exchange among the internal levels via spontaneous emis-
sion, so the probability P�i� is just determined by the initial
population at level �i�, i.e., we have P�i���ii�0�. Also due to
the outward spontaneous emission, atoms cannot evolve into
state ��i� if they are initially at level �i�. As an example, we
consider level �0� and state ��0�. Since ��0� is a coherent
superposition of �1� and �2�, atoms initially at �0� have to first
become decoupled with �0� by spontaneously decaying to �1�
or �2� before they can coherently go into ��0�. Unfortunately,
the inward spontaneous decay is forbidden here so that atoms
initially at �0� can only evolve into ��1� and ��2� with a
coherent component of �0�. Because both ��1� and ��2� have

0

1

2

2Θ

1Θ

0Θ

(a)

2Θ

0Θ

1Θ

(b) 2Φ

1Φ

0Φ

FIG. 6. �Color online� Three-dimensional schematic diagram of
�a� the nondegenerate dark states ��i� in the basis of the orthogonal
bare states �0�, �1�, and �2�; �b� the twofold degenerate dark states
��i� as a coherent superposition of the nonorthogonal dressed states
��0�, ��1�, and ��2�.

(a)

),,( 210 NNNξ

210 ,,1,0 NNN +

210 ,1,,1 NNN +

210 ,,,3 NNN

0Ω
2Ω1Ω
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32γ
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(b)
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210 ,,1,0 NNN +

210 ,1,,1 NNN +
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0Ω
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),1,( 210 NNN −ξ
210 ,,,1 NNN

),,1( 210 NNN −ξ

02γ

210 ,,,0 NNN

22γ

)1,,( 210 −NNNξ
210 ,,,2 NNN

FIG. 7. Different manifolds of the “atom+laser” system and the
allowed quantum jumps. Coherent evolutions in a manifold are
characterized by Rabi frequencies while dissipative quantum jumps
are denoted by spontaneous decay rates. Here �a� refers to an open
tripod system while �b� is for a closed tripod system. State
�f ,0 ,0 ,0� denotes that atoms at the external level �f� are completely
decoupled from the three driving fields.
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a coherent component of ��0�, it is straightforward to say
that atoms initially at �0� also cannot evolve into ��1� and
��2� since the atomic evolution toward ��0� is forbidden.
Thus the steady dark state must be ���	��=x0��0� with �x0�2
�1− �x0�2� being the totally trapped �lost� population if all
atoms are initially at �0�. In more general cases where
�ii�0��0 for i� �0,2�, we have instead

���	�� = x0��0� + x1��1� + x2��2� , �12�

with �xi�2 being the population coherently trapped in ��i�.
Noting that all atoms trapped in ��i� comes from those ini-
tially at �i� and atoms initially at different ground levels are
completely uncorrelated in phases of their probability ampli-
tudes, we can judge that phases of the complex parameters xi
change with time independently and randomly, which means
that Eq. �12� should be constrained by


xixj
*� = �xi�2�ij �13�

with 
xixj
*� being the measurable time-average result of xixj

*.
Equation �13� implies that ���	�� be the incoherent super-
position of ��0�, ��1�, and ��2� and the coherece between
any two of these dark states be exactly zero even if all xi are
nonzero. This fact allows us to treat xi as real-valued param-
eters in the following discussion because phases of xi are
unimportant and meaningless. According to the definitions of
P�i� and P�j � i�, one can easily find that

xi = 	P�i��1 − P�3�i�� . �14�

The conditional probability P�3 � i�, which is just equal to the
population loss rate for atoms initially at level �i�, is given
from Eqs. �9� and �11� by

P�3�i� = �
0

	

Wi3���d� =
�i

2

�2 , �15�

which together with Eq. �14� is consistent with numerical
calculations in Fig. 2 and Fig. 4 as far as the steady popula-
tion loss is concerned. Based on the above analysis, we fi-
nally derive the steady dark state,

���	�� = �
i=0

2 	��2 − �i
2

�2 ��ii�0���i� , �16�

as an incoherent superposition of the three twofold degener-
ate dark states ��i�. That is, ���	�� is a sixfold degenerate
dark state in general because it has six degenerate compo-
nents ��i� �note that each ��i� appears twice in ���	��� con-
nected via coherent or incoherent interactions. Clearly,
���	�� only depends on relative values �not absolute values�
of Rabi frequencies �i and the initial population distribution
�ii�0�, but is irrelevant to the spontaneous decay rate 2�3 and
the common one-photon detuning �. From Eqs. �6�, �13�,
and �16�, we can futher obtain

�00�	� =
�00�0���1

2 + �2
2�2 + �0

2��11�0��1
2 + �22�0��2

2�
�4 ,

�11�	� =
�11�0���0

2 + �2
2�2 + �1

2��00�0��0
2 + �22�0��2

2�
�4 ,

�22�	� =
�22�0���0

2 + �1
2�2 + �2

2��00�0��0
2 + �11�0��1

2�
�4 ,

�01�	� =
− �0�1�
i=0,1��ii�0���2 − �i

2�� − �22�0��2
2


�4 ,

�02�	� =
− �0�2�
i=0,2��ii�0���2 − �i

2�� − �11�0��1
2


�4 ,

�12�	� =
− �1�2�
i=1,2��ii�0���2 − �i

2�� − �00�0��0
2


�4 ,

�17�

for atomic population and coherence in the steady state.
These analytical results are fully consistent with the numeri-
cal calculations shown in Fig. 4 and Fig. 5. The clear dem-
onstration of Eqs. �16� and �17� provides us an opportunity to
well design and manipulate the final dark state of an open
tripod-type atomic system.

IV. DARK STATES IN THE CLOSED TRIPOD MODEL

Now we consider an alternative tripod system where ex-
cited atoms only decay to the internal ground levels via
spontaneous emission. As in the last section, we first try to
obtain some qualitative informations about dark states in the
closed model by numerical calculations.

From Fig. 8 we can see that, quite different from the open
model, coherent population trapping always can be realized
when two driving fields are on Raman resonance. The relev-
ent simple dark states are just given by ��2� and ��0�
as in a � model. Since no incoherent superposition is in-
volved, it goes without saying that the formulas �01�	�
=−	�00�	��11�	� and �12�	�=−	�11�	��22�	� are also right
here. The fact that atoms can go into the dark state ��0� even
if they are initially at level �0� is due to the population redis-

FIG. 8. �Color online� Dynamical evolution of atomic popula-
tion and coherence at the ground levels with �0=�1=�2=1.0�, �3

=0.0, �0=2.0�, �1=2.5�, �2=1.5� �00�0�=1.0, and �11�0�
=�22�0�=�33�0�=0.0. Thick solid, dashed, dotted curves—�00 and
Re��01�, �11 and Re��02�, �22 and Re��12�; thin solid, dashed, dash-
dotted curves—Im��01�, Im��02�, Im��12�.
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tribution among the ground levels resulted from the inward
spontaneous emission. That is, atoms pumped to level �3�
from level �0� by field �0 can spontaneously decay to the
other two ground levels and simultaneously become decou-
pled with level �0�.

Figures 9 and 10 further show that, when all three driving
fields are on Raman resonance, Rabi frequencies, spontane-
ous decay rates, and the initial population distribution all
have important influence on the steady dark state ���	��.
Also due to the population redistribution resulted from spon-
taneous emission, the formula �ij�	�=−	�ii�	�� j j�	� is al-
ways false even if all atoms are initially at a single ground
level �i�. These facts imply that the final dark state be con-
tributed by the three ground leves in a more complicated way
involving both coherent and incoherent superpositions.

To obtain the exact solution for this complicated dark
state, we should use the same analytical methods as shown in
Sec. III, by which we know that the steady dark state is still
contributed by the three dark states ��i� �see Eqs. �6�� via the
way shown in Eq. �12�. Here a reasonable assumption has
been made that atoms intially at level �0� can only directly

evolve into ��0� but never directly into ��0�. To go in ��0�,
they have to first spontaneously decay to another ground
level, e.g., �1� �or �2��, and then coherently evolve into ��1�
�or ��2�� as a coherent superposition of ��0� and ��2� �or
��1��. Similar conclusions hold true for the simple dark
states ��1� and ��2�. Thus there should be completely ran-
dom and independent phase relations among the complex
parameters xi so that we still have 
xixj

*�= �xi�2�ij as shown by
Eq. �13� and can assume xi real valued. Applying the quan-
tum jump approach to the closed tripod model, we can fur-
ther make sure how xi depends on the various parameters
such as Rabi frequencies and spontaneous decay rates.

As in the open tripod model, atoms coherently oscillate
among the four quasidegenerate states of a manifold

�N0 ,N1 ,N2� by absorbing or emitting coupled photons of
the driving fields. When spontaneous emission occurs from
level �3�, the “atom+laser” system then stops its coherent
evolution by jumping into a neighboring manifold, e.g.,

�N0−1 ,N1 ,N2� and 
�N0 ,N1−1 ,N2� �see Fig. 7�b��. In this
way, the final state of a coherent evolution, i.e., the initial
state of a quantum jump, must be level �3�. Therefore there
are three different coherent periods in each manifold answer-
ing for a change in the coupled photon numbers: period �0,
3� with �N0=−1, period �1, 3� with �N1=−1, and period �2,
3� with �N2=−1. In the case of �0=�1=�2=�, the condi-
tional probability P�3 � i�, which is just equal to the popula-
tion redistribution rate for atoms initially at �i�, is still gov-
erned by Eq. �15�. The probability P�i�, however, becomes
related to the spontaneous decay rates �i because atoms can
go from one ground level to another one via quantum jump
and thus begin a new coherent period there. Defining
Q�in: j / in: i� as the conditional probability of a coherent pe-
riod starting from �j� given that the previous one has started
from �i�, we have

P�j� = 
i=0
2 �P�i�Q�in:j/in:i�� ,

Q�in:j/in:i� = � j/�3, �18�

with �3 being redefined as �3=�0+�1+�2 for the closed tri-
pod model. Using the normalization condition 
i=0

2 P�i�=1,
we finally find from Eq. �18� that

P�j� = � j/�3, �19�

which shows that P�j� and Q�in: j / in: i� have the same val-
ues for the closed tripod system. We note that it is not the
case for a closed atomic system having two or more excited
levels �39,40�.

For atoms initially at level �i�, after the first round of
quantum jump, the population coherently trapped in the dark
state �� j� �that experiences no spontaneous decay� becomes
�ij�1− P�3 � i���ii�0�, while the population randomly distrib-
uted at level �j� in the opposite bright state �that suffers spon-
taneous decay once� is P�j�P�3 � i��ii�0�. Extended to the sec-
ond round of quantum jump, the trapped population in �� j�
becomes

xj
2 = �1 − P�3�j���ii�0���ij + P�j�P�3�i�� �20�

with that still reserved in the bright state being

FIG. 9. �Color online� Dynamical evolution of atomic popula-
tion at the ground levels. Other parameters, if not shown, are the
same as in Fig. 8, except �0=�1=�2=0.0. Solid curves—�00;
dashed curves—�11; dash-dotted curves—�22.

FIG. 10. �Color online� Dynamical evolution of atomic coher-
ence at the ground levels with the same parameters as in Fig. 9.
Thick solid, dashed, dash-dotted curves—Re��01�, Re��02�, Re��12�;
thin solid curves—Im��01�, Im��02�, and Im��12�.
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yj
2 = 
i=0

2 �P�j�P�3�k�P�k�P�3�i��ii�0�� �21�

for the respective ground levels �j�. In fact, after each round
of quantum jump, �1− P�3 � i�� of the total population remain-
ing at level �i� in the bright state evolves into the opposite
dark state ��i� with P�j� of the residual population being
distributed at level �j� in the bright state. Under this consid-
eration, we finally obtain our concerned real parameters xj as

xj = 	�1 − P�3�j���� j0 + P�j�P�3�0�/�� �22�

after infinite rounds of quantum jumps when �ii�0�=�i0. Here
the normalization factor �=
 j=0

2 P�j��1− P�3 � j�� can be eas-
ily derived from the unitary requirement � jxj

2=1.
For more general cases where all ground levels have non-

zero population ��ii�0��0 if i�3�, we obtain instead

xj = 	�1 − P�3�j���� j j�0� + P�j�
i=0
2 ��ii�0�P�3�i��/�
 .

�23�

From Eqs. �6�, �12�, and �23�, we can exactly define the
sixfold degenerate dark state ���	�� as a mixture of both
coherent and incoherent superpositions of the simplest dark
states ��i� for the closed tripod model. Equation �23� can be
further written in a much clearer form as

xj =	�2 − � j
2

�2 �� j j�0� +
� j
i=0

2 ��ii�0��i
2�


i=0
2 ��i��2 − �i

2��� . �24�

It is clear that this sixfold degenerate dark state strongly
depends on the initial population distribution, and is also
sensitive to the relative values of field Rabi fequencies and
spontaneous decay rates. Considering the restriction depicted
by Eq. �13�, we can easily obtain analytical expressions for
population distribution �ii�	� and atomic coherernce �ij�	�
in the steady state. These analytical expressions �not shown
here due to their lengthy and complicated appearance� com-
pletely accord with numerical calcualtions demonstrated in
Fig. 9 and Fig. 10. Thus according to above analytical re-
sults, we can easily achieve a preferred multiple degenerate
dark state by modulating strengths of the driving fields when
spontaneous decay rates and the initial population distribu-
tion are known.

A real tripod system can be either ultracold atoms in a
magneto-optical trap �MOT� or rare-earth-ion-doped crystals
in a cryogenerator such as Er3+: yttrium aluminum garnet
�YAG� and Pr3+:YSO �Y2SiO5 crystal� �19�. For instance, we
can utilize the magnetic sublevels of states �5S1/2 ,F=1� and
�5P3/2 ,F=0� of cold 87Rb atoms to construct the tripod
scheme shown in Fig. 1. In this case, we have �0=�1=�2
=1.0 MHz as a result of the equal branching ratio of the
spontaneous decay rate from �5S1/2 ,F=1� to �5P3/2 ,F=0�. To
ensure that each field only acts on one transition, here we
should use three laser beams with left circular ��−�, linear
���, and right circular ��+� polarizations, respectively. The
degeneracy of state �5S1/2 ,F=1� can be lifted by a magnetic
field with moderate strength, and a magnetic field of B
=10 G will cause a Zeeman splitting of ��=7.0 MHz be-
tween adjacent magnetic sublevels of �5S1/2 ,F=1�. Detailed
informations of a sixfold degenerate dark state ���	�� can-

not be examined directly in experiment, but can be inferred
from the accessible ground state population and coherence
�see Fig. 11� based on our analytical solutions. Fixing the
ratio of field strengths and then decreasing them adiabati-
cally to zero, one can obtain a specific partial coherent dark
state of 87Rb atoms with its structure determined by Eqs. �6�,
�12�, and �24�. Such a medium, when interacting with an
incident laser pulse, can parametrically generate two addi-
tional light pulses �33�, which are strongly dependent on the
ground state population and coherence. Consequently, the
parametric generation process may allow us to derive useful
informations about the partial coherent and sixfold degener-
ate dark state.

V. CONCLUSION

In summary, we have investigated both dynamical and
steady responses of a tripod-type atomic system to the ap-
plied laser fields, and analyzed how simple dark states hav-
ing two ground levels contribute to generate the multiple
degenerate steady dark state in a complicated way. The tri-
pod system can be either open or closed depending on where
atoms at the only excited level spontaneously decay. Numeri-
cal calculations based on density matrix equations show that
the dynamical evolution of the tripod system depends criti-
cally on all involved parameters. Analytical results via the
quantum jump method bring out the exact solutions of the
steady dark state when all driving fields are on two-photon
resonance, which is a function of the initial population dis-
tribution, field Rabi frequencies, and inward spontaneous de-
cay rates. In particular, the dark state in an open tripod model
is twofold degenerate and completely coherent if all atoms
are initially at a single ground level, but becomes sixfold
degenerate and partially coherent provided that all ground
levels have nonzero population at the initial time. For the
alternative closed model, the steady dark state is always six-
fold degenerate no matter what the initial population distri-
bution is. This distinct phenomenon can be attributed to the
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FIG. 11. �Color online� Steady population and coherence of cold
87Rb atoms vs �0 with �0=�1=�2=1.0 MHz, �1=2.0 MHz, �2

=1.0 MHz, and �0=�1=�2. Solid curves—�00 and �01; dashed
curves—�11 and �01; dash-dotted curves—�22 and �12.
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random population redistribution among the ground levels
via the inward spontaneous emission. The exact identifica-
tion of the steady dark state may allow us to manipulate and
control it in a flexible and reliable way.

Our analytical methods can also be easily extended to
explore the general expressions of dark states in other com-
plicated atomic systems, e.g., a five-level M-type system
�41,42�. We expect that the explicit analytical results about
multiple degenerate dark states be instructive for the prepa-
ration of an arbitrary superposition of bare atomic states, and
have potential applications in quantum nonlinear optics and
multichannel quantum information processing based on
dark-state polaritons �43,44�. Finally, we note that some

analysis of the dark states with many ground levels in EIT-
like systems has been done in the context of decoherence-
free subspaces �45�.
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