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We obtain an analytical expression for two-photon correlation G�2� from two atoms driven in a double-
Raman �or �� configuration where collective effects such as superradiant, subradiant, and dipole-dipole inter-
action are included. It is found that the collective effects on the G�2� can be quenched to some extent by a
resonant control laser field. The collective effects provide features via G�2� that enable the two atoms to be
resolved at subwavelength separation. We also identify an effect in the double Raman scheme due to the
collective effects and the control field, i.e., the Stokes and anti-Stokes frequencies are increased by fourfold.
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I. INTRODUCTION

It is known that correlated multiphoton detection scheme
enhances the resolving power of two point sources, for ex-
ample, by using Glauber’s two-photon correlation G�2� �1�.
Subwavelength resolution using interference of classical
thermal light has recently been reported �2�. Nonclassical
light is also capable of providing an enhancement factor. In
particular, the Raman-EIT �electromagnetic induced trans-
parency� scheme �Fig. 1� which shows photon antibunching
and quantum interference �3� can be used to resolve two
atoms as close as � /8 by measuring the two-photon correla-
tion in an interferometric setup �5�. However, at subwave-
length distance, the presence of collective phenomena
�superradiant and subradiant� via dipole-dipole interaction
due to vacuum fields �6� may invalidate the approximate
analysis based on the summing of two-photon amplitudes
� j �j=1,2� of two independent atoms, i.e., �1+�2. The two-
atom system �of Fig. 1� must be solved as a whole, taking
into account the collective many-particle radiation states.

The main purpose of this paper is to study the physics of
the G�2� in the simplest driven collective many-body system
that produces nonclassically correlated photon pairs. A par-
ticularly interesting question is, how does the coexistence of
the dipole-dipole interaction and the control field in the
Raman-EIT scheme affect the two-photon correlation? The
G�2� for a single atom with Raman-EIT scheme has been
studied by various methods �7�. It is convenient to use the
Schrödinger’s equation approach �4� to obtain an analytical
expression for the G�2� that would facilitate physical interpre-
tations.

We shall focus our discussions of the physics around
small interatomic distance r. We show how the collective
effects of dipole-dipole interaction can be quenched by a
control field. We also find that G�2� as a function of time
delay � between the Stokes and anti-Stokes photons contains
features due to the dipole-dipole interaction that enable the
two atoms at subwavelength distance to be resolved without
using the interferometric setup.

II. TWO-ATOM DYNAMICS

The interaction Hamiltonian for two independent �nonin-
teracting� Raman-EIT atoms in free space radiation and
driven by two laser fields �Fig. 1� in the interaction picture is
simply the independent sum of two Hamiltonians, each for a
single atom,

V̂ = − �� �
j=1,2,k

Gk
�j�âk

†�bj�	cj�e−i�tei�kt + �c
�j�e−i	t�aj�	bj�

+ �
q

gq
�j�âq

†�cj�	aj�ei�qt + adj
 . �1�

Each Hamiltonian describes a single Raman-EIT atom �3�,
the Gk

�j�=gk
�j��p

�j� /� is the spontaneous Raman coupling,
�p

�j��

�� and �c
�j� are the Rabi frequencies of the jth atom

coupled to the far detuned weak pump laser that drives the
c↔d transition and the control laser that drives the b↔a

transition, respectively, gk
�j�=−��� · �̂k

*�bd� �k

2�o�Ve−ik·rj and gq
�j�

=−��� · �̂q
*�ca� �q

2�o�Ve−iq·rj are the couplings of the radiation to
the b↔d transition and the c↔a transition, respectively, r j
denotes the position of the jth atom, and �k�q�=
k�q�
−�db�ac� with �=
p−�dc are the detunings.
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FIG. 1. �Color online� Two atoms driven by a pump laser and a
control laser with Rabi frequencies �p and �c, respectively, in the
Raman-EIT scheme. Correlated photon pairs, called Raman emis-
sion doublet �RED� are emitted. The atoms are separated by a dis-
tance r which can be close to the emission wavelength �
�2�c /��2�c /
.
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We consider a sufficiently weak pump field such that
states with two and more Stokes photons are negligible.
Thus, the collective two-atom-radiation state vector is

���t�� = C�c1,c2,0� + �
k


Bk
�1��b1,c2� + Bk

�2��c1,b2���1k�

+ �
k


Ak
�1��a1,c2� + Ak

�2��c1,a2���1k�

+ �
k,q

Ck,q�t��c1,c2,1k,1q� , �2�

where C, Bk
�j�, Ak

�j�, and Ck,q are the probability amplitudes
for the collective basis states: �i� both atoms in c with no
photon, �ii� one of the atoms driven to b by spontaneous
Raman process, and �iii� coherently coupled to a with the
emission of a Stokes photon k, and �iv� the same atom that
emits photon k decays to level c emitting an anti-Stokes
photon q. Note that the intermediate states b and a are en-
tangled; we know only one is excited but never know which
one.

The Schrödinger’s equation gives a set of coupled equa-
tions for the coefficients C, Bk

�j�, Ak
�j�, and Ck,q that are solved

in Appendix using standard procedure �4�. As shown in the
Appendix, the above Hamiltonian and state vector automati-

cally give rise to the f�r� function �see Eq. �A8�� which
accounts for the dipole-dipole interaction, without introduc-
ing any Hamiltonian to describe the direct interaction be-
tween the two atoms. Here, the dipole-dipole interaction is
indirect, mediated by the vacuum radiation.

III. COLLECTIVE TWO-PHOTON AMPLITUDE

In order to compute the two-photon correlation G�2�

= ��RED�B ,A�+�RED�A ,B��2, the steady state solution for
Ck,q, i.e., Eq. �A9� is used. After lengthy calculations involv-
ing pole integrations �9�, we obtain the two-photon ampli-
tude as the main result

�RED�B,A� = �
j=1,2

�
�+
�+��Bj,Aj� − �−

�+��Bj,Aj��

− 
�+
�−��Bj,Aj� − �−

�−��Bj,Aj���

−
1

2
�
�+

�+��B2,A1� − �−
�+��B2,A1��

− 
�+
�−��B2,A1� − �−

�−��B2,A1�� + �1 − 2�� ,

�3�

where ��� are the signs for superradiant ��� and subradiant
��� cases, with the partial amplitudes

�±
�±��Bj,Aj� = −

Cj

2�̃�±�
���Aj���±�

1

2
e−
i�
���̃�±��+��R−�1/4���±����Aje−�i���±�̃�±��+�1/4���±���Bj���BjAj�

+
��c�2

i�f�r�� 1
2	 + i 1

4��±� � �̃�±��e−i
�Aje−i��Bje−�R�Aj� , �4�

�±
�±��B2,A1� =

C21

2�̃�±�
���A1�e−
i�
���̃�±��+��R−�1/4���±����A1e−�i���±�̃�±��+�1/4���±���B2���B2 − �A1� , �5�

where 
��
+ 1
2	 and ����− 1

2	 are the effective Stokes
and anti-Stokes frequencies with 
�
p−�bc ,��
c+�bc
=	+�ac; �BjAj =�Bj −�Aj; and �Aj = tA−rAj /c ,�Bj = tB−rBj /c
are the retarded times. The physical significance of each term
in Eq. �3� is illustrated in Fig. 2. The coefficients are

Cj = −
�
�/c2�3

�4��o�2

�p

�
�cKAjQBje

i�kc+kp�·rj , �6�

C21 = −
�
�/c2�3

�4��o�2

�p

�
�cKA1QB2eikc·r2eikp·r1, �7�

and the effective complex Rabi frequencies that contain the
collective effects �via ��±�� and the ac Stark shift �via �c� are

�̃�±� = ��c
2 − � 1

4��±� − i 1
2	�2. �8�

The coherent phases kq ·r j =kqrj cos �q �q= p ,c� give rise to
an additional interference feature shown in Fig. 3. The ��±�

=��1± f�r�� in Eqs. �4�, �5�, and �8� are complex; where
f�r�=g�r�+ ih�r� is the dimensionless collective parameter
that includes the modified collective �subradiant and super-
radiant� decay rate factor g�r� and the vacuum-induced co-
herent dipole-dipole interaction factor h�r�. Full expressions
for g�r� ,h�r� are well known and can be found, for example
in �6,8�, but we reproduce them in Fig. 4�c� for convenience.
For sufficiently large interatomic distance: �r /c ,
r /c�1,
we have negligible collective effects since f�r�→0.

Note that for sufficiently weak field �c��, Eq. �8� gives

�̃�±�� i 1
4��±�+ 1

2	. Here, the real part 1
2	�

1
4�h simulates the

role of Rabi frequency. This indicates the contributions of the
collective �two atom� effect, namely the vacuum induced co-
herent dipole-dipole interaction, and finite laser detuning 	 to
the coherent quantum phenomena such as Rabi oscillations,
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and nonclassical effect �photon antibunching�, as shown in
Fig. 3. In the limit of large atomic separation, the cooperative
effects vanish since f�r�→0 and taking 	=0 we find �±

�±�

� ±�̃ where �̃=��c
2− �� /4�2. Then, �±

�−��Bj ,Aj��−�±
�+�

��Bj ,Aj� and Eq. �3� reduces to the sum of amplitudes of
two independent atoms �3,9�,

�RED�B,A� � �
j=1,2

Cj

2�̃
�ei�̃��Bj−�Aj� − e−i�̃��Bj−�Aj��

����Bj − �Aj�e−�i
�+�R��Aje−i���Bje−�1/4����Bj−�Aj�.

�9�

Here, Eq. �9� corresponds to the asymmetrical emission
paths shown in Fig. 2�a�. The symmetrical paths of Fig. 2�b�
do not contribute since the paths that correspond to the sub-
radiant �superscript ���� cancel those paths for the superra-
diant �superscript ����.

IV. COHERENT CONTROL VIA COLLECTIVE EFFECTS

The essence of this paper can be found in the complex

Rabi frequency �̃�±� and we discuss how the field depen-
dence modifies the frequency components, Rabi oscillations
and decay rates.

A. Multiple frequencies

The amplitude Eq. �9� for large r has simple meaning: the
Stokes photon with frequency 
� is emitted at an emission
time �Aj with probability exp
−�R�Aj� from the jth atom and
goes to detector A, the anti-Stokes photon with frequency
�� is emitted at an emission time �Bj with the probability
exp
− 1

4���Bj −�Aj�� from the jth atom and goes to detector B.
The general amplitude equations �3�–�5� can be inter-

preted similarly. Thus, we find that the real part Re �̃�±� and
the imaginary part of ��±� give the eight possible frequency

components: 
��Re �̃�±���� 1
4h� for Stokes photon and

��±Re �̃�±��±� 1
4h� for anti-Stokes photon. These frequen-

cies give rise to the various possible interfering paths shown
in Fig. 2. Clearly, the frequency sidebands are due to Rabi
splitting and dipole-dipole interaction. As found in Fig. 4�a�,
the distinction between these lines increase for small r and
large �c.

These are real frequencies that can be obtained by
calculating the power spectrum via the field correlation

	E†�t+��Ê�t��. Of course, they would not show up in the
correlated measurement of the G�2�. Only the beats among
the frequencies are found if we make a Fourier transforma-
tion of the G�2�. It is essentially the beats �due to the dipole-
dipole interaction� that were used for subwavelength mea-
surement of two atoms in Ref. �10�.

We expect that a larger number of atoms would give a
larger number of sidebands. This could be an alternative
method to nonlinear optical processes for the generation of
multiple new frequencies. We shall not pursue this further
here since it is not the main focus and beyond the present
scope. Further analysis will be reported elsewhere.

B. Rabi oscillations and threshold

The Rabi oscillation period is governed by the real part of

�̃�±�, particularly by the control field �c, g, and h. Figures

4�a� and 4�b� show �̃�±� as a function of r in two perspec-
tives. There is a threshold �thr for transition between over-
damp ��c
�thr� and oscillatory ��c
�thr� regimes. For
large r, the threshold is clearly seen around 1

4� �as in single
atom case� in Fig. 4�b�. If h can be neglected and 	=0, we
have �thr�

1
4��1+g�. The overdamp and oscillatory regimes

are well defined by hyperbolic and trigonometric functions,

respectively, only when �̃�±� are either real or purely imagi-
nary. As r decreases h becomes significant, the argument
inside �

¯ of Eq. �8� becomes complex and there is no
simple analytical expression for the threshold.

FIG. 2. �Color online� Possible �a� asymmetrical and �b� sym-
metrical emission paths based on the result of two photon ampli-
tude, Eq. �3� �red �dark� lines: for Stokes; green �light� lines: for

anti-Stokes; solid lines: for ¯+Re �̃�±�
¯, dashed lines: for ¯

−Re �̃�±�
¯.� Note that Eq. �3� also predicts the existence of eight

frequency sidebands, i.e., a fourfold increase in the number of fre-
quencies due to Autler-Townes splitting by the control field �c and
dipole-dipole interaction, as shown below �b�.
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C. Multiple decay rates

Since ��±� is complex, Eq. �2� shows that there
are eight effective decay rates governed by

exp(
 1
4��1�±�g�� Im �̃�±�−�R��Aj) for the Stokes photon

and exp(
 1
4��1�±�g�� Im �̃�±���Bj) for the anti-Stokes pho-

ton. At r=n� /2 where n=1,2 ,3 , . . .. we find that the value of

Im �̃�±� jumps from positive to negative or otherwise for �c

below �thr. Since the imaginary part of �̃�±� also depends on
�c, the laser field also affects the multiple decay rates. Thus,
the laser field not only modifies the Rabi oscillations in the
G�2� but also its damping rate as a function of �.

V. RESULTS OF THE CORRELATION

By using filters at the detectors such that detector A de-
tects photon 
 and B detects photon �, the term �RED�A ,B�

FIG. 3. �Color online� Plots of two-photon correlation �normalized� in the regime where dipole-dipole interaction is significant for �c

=�p=90° with different control fields �a� �c=0.2� corresponds to overdamp regime in the limit of large r, �b� �c=3�, and �c� �c=7�, and
for �c=�p=0° �with the same set of control fields� which gives the interference effect of the coherent phase factor ei�kp+kc�·r j. Note that the
onset to a more rapid Rabi oscillation in each plot is dependent on �c. This feature can be understood by looking at Fig. 4. We have
considered parallel transitions �M =0 �with identical results for �M = ±1�. For simplicity, we take 	=0. The results are independent of the
angle �Dj between the photon from atom j to detector D and the interatomic axis.

��
� /

~
Re )(

a) b) c)

FIG. 4. �Color online� �a� The real part of �̃�+� �from Eq. �8�� for �c from 0.05� to 3� for �M =0. The dashed line estimates the turning

points rt of the curves with different �c. �b� The Re �̃�+� versus r and �c. The kink points close to r=�, � /2, and 3� /2 correspond to the

zeros of the h function. The points where Re �̃�+�=0 correspond to the transition between overdamp and oscillatory regimes. Similar features

are found for �̃�−�. �c� g�r� and h�r� for parallel transition �M =0 �solid line� and perpendicular �M = ±1 �dashed-dotted line�, �M is the
change in magnetic quantum number, jn is spherical Bessel of order n.
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obtained by interchanging A with B in Eq. �3� can be disre-
garded. Figure 3 shows the variations of G�2��r ,��
= ��RED�r ,���2 as a function of detection time delay
�= tB− tA between Stokes and anti-Stokes and interatomic
distance r.

Collective effects on G�2�. The collective effect on the G�2�

profile becomes significant when the period of oscillations
varies appreciably around some transition �or turning� point
referred to as rt, which can only be estimated subjectively.
Typically rt
�. For r
rt, the dipole-dipole interaction
dominates and causes the Rabi oscillations to become more
rapid. In this regime, the correlation can be oscillatory even
when �c
� /4 �overdamp for large r�; as in the case of
�c=0.3� in Fig. 3�a�. However, the magnitude of the corre-
lation decreases for r
rt, since the atoms are more likely to
exchange photons between each other �Rabi oscillations via
emission and reabsorption� instead of emitting photons to the
environment �dissipation�.

Quenching effect of control field. By comparing the plots
for several values of the control field �c in Fig. 3, we find
that rt becomes smaller as �c increases. This shows the
quenching of the effect of dipole-dipole interaction by the
control field. This feature is supported by Fig. 4�a� �Re �̃�+�

versus r� which shows the variation of the estimated turning
points rt for different �c �visually guided by the dashed line�.
For larger �c, the Re �̃�+� increases drastically around
smaller values of rt, which corresponds to Fig. 3�c�. For
small �c the Rabi oscillation period begins to change signifi-
cantly only at the larger rt, which corresponds to Fig. 3�a�.
For �c=3� Fig. 3�b� shows that the sum of amplitudes of
two independent atoms G�2����RED1+�RED2�2 is a good ap-
proximation down to � /8, thus the analysis of Ref. �5� which
employs this approximation to achieve a resolution up to � /8
is valid.

Coherent phase of lasers. When �p,c�� /2, the coherent
phase factors eikp,c·rj in Eqs. �6� and �7� give richer features
shown in Figs. 3�d�–3�f�. For large r, the oscillations across r
become more rapid. Similarly for small r, but the oscillations
also become more rapid across �. The wave vectors of the
lasers introduce a relative phase �that depends on r� between
the two atoms such that their transient dynamics evolve out
of phase between each other and this creates the beating.

Subwavelength resolution. The variation of the Rabi os-
cillations period in the G�2� with r �due to collective effect� is
a feature that can be used to measure the interatomic distance
r below the diffraction limit of the photons. One should re-
alize that this feature is in time domain, in contrast to the
approach using the frequency domain �10� although the
physics is the same. Besides, the resolution may be limited
by the vanishingly small correlation for r�� /20. Further
analysis of the G�2� as a function of � and its Fourier trans-
form for subwavelength resolution will be reported else-
where.

In conclusion, the significance of the above results is that
the collective effects at small interatomic distance give rise
to distance dependent two-photon correlation that can be
“quenched” by a strong resonant control field �c. This pro-
vides a possibility of coherently controlling the collective
photon statistics and multiple frequency generation in the
many-body system.
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APPENDIX: COUPLED EQUATIONS AND SOLUTIONS

The coupled equations for two RED atoms obtained from
Eqs. �1� and �2� are

d

dt
C = i�

k
�Gk

�1�*B̃k
�1� + Gk

�2�*B̃k
�2�� , �A1�

� d

dt
+ iDk�B̃k

�j� = iGk
�j�C + i�c

�j�*Ãk
�j�, �A2�

� d

dt
+ i�Dk − 	��Ãk

�j� = i�c
�j�B̃k

�j� + i�
q

gq
�j�*C̃k,q, �A3�

� d

dt
+ iDk,q�C̃k,q = igq

�1�Ãk
�1� + igq

�2�Ãk
�2�, �A4�

where j=1,2 and we define the transformation

B̃k
�j� = Bk

�j�ei�te−i�kt,

Ãk
�j� = Ak

�j�ei�te−i�ktei	t,

C̃k,q = Ck,qei�te−i�ktei	te−i�qt

with the detunings

Dk = �k − �,Dk,q = �k + �q − � − 	 = 
k + 
q − 
p − 
c

and 	=
c−�ab. By using the Weisskopf-Wigner approxima-
tion, we obtain the set of linear

d

dt
Ãk

�1� � �− i�Dk − 	� − 1
2��1��Ãk

�1� + i�c
�1�B̃k

�1�

− 1
2
���1���2�f�r�Ãk

�2��t� , �A5�

d

dt
Ãk

�2� � �− i�Dk − 	� − 1
2��2��Ãk

�2� + i�c
�2�B̃k

�2�

− 1
2
���1���2�f�r�*Ãk

�1��t� , �A6�

where

�
q

�gq
�j��2�

0

t

e−iDk,q�t−t�� � 1
2��j�, �A7�

�
q

gq
�1�*gq

�2��
0

t

e−iDk,q�t−t�� �
1

2
���1���2�f�r� , �A8�

with ��j�=��j�− i��j�, the Lamb shift ��j� , f�r�=g�r�+ ih�r�,
where g�r� gives the modified decay rates and h�r� is the
level shift factor �8� due to the collective effects.

The coupled equations can be solved by Laplace trans-
form method. Assume that initially C�0�=1 and other coef-
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ficients are zero, after a lengthy calculations, we obtain the
steady state solution

Ck,q��� = i� i�	 − �q� 1
2
���1���2�f�r��c

�1�gq
�2�Gk

�1�

Mq��R − iDk,q�

−
�i�	 − �q����2�

2
− i�q� + ���2��c

�1�gq
�1�Gk

�1�

Mq��R − iDk,q�
�

+ �1 ↔ 2� , �A9�

where Mq=� j=1
4 ��q−xj� with 
xj�= 
a+

�+� ,a−
�+� ,a+

�−� ,a−
�−��,

a±
�±�= 1

2	− i 1
4��±�±�̃�±� are the roots with �̃�±�

=���c�2− � 1
4��±�− i 1

2	�2, �R= 1
2 ��R

�1�+�R
�2�� is the collective Ra-

man decay rate with 1
2�R

�j�=�k
�Gk

�j��2

s+iDk
. The complex rates that

depend on interatomic distance are ��±�=��1± f�r��, where
f�r� is defined in the text.

For identical atoms, ��2�=��1�. By neglecting the Lamb
shifts ��1����2���. We have verified that Eq. �A9� gives
the known result �3� in the limit f�r�→0, for two indepen-
dent atoms

Ck,q��� =

i �
j=1,2

�c
�j�gq

�j�Gk
�j�

�i� 1
2� − i�q��	 − �q� + ��c�2��iDk,q − �R�

.

�A10�

The exact coefficient in Eqs. �6� and �7� are

KAj = 2�ba,Aj
� �� 1

ixAj
3 −

1

xAj
2 �

+ sin2 �Aj� 3

2xAj
2 −

3

2ixAj
3 +

1

2ixAj
�


+ �ba,Aj
� � 1

ixAj
+

1

xAj
2 −

1

ixAj
3

−
1

2
sin2 �Aj� 3

xAj
2 −

3

ixAj
3 +

1

ixAj
�
 , �A11�

for dipole moment � parallel ��� and orthogonal ��� to the
quantization axis, with xAj =
rAj /c and �Aj as the angles be-
tween A-j and the interatomic axis. The same expression for
QBj by the replacements xAj→yBj =�rBj /c, �ba,Aj

�,�

→�ca,Bj
�,� �B-j� and �Aj→�Bj. The emission coupling factors

KAj, QBj are valid for both far and near fields �9�.
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