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The proposal of quantum lithography �Boto et al., Phys. Rev. Lett. 85, 2733 �2000�� is studied via a rigorous
formalism. It is shown that, contrary to Boto et al.’s heuristic claim, the multiphoton absorption rate of a
��N ,0�+ �0,N�� quantum state is actually lower than that of a classical state with otherwise identical parameters.
The proof-of-concept experiment of quantum lithography �D’Angelo et al., Phys. Rev. Lett. 87, 013602
�2001�� is also analyzed in terms of the proposed formalism, and the experiment is shown to have a reduced
multiphoton absorption rate in order to emulate quantum lithography accurately. Finally, quantum lithography
by the use of a jointly Gaussian quantum state of light is investigated to illustrate the trade-off between
resolution enhancement and multiphoton absorption rate.
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I. INTRODUCTION

Optical lithography, the process in which spatial patterns
are transferred via optical waves to the surface of a substrate,
has been hugely successful in the fabrication of micro and
nanoscale structures, such as semiconductor circuits and mi-
croelectromechanical systems. Conventional lithography
cannot produce features much smaller than the optical wave-
length, due to the well known Rayleigh resolution limit �1�.
As a result, beating the resolution limit for lithography has
become an important goal in the field of optics, with far-
reaching impact on other research areas including semicon-
ductor electronics and nanotechnology.

Among the many candidates proposed to supersede con-
ventional lithography, the use of extreme ultraviolet light for
lithography �2� has met numerous technical difficulties such
as optics imperfections and photoresist limitations. Other
proposals involve multiphoton exposure �3–7�, so that one
can still use the more robust optics for long-wavelength
light, while obtaining some of the resolution improvements
associated with higher harmonics. The feature size reduction,
however, is not nominal without taking care of the residual
long-wavelength features in a multiphoton absorption pat-
tern. Yablonovitch and Vrijen proposed the use of several
frequencies and narrowband two-photon absorption to sup-
press such long-wavelength features �3�, while a much more
radical proposal by Boto et al. suggests the use of N-photon
quantum interference of N spatially entangled photons �4�.
The so-called quantum lithography has several appeals, such
as arbitrary quantum interference patterns, generalization to
arbitrary number of photons, and the promise of multiphoton
absorption rate improvement via the use of entangled pho-
tons. Hence, despite practical issues such as difficulties in
generating a high dosage of the requisite entangled photons
and finding a suitable multiphoton resist, interest in quantum
lithography has been significant �8�.

Crucial to the future success of quantum lithography is
the supposed enhancement in the multiphoton absorption rate

when entangled photons are used. The absorption rate im-
provement for frequency anticorrelated photons has been
proved by Javanainen and Gould �9� and Perina et al. �10�.
Boto et al.further claimed that the absorption rate should also
improve for the spatially entangled photons used in quantum
lithography. This promise is absolutely vital to the practical-
ity of quantum lithography, because, as Boto et al. men-
tioned, classical multiphoton lithography is already infea-
sible for large N, and quantum lithography would have been
even worse if the absorption rate was not enhanced, due to
the much less efficient generation of nonclassical light. Boto
et al. supported their claim by arguing heuristically that the
entangled photons are constrained to arrive at the same place
and at the same time. This argument with respect to the spa-
tial domain has, however, not been substantiated with a more
rigorous proof, and has been subject to criticism �11�. Unfor-
tunately, the time domain treatment �9,10� cannot be directly
carried over to the spatial domain, because the former as-
sumes a nearly resonant multiphoton absorption process and
does not require any temporal resolution, but for quantum
lithography the material response needs to be spatially local
to produce a high spatial resolution.

On the other hand, Boto et al.’s formalism contains sev-
eral crucial approximations that remain to be justified. First,
the photons are implicitly assumed to arrive from a mono-
chromatic source with a well defined free-space wavelength
�, but the usual quantization method of optical fields consid-
ers photons as quanta of electromagnetic mode excitations,
in which frequency appears only as a dependent variable of
the wave vector. It remains a question how monochromatic
optical fields as a boundary condition should be treated in
quantum optics. Second, they treat the two optical beams
with opposite transverse momenta as two discrete modes of
optical fields, but in free space, transverse momentum is a
continuous variable, so the discrete modes are evidently an
approximation. Third, when discussing the multiphoton ab-
sorption rate, Boto et al. regards photons as objects in space
and time that probabilistically arrive at the photoresist, al-
though it is well known that this interpretation of photons is
fundamentally flawed �12�.

In this paper, starting from basic principles, I shall first
explicitly quantize the electromagnetic fields in Sec. II, using*Electronic address: mankei@optics.caltech.edu
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assumptions consistent with Boto et al.’s proposal. The for-
malism rigorously treats approximately monochromatic opti-
cal fields as a boundary condition in the continuous Fock
space, and hence provides a theoretical underpinning to the
proposal of quantum lithography. The formalism also shows
that, regardless of the nonclassical spatial properties of the
photons, there exists an upper bound of multiphoton absorp-
tion rate, which rules out any significant enhancement of
multiphoton absorption rate due to spatial effects only. Next,
using the developed formalism, I shall analyze in Sec. III the
multiphoton absorption rate of the so-called NOON ��N ,0�
+ �0,N�� state, and compare it with that of a classical state
with otherwise identical parameters. The analysis shows that,
despite both states having the same envelope for their inter-
ference fringes, and despite the NOON state being able to
reduce the interference period of the fringes by a factor of N,
the peak multiphoton absorption rate of a NOON state is
lower than that of a classical state by a factor of 2N−1. In Sec.
IV, I shall discuss the formalism in the paraxial regime,
where it is acceptable to regard photons as spatial objects
described by a configuration-space probability density. I shall
then investigate the proof-of-concept quantum lithography
experiment by D’Angelo et al. �13� and show that the experi-
ment requires a condition that necessarily reduces the two-
photon absorption rate, in order to emulate quantum lithog-
raphy accurately. Finally, I shall study the multiphoton
absorption of a jointly Gaussian multiphoton state, in order
to illustrate the trade-off between resolution enhancement
and multiphoton absorption rate.

II. QUANTIZATION OF TWO-DIMENSIONAL,
s-POLARIZED, APPROXIMATELY MONOCHROMATIC

ELECTROMAGNETIC FIELDS

A. Two-dimensional approximation

I shall start with the most general commutation relations
for creation and annihilation operators of continuous electro-
magnetic field modes in free space �12�:

�â�kx,ky,kz,s�, â†�kx�,ky�,kz�,s���

= ��kx − kx����ky − ky����kz − kz���ss�, �1�

where kx, ky, and kz are the independent continuous variables
for each mode of the electromagnetic fields, and s denotes
one of the two polarizations perpendicular to the wave vec-
tor. The dependent variable in this case is frequency �, de-
termined by the dispersion relation

�2 = c2�kx
2 + ky

2 + kz
2� . �2�

The electric field operator is then given by �12�

Ê�x,y,z,t� = Ê�+��x,y,z,t� + H . c . , �3�

Ê�+��x,y,z,t� =
i

�2��3/2�
s
� d3k	��

2�0

1/2

â�kx,ky,kz,s�

�e�kx,ky,kz,s�exp�ikxx + ikyy + ikzz − i�t� ,

�4�

where H.c. denotes Hermitian conjugate and e�kx ,ky ,kz ,s� is
the unit polarization vector corresponding to one of the two
polarizations orthogonal to the wave vector. In the following
I shall consider only the modes that propagate in the positive
z direction in the z-x plane, and only the s polarization nor-
mal to the z-x plane. This is consistent with Boto et al.’s
proposal, and equivalent to assuming kz�0, ky �0, and
choosing one s such that e= ŷ. Following Blow et al. �14�, I
shall make the following substitution to neglect the y dimen-
sion:

� dky →
2�

Ly
, �5�

â�kx,ky,kz,s� → â�kx,kz�� Ly

2�
, �6�

�â�kx,kz�, â†�kx�,kz��� = ��kx − kx����kz − kz�� , �7�

where Ly is the normalization length scale in the y dimen-
sion. The electric field is thus simplified to

Ê�+��x,z,t� =
i

2��Ly
�

−	

	

dkx�
0

	

dkz	��

2�0

1/2

â�kx,kz�

�exp�ikxx + ikzz − i�t� . �8�

B. Propagating fields

To conform to classical optics conventions, I shall make
kx and � the independent variables and kz the dependent
variable, following the procedure of Yuen and Shapiro �15�.
This coordinate transformation yields

dkxdkz =
�

c2kz
dkxd� , �9�

Ê�+��x,t,z� =
i

2��Ly
�

−�/c

�/c

dkx�
0

	

d�	��

2�0

1/2 �

c2kz
â�kx,kz�

�exp�ikxx − i�t + ikzz� , �10�

where kz=��2 /c2−kx
2 is now the dependent variable. Con-

sider the commutation relation for â�kx ,kz� in terms of the
new variables,

�â�kx,kz�, â†�kx�,kz��� = ��kx − kx����kz − kz�� �11�

=
c2kz

�
��kx − kx����� − ��� , �12�

where the factor c2kz /� comes from Eq. �9�. A new annihi-
lation operator in terms of kx and � should therefore be de-
fined as �16�

â�kx,�� = 	 �

c2kz

1/2

â�kx,kz� , �13�

so that the new operators have the desired commutator,

�â�kx,��, â†�kx�,���� = ��kx − kx����� − ��� . �14�

Writing kx as 
 as a shorthand, the electric field becomes
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Ê�+��x,t,z� = i	 �

8�2�0c2Ly

1/2�

−�/c

�/c

d
�
0

	

d�

�
�

��2/c2 − 
2�1/4 â�
,��exp�i
x − i�t + ikzz� ,

�15�

which is now expressed in terms of z-propagating modes,
with transverse momentum 
 and frequency � as the inde-
pendent degrees of freedom.

C. Monochromatic approximation

We have now obtained a formalism that treats 
 and � as
independent degrees of freedom and corresponds to the ex-
perimental situation of quantum lithography, where optical
fields are considered as propagating modes. The spatial
quantum properties of the propagating waves are thus inde-
pendent of the temporal properties. In order to study only the
spatial effect of resolution enhancement on the multiphoton
absorption rate, separate from the temporal effects studied by
Javanainen and Gould �9� and Perina et al. �10�, I shall as-
sume, in consistency with Boto et al.’s formalism, that the
photons are all approximately monochromatic with the same
frequency �. Again, following the conventions of Blow et al.
�14�,

� d� →
2�

T
, â�
,�� → â�
�� T

2�
, �16�

�â�
�, â†�
��� = ��
 − 
�� , �17�

where T is the normalization time scale. The electric field
envelope is then defined as

Ê�+��x,z,t� 
 Ê�+��x,z�exp�− i�t� , �18�

Ê�+��x,z� = i	 �

2�

1/2�

−�/c

�/c

d
 ��
�â�
�exp�i
x + ikzz� ,

�19�

where

� 

��

2�0cLyT
, �20�

the magnitude of which is on the order of the optical inten-
sity times a unit length in x for one photon. ��
� is a geo-
metric factor,

��
� =
1

�1 − c2
2/�2�1/4 , �21�

which arises owing to the invariance of the formalism with
respect to rotation in the z-x plane. See Appendix A for a
detailed discussion on the physical significance of ��
�.

D. Continuous Fock space representation

With the commutator described by Eq. �17�, and the elec-
tric field envelope in terms of the photon annihilation opera-

tor in Eq. �19�, a rigorous quantization of two-dimensional,
s-polarized, approximately monochromatic optical fields has
been established. To account for all possible configurations
of a Fock state in terms of the continuous transverse momen-
tum, I shall define the following N-photon eigenstate �12,17�:

�
1, . . . ,
N� =
1

�N!
â†�
1� . . . â†�
N��0� . �22�

A momentum-space representation of a Fock state �N� can be
written as �17�


�
1, . . . ,
N� 
 �
1, . . . ,
N�N� �23�

=
1

�N!
�0�â�
1� . . . â�
N��N� , �24�

and the Fock state can then be written in terms of this rep-
resentation,

�N� = �
−�/c

�/c

d
1. . .�
−�/c

�/c

d
N�
1, . . . ,
N��
1, . . . ,
N�N�

�25�

=�
−�/c

�/c

d
1 . . . �
−�/c

�/c

d
N
�
1, . . . ,
N��
1, . . . ,
N� .

�26�


 is hereby defined as the momentum-space multiphoton
amplitude, which describes the configurations of 
’s for N
photons. 
 must evidently satisfy the normalization condi-
tion,

�
−�/c

�/c

d
1 . . . �
−�/c

�/c

d
N�
�
1, . . . ,
N��2 = 1, �27�

and the boson symmetrization condition,


�. . . ,
n, . . . ,
m, . . . � = 
�. . . ,
m, . . . ,
n, . . . � for any n,m .

�28�

E. N-photon measurements at the observation plane

We shall now observe the photons at z=0, define Ê�+��x�

 Ê�+��x ,0�, and a spatial multiphoton amplitude
��x1 , . . . ,xN� as

�0�Ê�+��x1� . . . Ê�+��xN��N� 
 �N!iN�N/2��x1, . . . ,xN� ,

�29�

��x1, . . . ,xN� =
1

�2��N/2�
−�/c

�/c

d
1��
1� . . . �
−�/c

�/c

d
N��
N�

� 
�
1, . . . ,
N�exp	i�
n=1

N


nxn
 . �30�

The physical significance of � is that its magnitude squared
is proportional to the ideal N-photon coincidence rate,
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�: Î�x1� . . . Î�xN�:� = �N�Ê�−��x1� . . . Ê�−��xN�

�Ê�+��x1� . . . Ê�+��xN��N� �31�

=��0�Ê�+��x1� . . . Ê�+��xN��N��2 �32�

=N ! �N���x1, . . . ,xN��2, �33�

where

Î�x� 
 Ê�−��x�Ê�+��x� �34�

is the optical intensity operator. Classically, an ideal
N-photon absorption pattern is given by IN�x�. In quantum

optics, the average N-photon absorption rate becomes

�: ÎN�x�:� = �: Î�x� . . . Î�x�:� = N ! �N���x, . . . ,x��2, �35�

which is the N-photon coincidence rate evaluated at the same
position x1= ¯ =xN=x.

F. Upper bound of N-photon absorption rate for an N-photon
state

With the formalism outlined above, it turns out that one
can already derive an upper bound for the N-photon absorp-
tion rate of an N-photon Fock state, without knowing the
specific form of 
, using Schwarz’s inequality ��f �g��2

� �f � f��g �g�,

���x1, . . . ,xN��2 = � 1

�2��N/2�
−�/c

�/c

d
1��
1� . . . �
−�/c

�/c

d
N��
N�
�
1, . . . ,
N�exp	i�
n=1

N


nxn
�2

�36�

�
1

�2��N��
−�/c

�/c

d
1 . . . �
−�/c

�/c

d
N�
�
1, . . . ,
N��2���
−�/c

�/c

d
1 . . . �
−�/c

�/c

d
N��
n=1

N

��
n�exp�i
nxn��2� �37�

�
1

�2��N��
−�/c

�/c

d
���
��2�N

= 	�

�

N

, �38�

where �=2�c /� is the free-space wavelength. Hence the
N-photon absorption rate has an upper bound,

�: ÎN�x�:� = N ! �N���x, . . . ,x��2 � N ! 	��

�

N

. �39�

Recall that � is on the order of the one-photon optical inten-
sity times a unit length in x. The upper bound shows that the
best multiphoton absorption rate, regardless of the form of 
,
is on the order of I0

N, where I0 is the optical intensity of one
photon focused to a width �. Although this upper bound is
derived for the simple case of two-dimensional monochro-
matic optical fields focused in one dimension, one expects
that the situation should remain qualitatively similar when
the y dimension is also considered, leading to a maximum
absorption rate on the order of the I0

N, where I0 becomes the
intensity of a photon focused to an area of �2. The enhance-
ment of the multiphoton absorption rate using nonclassical
spatial properties of photons, if any, is therefore likely to be
very limited, compared with the linear dependence of the
absorption rate on I0 obtainable using frequency-
anticorrelated photons �9,10�. This is due to the resolution
limit in the spatial domain that limits the spatial bandwidth
of the optical fields, as well as the perfectly local spatial
response of N-photon absorption assumed in Eq. �35�.

III. MULTIPHOTON ABSORPTION RATE OF QUANTUM
LITHOGRAPHY

The chief results of Sec. II applicable to quantum lithog-
raphy are the definition of a normalizable momentum-space
multiphoton amplitude, Eq. �24�, which is able to describe
arbitrary configurations of quantized, approximately mono-
chromatic, two-dimensional, s-polarized optical fields con-
taining N photons, the definition of a spatial multiphoton
amplitude, Eq. �30�, and the average N-photon absorption
rate, Eq. �35�, in terms of the spatial amplitude. In the fol-
lowing I shall use these results to calculate the N-photon
absorption rates for a NOON state and a classical state with
otherwise identical parameters.

A. N-photon absorption of a NOON state

In its simplest and most essential form, quantum lithogra-
phy entails the N-photon absorption of a NOON state �4�
�Fig. 1�,

�NOON� =
1
�2

��N�A�0�B + �0�A�N�B� �40�

=
1

�2N!
��Â†�N + �B̂†�N��0� , �41�

where A and B label the two interfering beams �Fig. 1�, and

Â† and B̂† are the creation operators for the two arms. In the
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continuous momentum space, I shall express the correspond-
ing annihilation operators as

Â =� d

1

��

f	
 + 
0

�


â�
� , �42�

B̂ =� d

1

��

f	−


 − 
0

�


â�
� , �43�

where f�q� is a normalizable function of a dimensionless
parameter q, which satisfies �dq � f�q��2=1 and describes the
momentum spread of modes A and B. �
 is the momentum
bandwidth, and 
0 is the tilt of the two arms. f(�

+
0� /�
) and f(−�
−
0� /�
) are also assumed to be or-
thogonal,

� d
 f	
 + 
0

�


 f*	−


 − 
0

�


 = 0, �44�

so that Â and B̂ satisfy the commutation relations

�Â,Â†� = �B̂,B̂†� = 1, �Â,B̂†� = 0. �45�

The momentum space amplitude, according to Eq. �24�, is


NOON�
1, . . . ,
N� =
1

�N!
�0�â�
1� . . . â�
N��NOON� �46�

=
1

�2�
N��
n=1

N

f	
n + 
0

�




+ �
n=1

N

f	−

n − 
0

�


� . �47�

One can check that this amplitude satisfies the normalization
condition, Eq. �27�. �NOON is thus determined to be

�NOON�x1, . . . ,xN� =
1

�2�2��
�N�exp	− i
0�
n=1

N

xn
�
n=1

N � d
n��
n − 
0�f	 
n

�


exp�i
nxn�

+ exp	i
0�
n=1

N

xn
�
n=1

N � d
n��
n + 
0�f	−

n

�


exp�i
nxn�� . �48�

At x1= ¯ =xN=x, �NOON becomes

�NOON�x, . . . ,x� =
1

�2�2��
�N�exp�− iN
0x��� d
 ��
 − 
0�f	 


�


exp�i
x��N

+ exp�iN
0x��� d
 ��
 + 
0�f	−



�


exp�i
x��N� . �49�

I shall define a beam envelope function

F�x� 

1

�2��

� d
 ��
 − 
0�f	 


�


exp�i
x� , �50�

which is simply the electric field envelope of one of the
optical beams. We then have

�NOON�x, . . . ,x� =
1
�2

�FN�x�exp�− iN
0x�

+ FN�− x�exp�iN
0x�� . �51�

Assuming for simplicity an appropriate f�
 /�
� such that
F�x� is even, �NOON is further simplified to

�NOON�x, . . . ,x� = �2FN�x�cos�N
0x� , �52�

and the N-photon absorption rate becomes

�: ÎN�x�:�NOON = 2N ! �N�F�x��2N cos2�N
0x� . �53�

The pattern consists of an envelope �F�x��2N and an interfer-
ence fringe pattern cos2�N
0x�. If �
�
0, the envelope is

FIG. 1. �Color online� Schematic of quantum lithography by the
use of a NOON state.
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much broader than each period of the interference fringes;
we then obtain the main result derived by Boto et al., which
is a multiphoton interference pattern cos2�N
0x� with a pe-
riod equal to � / �N
0� and inversely proportional to N.

B. N-photon absorption of a classical state

The NOON state should be compared with a classical
N-photon state given by

��C� =
1

�N!
	 Â† + B̂†

�2

N

�0� , �54�

which can be obtained, for example, by putting an N-photon
state to one of the inputs of a 50%-50% beam splitter �Fig.
2�. The momentum space amplitude is


C�
1, . . . ,
N� = �
n=1

N
1
�2
� f	
n + 
0

�


 + f	−


n − 
0

�


� .

�55�

The amplitude is a product of one-photon amplitudes, under-
lining its classical nature. � becomes

�C�x1, . . . ,xN� = �
n=1

N
1
�2

�F�xn�exp�− i
0xn�

+ F�− xn�exp�i
0xn�� . �56�

Assuming again that F�x� is even, the N-photon absorption
rate is

�: ÎN�x�:�C = 2NN ! �N�F�x��2N cos2N�
0x� , �57�

which has the same envelope �F�x��2N as the NOON state,
although the interference period is fixed at � /
0. The peak
N-photon absorption rate is

�: ÎN�0�:�C = 2NN ! �N�F�0��2N = 2N−1�: ÎN�0�:�NOON.

�58�

Thus, even though we have meticulously carried out quanti-
zation and normalization, we find that, under very general
conditions, the peak multiphoton absorption rate of a classi-
cal state is higher than that of a NOON state by a factor of
2N−1, despite both having the same envelope �F�x��2N. Hence,

although the NOON state is able to offer an N-fold enhance-
ment of multiphoton interference resolution, the NOON state
manifestly does not have an enhanced multiphoton absorp-
tion rate, as claimed by Boto et al.

IV. PARAXIAL REGIME

The factor ��
� makes analytic calculations of the multi-
photon absorption pattern more difficult, and prevents an in-
tuitive understanding of the trade-off between resolution en-
hancement and multiphoton absorption rate. To mitigate this
issue, in this section I shall work in the paraxial regime,
where 
�� /c, and ��
��1. This approximation simplifies
the analysis significantly and adequately describes most op-
tics experiments, including the proof-of-concept quantum li-
thography experiment by D’Angelo et al. �13�.

To justify the paraxial approximation, consider Fig. 3,
which plots ��
� with respect to the normalized parameter
NA=c
 /�, defined as the numerical aperture �18�. One can
see that ��
� is relatively flat and �1 for a wide range of 
.
Even for an NA as high as 0.8, ��
� is only approximately
1.3, so in most practical cases, ��
� provides only a qualita-
tively unimportant correction factor.

In the paraxial regime, � defined in Eq. �30� becomes the
familiar N-dimensional Fourier transform of 
,

��x1, . . . ,xN� �
1

�2��N/2�
−	

	

d
1 . . . �
−	

	

d
N
�
1, . . . ,
N�

�exp	i�
n=1

N


nxn
 , �59�

because 
n�� /c and ��
n��1. � is then approximately
normalized,

FIG. 2. �Color online� Schematic of classical multiphoton
lithography.
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FIG. 3. �Color online� A plot of ��
� versus the numerical ap-
erture NA=c
 /�.
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� dx1 . . . dxN���x1, . . . ,xN��2 � 1. �60�

���x1 , . . . ,xN��2 can thus be roughly regarded as the
configuration-space probability density of finding N photons
near positions x1 , . . . ,xN respectively. Provided that we do
not localize them too precisely, photons as particles in space
are hence an acceptable concept in the paraxial regime and
described by a properly normalized probability density.

The configuration-space model has been successfully ap-
plied to the quantum theory of optical solitons �19�, where
the slowly varying temporal envelope approximation holds,
so it is perhaps not surprising that the model can also be
applied to the spatial paraxial domain, where the optical
beam is relatively uniform.

A. Simple model of multiphoton absorption

This probabilistic spatial interpretation of photons also
provides an intuitive understanding of the expression for the
multiphoton absorption rate in Eq. �35�. Consider a toy
model for an N-photon absorption material consisting of in-
dividual N-photon absorbers, each occupying a width of ��,
as depicted in Fig. 4. The probability of all photons hitting
the mth absorber situated at �m, thus exciting an N-photon
absorption event at this absorber, is given by

P��m��� = �
�m−��/2

�m+��/2

dx1 . . . �
�m−��/2

�m+��/2

dxN���x1, . . . ,xN��2,

�61�

where P��m� is the probability density of the N-photon ab-
sorption event. The spatial resolution of the N-photon ab-
sorption pattern evidently depends on ��. To eliminate this
dependence and make the resolution depend solely on the
resolution of the optical fields, we shall make �� very small,

P��m��� � ��N����m, . . . ,�m��2, �62�

so that in the limit of a continuous N-photon absorption ma-
terial, the probability density of N-photon absorption be-
comes

P�x� = ��N−1���x, . . . ,x��2, �63�

which is proportional to �:ÎN�x� : � given by Eq. �35�. So,
intuitively, an N-photon absorption event occurs when all

photons arrive within a very small neighborhood, and the
multiphoton absorption pattern is therefore approximately
given by the conditional probability distribution when all
photons arrive at the same place. This model has been used
by Steuernagel to approximate a four-photon absorption ma-
terial by four discrete detectors �11�, although the explicit
derivation here by the use of a configuration space model
confirms the intuition that a multiphoton absorption event
occurs when all photons arrive within a small neighborhood.

It must be stressed that although the interpretation of
���x1 , . . . ,xN��2 as a configuration-space probability density
is only valid in the paraxial regime, the expression Eq. �35�
is always a valid description of an ideal multiphoton absorp-
tion process, because of its dependence on the optical inten-
sity, a physically measurable quantity.

B. Analysis of proof-of-concept experiment by D’Angelo et al.

The proof-of-concept quantum lithography experiment by
D’Angelo et al. �13� remains well within the paraxial regime,
so an explicit analysis of the results can be carried out rela-
tively easily. In this section, I shall show that the coincidence
rate detected by in D’Angelo et al.’s experiment is necessar-
ily reduced, in order to emulate quantum lithography accu-
rately.

In the experiment depicted by Fig. 5, the spontaneously
generated photon pair has the following quantum state,

��� � �0� + ��2� , �64�

where � depends on the efficiency of the spontaneous para-
metric down conversion process, and must remain �1, so
that the quantum state contains only zero or two photons in
most cases. In D’Angelo et al.’s analysis, the photon pair
immediately exiting the crystal is assumed to have perfect
anticorrelation in transverse momentum,


�
1,
2� =
1
�2

�
1,
2�2� � ��
1 + 
2� , �65�

as the pump beam is assumed to be relatively uniform across
the transverse plane of the crystal and the crystal is relatively
short. The spatial biphoton amplitude becomes

��x1,x2� � ��x1 − x2� , �66�

and the photons are assumed to be perfectly correlated in
space. Clearly, both Eq. �65� and Eq. �66� are approxima-
tions. In any case, we shall first follow the approximate
analysis and normalize the expressions later. Immediately af-
ter exiting the crystal, the photon pair passes through two
slits of width a spaced b apart, resulting in a spatial ampli-
tude

FIG. 4. �Color online� A simple model of a multiphoton absorp-
tion material, consisting of many small individual multiphoton
absorbers.

FIG. 5. �Color online� Schematic of D’Angelo et al.’s proof-of-
concept quantum lithography experiment �13�.
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��x1,x2� � ��x1 − x2��
n=1

2 �rect	 xn − b/2

a

 + rect	 xn + b/2

a

�
�67�

���x1 − x2��rect	 x1 + x2 − b

2a



+ rect	 x1 + x2 + b

2a

� . �68�

Because the photons are assumed to be perfectly correlated
in space, they always pass through the same slit, resulting in
a NOON state in the spatial domain. The momentum-space
amplitude, on the other hand, is given by


�
1,
2� � sinc�a�
1 + 
2�
2

�cos�b�
1 + 
2�
2

� . �69�

This is obviously not the NOON state in the momentum
space for quantum lithography. To emulate quantum lithog-
raphy indirectly, D’Angelo et al. then let the photons propa-
gate to the far field. Via Fraunhofer diffraction �18�, the an-

gular two-photon coincidence distribution, �:Î2��� : � �20�,
becomes the magnitude squared of the Fourier transform of
��x1 ,x2�, or

�: Î2���:� � ���2�
	2��

�
,
2��

�

�2

�70�

����2 sinc2	2�a�

�

cos2	2�b�

�

 . �71�

This expression is the same as that derived in Ref. �13�. ���2
is now regarded as the total probability of two photons
reaching the detection plane. To be more rigorous, however,
��x1 ,x2� in Eq. �68� and 
�
1 ,
2� in Eq. �69� need to be
normalized. For example, the delta function in Eq. �68�
should be replaced by a sharp normalizable function,

��x1 − x2� →
1

��
g	 x1 − x2

�

 , �72�

where g�q� is a function of a dimensionless parameter q and
is normalized according to �dq �g�q��2=1. � is defined as the
biphoton coherence length, which depends on the phase
matching condition of the parametric down conversion pro-
cess and the nonlinear crystal length. � is assumed to be
much smaller than a and b, but must still be nonzero in
reality. The normalized � then becomes

��x1,x2� =
1

�2�a
g	 x1 − x2

�

�rect	 x1 + x2 − b

2a



+ rect	 x1 + x2 + b

2a

� , �73�

and the normalized 
 becomes


�
1,
2� =
��a

�
G	��
1 − 
2�

2

sinc�a�
1 + 
2�

2
�

�cos�b�
1 + 
2�
2

� , �74�

where

G�p� 

1

�2�
� dq g�q�exp�− ipq� �75�

is the dimensionless Fourier transform of g. The angular dis-
tribution is hence

�: Î2���:� � ���2
�a

�2 �G�0��2 sinc2	2�a�

�

cos2	2�b�

�

 ,

�76�

which is proportional to �. Thus, in order to produce a
NOON state in the near field and emulate quantum lithogra-
phy accurately in the far field, the photons need to pass
through the same slit, the biphoton coherence length needs to
be small and is even assumed to be zero in the analysis by
D’Angelo et al., but then the coincidence rate, proportional
to the biphoton coherence length, is necessarily reduced.

C. Jointly Gaussian multiphoton state

In Sec. III, we have studied the use of NOON state for
quantum lithography, and it has been shown that the NOON
state has a lower multiphoton absorption rate than a classical
state. In Sec. IV B, we have also seen that, in order to ap-
proximate a NOON state accurately in D’Angelo et al.’s ex-
periment, the multiphoton absorption rate is necessarily re-
duced. While these results provide evidence that it is
probably impractical to use a NOON state for multiphoton
lithography, the NOON state is only one example of infi-
nitely many possible quantum states for optical fields, and
other quantum states might be able to perform better while
still producing an enhanced resolution. For example, instead
of producing enhanced interference fringes with a minimum
period on the order of � /N, Björk et al. �21� considered
another special quantum state, called the reciprocal binomial
state, in order to produce a sharp interference spot, with a
minimum width on the order of � /N, within a periodic pat-
tern. Still, it remains a question whether this state can pro-
duce a significantly better multiphoton absorption rate, as the
NOON state is still a significant component of the reciprocal
binomial state. Steuernagel, in particular, studied the four-
photon reciprocal binomial state, with four discrete detectors
approximating an ideal four-photon absorption material, and
found that the multiphoton absorption rate is worse than that
of a classical state �11�.

In this section, I shall study an arguably simpler and more
intuitive N-photon state that produces a quantum-enhanced
Gaussian multiphoton absorption spot, in the paraxial re-
gime. I shall call this state a jointly Gaussian state, which is
a quantum generalization of the well known classical Gauss-
ian beams and is able to account for quantum correlations of
the photons. It is shown that, in certain limits, the jointly
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Gaussian state is also able to reduce the size of the multipho-
ton absorption spot by a factor of N compared with the one
photon case, but the reduction of size is always accompanied
by a reduced multiphoton absorption rate. For the jointly
Gaussian state, the quantum correlations of the photons, the
size of the multiphoton absorption spot, as well as the ab-
sorption rate can all be adjusted by changing just two param-
eters, so a study of this state is able to quantify and elucidate
the trade-off between resolution enhancement and multipho-
ton absorption rate.

1. Many-body coordinate system

Before defining a jointly Gaussian state, I shall first take a
detour and define a new many-body coordinate system,
widely used in many-body physics, which will significantly
simplify the analysis later. This coordinate transformation is

K =
1

N
�
n=1

N


n, 
n� = 
n − K , �77�

where K is the average momentum, and 
n� is relative mo-
mentum. K and N−1 of the 
n�’s form a complete basis, so I
shall somewhat arbitrarily define 
N� as the extraneous lin-
early dependent variable,


N� = − �
n=1

N−1


n�. �78�

The new differential is

dK d
1� . . . d
N−1� =
1

N
d
1 . . . d
N, �79�

so a new multiphoton amplitude should be defined as


��K,
1�, . . . ,
N−1� � = �N
�K + 
1�, . . . ,K + 
N� � , �80�

and normalized as

� dK d
1� . . . d
N−1� �
��K,
1�, . . . ,
N−1� ��2 = 1. �81�

The multiphoton absorption rate in terms of the new ampli-
tude in the paraxial approximation is

�: ÎN�x�:� = N ! �N��N� dK d
1� . . . d
N−1�

�
��K,
1�, . . . ,
N−1� �exp�iNKx��2

. �82�

The multiphoton absorption rate is therefore the magnitude
squared of the one-dimensional Fourier transform of 
�, with
respect to only the total momentum NK.

2. N-photon absorption of a jointly Gaussian state

In terms of the new coordinate system, we can now define
the jointly Gaussian state as follows,


��K,
1�, . . . ,
N−1� � = �C exp	−
K2

4B2
exp	−
1

4�2 �
n=1

N


n�
2
 ,

�83�

where B and � are two parameters assumed to be real for
simplicity and C is the normalization constant,

C = � N

�2��N�1/2 1

B�N−1 , �84�

as derived in Appendix B 1. This definition is inspired by the
well known jointly Gaussian distribution in statistics �22�.
The form of Eq. �83� is much simpler than a general jointly
Gaussian distribution because of bosonic symmetry, as dis-
cussed in Appendix B 2. The momentum amplitude of the
state given by Eq. �83� is also very close to that of a soliton
state �19�, so one can obtain a general jointly Gaussian state
approximately by adiabatic control of spatial solitons �23�.

The covariances of K and 
n� are calculated in Appendix
B 3,

�K2� = B2, �
n�
2� = 	1 −

1

N

�2, �85�

so B is a measure of the spread in the average momentum
and � is a measure of the spread in the momentum relative to
the average.

The variance of 
n, the momentum of each photon in the
original coordinates, is also derived in Appendix B 4 and
given by

�
n
2� = B2 + 	1 −

1

N

�2, �86�


n must be smaller than � /c, otherwise kz would become
imaginary, and 
n must be much smaller than � /c for the
paraxial approximation to hold. Moreover, if an optical sys-
tem has a certain aperture, it would also limit the transverse
spatial frequency �18�. Hence the variance of 
n, �
n

2�, must
be limited, and there exists a trade-off between B and �.

The multiphoton absorption pattern of the jointly Gauss-
ian state can be determined using Eq. �82�,

�: ÎN�x�:� = N ! �N�N	 2

�

N/2

B�N−1exp�− 2N2B2x2� .

�87�

The pattern is a Gaussian, with a root-mean-square width
given by

W 
�� dx x2�: ÎN�x�:�

� dx�: ÎN�x�:� �
1/2

=
1

4NB
. �88�

First, consider the case in which the photons are uncorre-
lated, and the classical Gaussian state in the original system
of coordinates is given by a product of one-photon Gaussian
amplitudes,
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C�
1, . . . ,
N� � �
n=1

N

exp	−

n

2

4�
n
2�

 . �89�

As shown in Appendix B 4, this corresponds to the jointly
Gaussian state when

B2 =
�2

N
=

�
n
2�

N
. �90�

The classical variance of the average momentum is equal to
the variance of each momentum, �
n

2�, divided by N. This is
consistent with the statistics of independent photons. The
multiphoton absorption width becomes

WC =
1

4�N�
n
2�

, �91�

where the subscript C denotes the value for a classical state.
Equation �91� can be regarded as the standard quantum limit,
and is better than the one-photon case by a factor of �N. On
the other hand, the minimum width is obtained when we
maximize B so that B=��
n

2� and let � be zero,

Wmin =
1

4N��
n
2�

. �92�

The factor-of-N enhancement compared with one-photon ab-
sorption, or the factor-of-�N enhancement compared with
classical N-photon absorption, can be regarded as the ulti-
mate quantum limit, and is consistent with other quantum
enhancement schemes �24�. This enhancement, however,
comes with a heavy price. Equation �87� shows that the mul-
tiphoton absorption rate is proportional to B�N−1, so while
increasing B and reducing � makes the Gaussian pattern
sharper, the reduction in � also reduces the multiphoton ab-
sorption rate, more so for large N.

To quantify this trade-off, we shall fix �
n
2� as a given

resource, and define a spot size reduction factor r with re-
spect to the classical case,

r 

WC

W
=� N

�
n
2�

B , �93�

so that r=1 corresponds to the standard quantum limit, and
r=�N corresponds to the ultimate quantum limit. We shall
also define a normalized peak absorption rate R with respect
to the rate in the classical case,

R 

�: ÎN�0�:�

�: ÎN�0�:�C

= r	N − r2

N − 1

�N−1�/2

. �94�

Figure 6 plots R versus r for several values of N. This
result is decidedly disappointing, as it shows that the maxi-
mum multiphoton absorption rate is obtained when the state
is a classical state, or r=1, and the peak rate monotonically
decreases to zero as the spot size is reduced. Furthermore,
even if one is willing to sacrifice the resolution and increase
�, the peak absorption rate is still reduced, because of its
dependence on B.

For applications such as multiphoton spectroscopy, spatial
resolution is not important, and it is more desirable to maxi-
mize the total multiphoton absorption rate. We can define the
normalized total rate as

Rtot =
� dx�: ÎN�x�:�

� dx�: ÎN�x�:�C

= 	N − r2

N − 1

�N−1�/2

. �95�

Figure 7 plots Rtot versus r. It can be seen that the total
rate does increase when one increases the spot size, but the
rate enhancement is very moderate. In fact, in the limit of
N→	, Rtot approaches

Rtot → exp	1 − r2

2

 , �96�

so the ultimate rate enhancement, when resolution is com-
pletely sacrificed and r=0, asymptotically approaches
exp�0.5��1.65 for large N. This small enhancement of mul-
tiphoton absorption rate is not likely to be useful.

To understand the above results, it is helpful to consider
the position correlation of the photons, derived in Appendix
B 5,
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FIG. 6. �Color online� Plots of peak multiphoton absorption rate
versus spot size reduction for several values of N. Both quantities
are normalized with respect to classical values. Interestingly, in the
limit of N→	, R→r exp��1−r2� /2�.
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FIG. 7. �Color online� Plots of total multiphoton absorption rate
versus spot size reduction for several values of N.
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�xnxm� =
1

4N
	 1

NB2 −
1

�2
, n � m . �97�

To obtain an enhanced multiphoton resolution, the bandwidth
of the average momentum, B, must be increased, leading to a
positive correlation in the momenta and a negative correla-
tion in the positions of the photons. So the photons are actu-
ally less likely to arrive near one another, leading to a lower
probability of the photons hitting the same absorber and
therefore a correspondingly less multiphoton absorption rate.
On the other hand, if B is reduced, the position correlation
becomes positive, and the photons are more likely to arrive
close to one another, leading to a slightly enhanced total
absorption rate. Ultimately, how close the photons can arrive
with respect to one another is still restricted by the resolution
limit of the optical system, so the rate enhancement is not
significant.

It must be stressed again that the preceding argument, as
well as Boto et al.’s heuristic argument about photons con-
strained to arrive at the same place, are only applicable to the
paraxial regime, where the positions of photons are relatively
well defined quantities. The example of the jointly Gaussian
state shows that, even in the paraxial regime, Boto et al.’s
heuristic argument is not correct, and the photons are actu-
ally less likely to “arrive at the same place” when the reso-
lution is enhanced. Although this has been shown by Steuer-
nagel for the specific example of four-photon reciprocal
binomial state �11�, the study of the jointly Gaussian state
here confirms this fact for an arbitrary number of photons.

V. DISCUSSION AND CONCLUSION

In summary, through a rigorous study of quantum lithog-
raphy and the NOON state, an investigation of the proof-of-
concept experiment by D’Angelo et al. �13�, and an analysis
of a jointly Gaussian state, I have been unable to find any
evidence, as far as the spatial domain is concerned, that sup-
ports the heuristic claim by Boto et al. �4�, namely that the
photons would be “constrained to arrive at the same place”
and the multiphoton absorption rate would be enhanced due
to spatial effects. On the contrary, all examples show that the
multiphoton absorption rate is actually reduced, more so for
larger N, when a quantum state is used to enhance the reso-
lution.

Admittedly, there are several assumptions involved in the
analysis, the negligence of time domain effects in particular.
As Javanainen and Gould �9� and Perina et al. �10� have
shown, frequency entanglement can enhance the multiphoton
absorption rate, but this enhancement is likely to be indepen-
dent of the detrimental spatial effect, which seems to be an
unavoidable penalty incurred by the resolution enhancement
effect itself. That said, it remains to be proved whether tak-
ing time domain into account would enable one to eliminate
or reverse the detrimental spatial effect.

Moreover, only the NOON state and the jointly Gaussian
state have been studied in this paper, but the possibility of
other exotic quantum states being able to enhance the reso-
lution while maintaining a respectable multiphoton absorp-
tion rate cannot be ruled out. In fact, alternative strategies

have already been proposed to solve the low exposure prob-
lem of quantum lithography. For example, Agarwal et al.
have shown that strong nonclassical beams from a paramet-
ric amplifier can also produce enhanced two-photon interfer-
ence fringes �5�, albeit with a background worse than a clas-
sical multiple exposure technique �6�. Hemmer et al. also
proposed the use of a narrowband multiphoton absorption
material and classical light �7�, similar to Yablonovitch and
Vrijen’s proposal �3�, to achieve the same resolution en-
hancement as quantum lithography.

In conclusion, in light of the results set forth, the original
quantum lithography scheme is unlikely to be practical in the
near future. Nonetheless, it has inspired many ongoing re-
search efforts on the elusive goal of beating the optical reso-
lution limit, and should therefore remain an interesting the-
oretical concept.
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APPENDIX A: PHYSICAL SIGNIFICANCE OF THE
GEOMETRIC FACTOR �„�…

To understand why the factor ��
� arises in Eq. �30� of
the formalism, consider the electric field envelope given by
Eq. �19�,

Ê�+��x,z� � �
−�/c

�/c

d
 ��
�â�
�exp�i
x + ikzz� , �A1�

where kz is the dependent variable given by kz=��2 /c2−
2.
We shall leave the form of ��
� unspecified and derive it
purely from the fact that the formalism is invariant under a
rotation in the z-x plane. Imagine that the electric field profile
is rotated anticlockwise in the z-x plane, where z is the hori-
zontal axis and x is the vertical axis, by an angle �. This is
equivalent to defining new coordinates as follows:

x� = x cos � + z sin �, z� = − x sin � + z cos � . �A2�

The envelope becomes

Ê�+��x�,z�� � �
−�/c

�/c

d
 ��
�â�
�exp�i
�cos �x� + sin �z��

+ ikz�− sin �x� + cos �z��� �A3�

=�
−�/c

�/c

d
 ��
�â�
�exp�i�
 cos � − kz sin ��x�

+ i�
 sin � + kz cos ��z�� . �A4�

If we define the momenta in the new coordinate system to be


� = 
 cos � − kz sin �, kz� = 
 sin � + kz cos � , �A5�

evidently the new definitions still satisfy the dispersion rela-
tion
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�2 + kz�
2 = 
2 + kz

2 =
�2

c2 . �A6�

More crucially, the coordinate transformation yields

d
 =
kz

kz�
d
�, �A7�

so that the electric field envelope becomes

Ê�+��x�,z�� � �
−�/c

�/c

d
�
kz

kz�
��
�â�
�exp�i
�x� + ikz�z�� .

�A8�

If the electric field is invariant to such a rotation, we should
be able to define a new momentum-space operator â�
��
such that

Ê�+��x�,z�� � �
−�/c

�/c

d
���
��â��
��exp�i
�x� + ikz�z�� ,

�A9�

with the commutator

�â��
��, â�†�
��� = ��
� − 
�� . �A10�

Comparing Eq. �A8� and Eq. �A9�, we have

â��
�� =
kz

kz�

��
�
��
��

â�
� , �A11�

but the coordinate transformation also restricts the relation
between â�
� and â��
��,

â�
� = 	d
�

d


1/2

â��
�� = 	 kz�

kz

1/2

â��
�� . �A12�

Combining Eq. �A11� and Eq. �A12� yields

��
�
��
��

= 	 kz�

kz

1/2

. �A13�

For Eq. �A13� to hold for any rotation, ��
� must depend on

 only according to the following,

��
� = Ckz
−1/2 =

C

��2/c2 − 
2�1/4 , �A14�

where C is an arbitrary constant. Equation �A14� is identical
to Eq. �21� with C=�� /c. Hence the factor ��
� arises
purely due to the invariance of the formalism with respect to
rotation in the z-x plane. Furthermore, the general transfor-
mation rule for â�
� with respect to a rotation is given by Eq.
�A11�, or

â�
� = 	 kz�

kz

1/2

â��
�� �A15�

=	
 sin � + kz cos �

kz

1/2

â��
 cos � − kz sin �� . �A16�

APPENDIX B: PROPERTIES OF THE JOINTLY
GAUSSIAN STATE

In this section I shall derive several properties of the
jointly Gaussian state,


��K,
1�, . . . ,
N−1� � = �C exp	−
K2

4B2
exp	−
1

4�2 �
n=1

N


n�
2
 ,

�B1�

where C is the normalization constant, B and � are real pa-
rameters, and 
N� is given by −�n=1

N−1
n�.

1. Normalization

To calculate C, consider the normalization

C� dK d
1� . . . 
N−1� exp	−
K2

2B2
exp	−
1

2�2 �
n=1

N


n�
2
 = 1,

�B2�

C�2�B� d
1� . . . d
N−1� exp	−
1

2�2 �
n=1

N


n�
2
 = 1. �B3�

As 
N� =−�n=1
N−1
n�,

�
n=1

N


n�
2 = �

n=1

N−1


n�
2 + 	�

n=1

N−1


n�
2

= �
n=1

N−1

�
m=1

N−1


n�Anm
m� , �B4�

where Anm=�nm+1 and �Anm � =N. Using the normalization of
a jointly Gaussian function �22�,

� d
1� . . . d
N−1� exp	−
1

2�2 �
n=1

N−1

�
m=1

N−1


n�Anm
m�

= ��2��N−1�N−1�Anm�−1/2 �B5�

=
��2��N−1�N−1

�N
. �B6�

Substituting Eq. �B6� into Eq. �B3� gives Eq. �84�.

2. Bosonic symmetry

I shall now show that Eq. �B1� is a consequence of en-
forcing bosonic symmetry on a general jointly Gaussian
function. In the original coordinate system, 
 can be deter-
mined from Eq. �80�,


�
1, . . . ,
N� =�C

N
exp�−

1

4B2	 1

N
�
n=1

N


n
2

−
1

4�2 �
n=1

N 	
n −
1

N
�
m=1

N


m
2� , �B7�

which can be rewritten as
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�
1, . . . ,
N� =�C

N
exp	−

1

4�
n=1

N


nBnm
m
 . �B8�

Equation �B8� is a general jointly Gaussian function, but
because of boson symmetry of 
 as prescribed by Eq. �28�,
Bnm must have identical on-axis components, as well as iden-
tical off-axis components. With some algebra, Bnm can be
determined from Eq. �B7�,

Bnn =
1

N2B2 + 	1 −
1

N

 1

�2 , �B9�

Bnm =
1

N2B2 −
1

N�2 , n � m . �B10�

Any Bnm with identical on-axis components and identical
off-axis components can be specified using B and �, so Eq.
�B1� can specify any general jointly Gaussian functions with
bosonic symmetry.

3. Covariances

The covariances of momentum variables should be deter-
mined from the probability distribution

�
��K,
1�, . . . ,
N−1� ��2

= C exp	−
K2

2B2
exp	−
1

2�2 �
n=1

N−1

�
m=1

N−1


n�Anm
m�
 ,

�B11�

where Anm=�nm+1 is defined in Appendix B 1. The variance
of K is simply given by

�K2� = B2, �B12�

while the covariance matrix for 
n�’s is given by

�
n�
m� � = �2Anm
−1 . �B13�

Because Anm only has two parameters, its inverse, defined as
Cnm
Anm

−1 , is easy to calculate and is given by

Cnn = 1 −
1

N
, Cnm = −

1

N
, n � m . �B14�

We thus obtain the covariances,

�
n�
2� = 	1 −

1

N

�2, �
n�
m� � = −

�2

N
, n � m .

�B15�

4. Classical Gaussian state

The covariances of 
n in the original coordinate system
are

�
n
2� = ��K + 
n��

2� = �K2� + �
n�
2� �B16�

=B2 + 	1 −
1

N

�2, �B17�

�
n
m� = �K2� + �
n�
m� � = B2 −
�2

N
. �B18�

So the photons are uncorrelated when B2=�2 /N, and

�
1 , . . . ,
N� in Eq. �B8� can be written as


C�
1, . . . ,
N� =�C

N
�
n=1

N

exp	−

n

2

4�2
 , �B19�

a product of one-photon Gaussian amplitudes, and therefore
a classical state.

5. Configuration-space multiphoton amplitude

In the paraxial regime, the configuration-space multipho-
ton amplitude can be obtained by Fourier transform of Eq.
�B8�,

��x1, . . . ,xN� � exp	− �
n,m

xnBnm
−1 xm
 , �B20�

which is determined using the well known characteristic
function of a jointly Gaussian distribution �22�. The
configuration-space probability density is thus

���x1, . . . ,xN��2 � exp	− 2�
n,m

xnBnm
−1 xm
 , �B21�

and the covariance matrix for the photon positions is
�xnxm�=Bnm

−1 /4. The position variance is then

�xn
2� =

1

4
� 1

N2B2 + 	1 −
1

N

 1

�2� , �B22�

and the covariance is

�xnxm� =
1

4N
	 1

NB2 −
1

�2
, n � m . �B23�

�1� M. Born and E. Wolf, Principles of Optics �Cambridge Uni-
versity Press, Cambridge, UK, 1999�.

�2� C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, J. Vac.
Sci. Technol. B 16, 3142 �1998�.

�3� E. Yablonovitch and R. B. Vrijen, Opt. Eng. �Bellingham� 38,
334 �1999�.

�4� A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P.

Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733 �2000�.
�5� G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley,

Phys. Rev. Lett. 86, 1389 �2001�; E. M. Nagasako, S. J. Bent-
ley, R. W. Boyd, and G. S. Agarwal, Phys. Rev. A 64, 043802
�2001�.

�6� S. J. Bentley and R. W. Boyd, Opt. Express 12, 5735 �2004�.
�7� P. R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S.

RELATIONSHIP BETWEEN RESOLUTION ENHANCEMENT… PHYSICAL REVIEW A 75, 043813 �2007�

043813-13



Zubairy, Phys. Rev. Lett. 96, 163603 �2006�.
�8� R. W. Boyd and S. J. Bentley, J. Mod. Opt. 53, 713 �2006�,

and references therein.
�9� J. Javanainen and P. L. Gould, Phys. Rev. A 41, 5088 �1990�.

�10� J. Perina, Jr., B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 57,
3972 �1998�.

�11� O. Steuernagel, J. Opt. B: Quantum Semiclassical Opt. 6,
S606 �2004�.

�12� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-
tics �Cambridge University Press, Cambridge, UK, 1995�.

�13� M. D’Angelo, M. V. Chekhova, and Y. Shih, Phys. Rev. Lett.
87, 013602 �2001�.

�14� K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd,
Phys. Rev. A, 42, 4102 �1990�; see also B. Huttner and S. M.
Barnett, ibid. 46, 4306 �1992�.

�15� H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory IT-24,
657 �1978�.

�16� Notice that Ref. �15� incorrectly assumes â�kx ,ky ,��
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