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Regimes of antisynchronized quasiperiodic and synchronized and unsynchronized chaotic oscillations have
been observed in a bidirectional solid-state ring laser with modulated pump and are chracterized in terms of the
maximum Lyapunov exponent. The results can be understood in terms of the coupled dynamics of two
counterpropagating modes of a ring laser coupled to atomic population inversion.
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Chaotic oscillations are noiselike fluctuations of system
variables characterized by a complex power spectrum and
extreme sensitivity to initial conditions. Chaotic oscillations
are, in fact, a collection of many orderly trajectories, none of
which dominates under ordinary circumstances �1�. By per-
turbing a chaotic system in the right way, we can control
chaos �2–4� and force the system to follow one of its regular
trajectories �5–7�. Another fascinating aspect of chaotic dy-
namics is that coupled chaotic systems can synchronize and
track each other’s chaotic motion �8–10�.

Synchronization of periodic oscillations has been known
since Huygens’ observation of this phenomenon in coupled
pendulum clocks �8�. That synchronization can occur also in
the regime of chaotic oscillations is a relatively recent real-
ization. Understanding of chaos and mechanisms for its con-
trol are of interest not only from the fundamental viewpoint
but also for applications of chaotic signals across the spec-
trum of scientific endeavor ranging from encryption in com-
munication �11� to electronic circuits �12� and control of car-
diac function �13�.

Using a simple system of two modes of a class-B ring
laser coupled via the gain medium and backscattering, we
predict theoretically and observe experimentally that mode
intensities can exhibit periodic and chaotic oscillations.
Moreover, in a certain range of parameters, chaotic oscilla-
tions of mode intensities synchronize and the laser emits
identical copies of the same chaotic signal in two directions.
In contrast to most recent studies �11–13�, where synchroni-
zation arises due to an asymmetric master-slave coupling be-
tween two different chaotic systems, in our case, the internal
system dynamics self-organizes to produce synchronized
chaotic and quasiperiodic oscillations of mode intensities.

The experiments were carried out on a continuous wave
neodymium-doped yttrium aluminum garnet �Nd:YAG�
solid-state ring laser operating at 1064 nm and pumped by a
diode laser operating at 810 nm. An outline of the experi-
mental setup is shown in Fig. 1. The laser cavity consists of
two spherical mirrors around a 2-cm-long Nd:YAG gain rod
and two flat mirrors arranged to form a folded ring cavity.

The end surfaces of the Nd:YAG rod were antireflection
coated for the pump and laser wavelengths. A mode-
matching lens focused the light from the pump diode laser at
the center of the gain rod. A small-amplitude modulation
current from a signal generator was added to the diode laser
drive current. By varying the amplitude and frequency of
modulation current we can modulate the pump intensity and
therefore the gain of the ring laser.

The experiments were performed with the ring laser op-
erating in a single longitudinal mode in each direction. The
two oppositely directed traveling wave modes are coupled
via their competition for gain from the same set of atoms and
by the backscattering of radiation from one mode into the
direction of the other from various optical elements inside
the cavity. The gain medium responds to the total electric
field, which is a superposition of the fields of the two modes
leading to a spatially varying population density. This system
of modes can be described by the following set of equations
of motion �14–16�:

ḟ1 = �d0 − 1�f1 + �i
b

�
+ d+� f2, �1�

ḟ2 = �d0 − 1�f2 + �i
b

�
+ d−� f1, �2�

ḋ0 = a�r − d0�1 + �f1�2 + �f2�2� − d+f1
*f2 − d−f1f2

*� , �3�

ḋ+ = a�− d0f1f2
* − d+�1 + �f1�2 + �f2�2�� . �4�

Here f1 and f2 are the scaled, dimensionless, slowly varying
field amplitudes for the two modes, d0 is the average popu-
lation density, and d+ �=d−

*� is the complex Fourier amplitude
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FIG. 1. An outline of the experimental setup.
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of the leading spatial harmonic of population density. Both
d0 adn d+ have been expressed in terms of the average
threshold population density. b �rad/s� is the backscattering
coefficient, � �s−1� is the cavity field decay rate, a=�� /�,
where �� is the population decay rate, and time has been
scaled in units of �−1. The pump ratio r is the pump laser
power relative to the threshold pump power. For the ring
laser operation below threshold r�1, and for operation
above threshold r�1. The pump ratio r was modulated by a
square wave signal of amplitude hm,

r = r0 + hm sgn�cos�2��m�/��� �5�

where r0 is the average value of the pump ratio and the
function sgn�x� is +1 if its argument x is positive and −1 if it
is negative.

The advantage of scaled dynamical equations is that only
two �lumped� parameters b and � are needed to simulate the
behavior of a particular system. We shall see that b and � can
be determined experimentally and, once � is known, the third
parameter a=�� /� is determined from the knowledge of the
population decay rate �� =T1

−1 where T1=240�10−6 s
�15,17�. The dynamical behavior predicted by this equation
can be explored analytically for small pump modulations.
For large pump modulations numerical methods must be
used to explore its dependence on frequency and depth of
modulation. It is found that the intensities of the two oppo-
sitely directed modes may exhibit antiphase periodic, quasi-
periodic, and synchronized or unsynchronized chaotic inten-
sity oscillations �14�.

For the experiments reported here the drive current of the
pump laser was adjusted to 1.5 times the threshold value
�pump ratio r=1.5�. To modulate the gain of the laser a small
square-wave component was added to the drive current of
the pump laser. The dynamical behavior of the ring laser was
explored by varying the frequency �m and depth hm of modu-
lation. For each frequency of modulation, the depth of modu-
lation was varied in the range �0,r0=1.5�. Mode intensities
coming out of the laser were monitored by two photodetec-
tors, whose outputs after amplification were recorded by a
digital storage oscilloscope for further analyses. The results
presented are typical of above-threshold operation of the la-
ser.

Without pump modulation, the mode intensities show an-
tiphase �� out of phase� sinusoidal oscillations. A plot of I1
vs I2 produces a straight line I1+ I2=const. Power spectra for
both mode intensities show a sharp peak at frequency b /2�.
This allowed us to extract the backscattering coefficient b.
Antiphase sinusoidal intensity oscillations are characteristic
of single-mode operation of the ring laser and were used as a
check for its single-mode operation. All data for a fixed
modulation frequency were collected in one session to mini-
mize the variation of backscattering coefficient and cavity
decay rate, which were found to vary with the alignment of
optical elements inside the cavity and environmental factors
such as dust and humidity.

Figure 2 shows experimentally recorded mode intensities
I1�t� and I2�t� and intensity power spectrum S��� for modu-
lation frequency �m=2 kHz and a small depth of modulation
hm=0.064. To facilitate comparison between measured and

theoretically simulated wave forms, intensity wave forms are
scaled to have unit maximum intensity and power spectra are
normalized to have the highest peak of unit strength. For
these parameters, the system exhibits antiphase intensity os-
cillations but their amplitude is modulated. The power spec-
trum shows dominant frequencies around �=2, 24, and
52 kHz. The highest peak corresponds to antiphase intensity
oscillations at b /2�. The effect of small depth of gain modu-
lation hm	r0 is to modulate the amplitude of intensity oscil-
lations at frequency �m. This leads to the peak at 2 kHz.
Other small peaks at the sum and difference of b /2� and �
can also be seen. The third peak at 24 kHz corresponds to the
relaxation oscillation frequency for unidirectional operation
�18�

�r 	
1

2�

�r0 − 1���� �6�

where r0 is the average pump parameter and �� is the popu-
lation decay rate. The cavity field decay rate �=c
 /nL,
where 
 is the loss per round trip, L is the cavity perimeter, c
is the speed of light, and n is the refractive index. Taking the
peak at �=24 kHz to be the relaxation oscillation frequency
�r, we can extract the value of 
 from


 =
4�2nL�r

2

�r0 − 1���c
. �7�

Substituting n=1, L=69.6 cm, r0=1.5, �� =4.167 kHz �for
Nd:YAG medium�, and �r=24 kHz we get 
=2.54%. This
allows us to extract the second parameter �=
c /nL needed
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FIG. 2. Experimentally recorded signals for �m=2 kHz, hm

=0.064, r0=1.5, b=50 kHz, and 
=2.54%: �a� Mode intensities
I1�t� and I2�t�, �b� I1 vs I2 plot, and �c� mode intensity power spec-
trum S���.
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for comparing experimental results with the theoretical pre-
dictions.

For bidirectional �single mode in each direction� opera-
tion another characteristic frequency associated with relax-
ation oscillations �in addition to �R� appears. This additional
frequency is given by �a=�r /
2 �19�. The identification of
�r=24 kHz as the relaxation oscillation frequency is sup-
ported by the occurrence of spectral components at �r and
�a=
2�r together in the power spectra. Indeed in all spectra
with low modulation depths, two frequencies close to 24 and
17 kHz �17�24/
2� were observed together.

The results of theoretical simulation based on Eqs. �1�–�4�
for the parameters of Fig. 2 are shown in Fig. 3 and agree
well with experimentally measured quantities. Without gain
modulation, I1 vs I2 plots of experimentally recorded inten-
sity wave forms, lead to all representative points lying along
the line I1+ I2=const, as expected for antiphase intensity os-
cillations. In the presence of gain modulation, the amplitude
of intensity oscillations is modulated, leading to representa-
tive points falling in a band around I1+ I2=const as seen in
Figs. 1 and 2. With increasing depth of modulation, the band
in Fig. 2 expands to fill the region near the origin. Intensity
modulation becomes increasingly anharmonic as its ampli-
tude increases until at a critical depth of gain nodulation a
sudden transition to unsynchronized chaotic oscillations oc-
curs.

The transition to chaos results in dramatic changes in the
power spectrum. It is accompanied by the disappearance of
the spectral component b /2� from the power spectrum,
which remains a prominent feature of intensity power spec-
trum throughout the quasiperiodic regime. In the unsynchro-
nized chaotic regime the intensity wave forms produce I1 vs

I2 plots with system representative points scattered over a
large area �Fig. 4� without any discernible pattern. A regular
pattern can, however, emerge for certain parameters although
the representative points are still spread out over a significant
portion of the I1-I2 plane.

It is also possible to operate the laser in the regime where
mode intensity wave forms are expected to be chaotic but
synchronized to one another �20,21�. Figures 5�a�–5�c�
shows experimentally recorded intensity wave forms in this
regime corresponding to parameters �m=6 kHz, hm=1.413.
For comparison, Fig. 5�c� shows the theoretically expected I1
vs I2 plot for these parameters. The representative points
corresponding to recorded intensity wave forms crowd
around the straight line I1= I2 in Fig. 5�b�. This indicates that,
although the wave-form synchronization is lost periodically,
the signals do not drift far from synchronization. We attribute
the departures from strict synchronization to spontaneous
emission and pump noise, which are not included in the the-
oretical model.

It is difficult to reproduce experimentally measured sys-
tem trajectories theoretically for chaotic systems because of
their sensitive dependence on initial conditions. For this rea-
son we have chosen the maximum Lyapunov exponent for a
quantitative comparison between theory and experiment. The
maximum Lyapunov exponent is the fastest rate of exponen-
tial divergence �or convergence� of nearby system trajecto-
ries. It is a global property of the system trajectories rather
than finite portions of them. To compute �m we need the
system trajectory in its full phase space. Experimentally,
however, we measure only two dynamic variables �mode in-
tensities�. To reconstruct the system trajectory in full phase-
space from the measured intensity wave forms, we use a
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FIG. 3. Theoretically simulated signals for parameters of Fig. 2:
�a� Mode intensities I1�t� and I2�t�, �b� I1 vs I2 plot, and �c� mode
intensity power spectrum S���.
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FIG. 4. Experimentally recorded unsynchronized chaotic signals
for �m=6 kHz and hm=0.428: �a� Mode intensities I1 and I2 and �b�
I1 vs I2 plot. �c� shows theoretically simulated I1 vs I2 plot.
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procedure developed by Wolf et al.�22�. From the recon-
structed phase space we estimate �m. Both the experimen-
tally measured and theoretically calculated intensity time se-
ries were treated using this procedure. It is important to
emphasize that only two parameters � and b are needed as
input to the theoretical model to simulate the experimental
results. These parameters were estimated from two charac-
teristic frequencies of the system, viz., the frequency of re-
laxation oscillations and the frequency of sinusoidal an-
tiphase intensity oscillations. The maximum Lyapunov
exponent estimated by using this procedure for �m=2 kHz
and hm in the range �0, 1.5� is shown in Fig. 6.

The solid line connecting the experimental points and the
dashed line connecting the theoretical points are drawn as
guides to the eye. There is reasonable agreement between the
values of �m calculated from the experimental and theoretical
signals. In particular, the peak near hm=0.39 is well repro-
duced. This behavior of �m could not have been inferred
from either the power spectrum or intensity time series.

The system of two strongly coupled laser modes dis-
cussed here supports only anticorrelated single-mode opera-
tion when population dynamics are slave to the field dynam-

ics �23�. With increased phase space due to population
dynamics, the system can accommodate much richer dy-
namical behavior including synchronized and unsynchro-
nized chaotic intensity oscillations. The synchronization of
chaos and quasiperiodic behavior observed here arise natu-
rally by an organization of the internal system dynamics.

The spectrum of dynamical behavior that a single-mode
bidirectional ring laser is capable of exhibiting is extremely
rich �24,25�. For example, with the inclusion of polarization
dynamics �in addition to cavity and population dynamics� the
phase space extends beyond that encountered in class-B la-
sers, leading to the observation of the period-doubling route
to chaos, chaotic mode alteration, and antiphase dynamics
�26,27�.

There is growing interest in extending the concept of syn-
chronization, which originally referred to periodic oscilla-
tions, to irregular chaotic oscillations. The general frame-
work for describing and understanding synchronization in
the context of chaotic systems is an evolving field of re-
search. The experimental system described here, together
with the theoretical model to simulate its rich dynamical be-
havior, offers exciting opportunities for exploring various
concepts in chaos synchronization, including the effects of
noise on loss synchronization and perhaps even ways of
overcoming the effects of noise in loss of synchronization.

One of us �F.R.� would like to thank E. G. Lariontsev for
many helpful exchanges on the work reported here.
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