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Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation
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We propose and experimentally demonstrate a simple and robust approach for retrieving arbitrary complex-
valued fields from three or more diffraction intensity recordings. We need no a priori knowledge about the
object field. The convergence rate is rapid. We obtained good results using experimental data with only 80
iterations (160 fast Fourier transforms). The method does not suffer any stagnation or ambiguity problem, and
it also exhibits a high immunity to noise. The technique exhibits great potential in lensless phase-contrast
imaging, wave-front sensing, and metrology for a wide spectral range.
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The phase of radiation scattered from an object carries
important information about the object surface or its inner
structure. Its measurement has been a key means of investi-
gation in many fields, as in materials and biological sciences.
Because only the magnitude of radiation can be measured
directly over a large spectral range, the phase problem arises.
Solutions to the phase problem fall into two categories: in-
terferometric approaches [1-3] and beam-propagation-based
approaches [4—6]. With the rapid progress in computing
techniques, as well in digital imaging devices, beam-
propagation-based phase recovery approaches have been re-
ceiving increasing interest. Much significant progress has
been made, especially in x-ray diffraction imaging [7-9], in
recent years. Several reasons that underlie this trend are the
simple experimental setup, robustness to external influence,
and suitability for various wavelengths.

The method proposed by Gerchberg and Saxton in 1972
[4] is the first widely accepted beam-propagation-based
phase recovery method. The idea is that the missing phases
can be recovered by iteratively applying the magnitude con-
straints in object and Fourier-transformed space. Fienup
modified the Gerchberg-Saxton algorithm in 1978 by using
finite support and non-negativity constraints in object space
instead of the magnitude of the object [5]. In subsequent
years, Fienup’s algorithms and its variations have been suc-
cessfully demonstrated for various applications, in particular
for real and non-negative objects. In 1998, Miao et al. clari-
fied the sampling requirement for unique phase retrieval and
pointed out that oversampling of diffraction patterns usually
guarantees the convergence [6]. In some important fields,
such as electron microscopy and x-ray diffraction imaging,
the object fields are complex valued. For instance, multiple
scattering of electrons or a spatial variation in the anomalous
scattering of x rays can both give rise to a complex object
field. Although it has been shown that reconstruction of a
complex object is possible if a strong support is available
[10] or if a low-resolution image can also be measured [11],
it is a common perception that, because of the loss of the
non-negative constraint, phase retrieval in general for
complex-valued objects is much more difficult than from real
and non-negative objects. Strong support constraints include
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certain special shapes or separated supports, and the support
needs also to be sharp and sufficiently tight (true boundary).
One solution is then to develop experimental strategies. In
recent work, Faulkner and Rodenburg [12] suggested moving
an aperture to record a set of patterns diffracted from differ-
ent part of the object. The object field in the overlapped area
can be better determined because its diffraction would appear
in several recordings, thus reducing the possibility of stagna-
tion. In recent experimental work [13,14], Rodenburg ef al.
have successful demonstrated this technique with laser and
hard x-ray sources using several hundred recordings. An-
other experimental strategy is to add several known phase
curvatures into the incident beam when recording the diffrac-
tion patterns [15]. One theoretical solution proposed by
McBride et al. is to introduce a difference map to specify the
basic iteration to overcome the stagnation problem [16].

Wave-front sensing is another class of noninterferometric
approach for phase recovery. The three wave-front sensors
most commonly used are the Shack-Hartmann, the curvature,
and the pyramid sensors. The essence of these sensors is the
introduction of a known phase perturbation in the recording
of intensities. From the intensities, the slope (or curvature) of
the phase of the wave front can be estimated. These sensors
usually can only work for smooth wave fronts.

In this paper, we show that one can significantly improve
the convergence and robustness of the iterative method by
adopting the essence of the wave-front sensing technique. A
strong phase modulation is intentionally introduced into the
object field. Thus, in the recorded diffraction pattern, any
sampling would have contributions from all points in the
object. Distributing information of one object point to all
pixels of the sensor minimizes the effect of sensor noise and
also eliminates the stagnation.

Figure 1 illustrates the experimental arrangement. A pix-
elated phase plate, mounted on a linear stage, is positioned
downstream of an extended object. The object can be of
transmission or reflection type. The distances from the plate
to the object and the plate to the sensor [charge-coupled de-
vice (CCD)] are Z, and Z,, respectively. The phase of the
plate is known and distributed uniformly in the range of O to
2. The wave front at the object plane U,,; and that before
the plate are related by the Sommerfeld-Rayleigh diffraction
integral. The wave front after the plate and that on the CCD
are related by the Fresnel integral, since Z, is selected to be
large enough. Thus, the Fresnel algorithm [17] can be ap-
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FIG. 1. (Color online) Experimental arrangement of wave-front-
modulation-based phase retrieval approach.

plied for a fast calculation. Supposing that the pixel pitch of
the CCD is Ax, the number of pixels of the CCD in one
dimension is N, and \ is the wavelength of light, according
to the sampling interval relationship in the Fresnel algorithm,
the pixel pitch of the plate needs to be Aé=NZ,/(NAx). In
order for the CCD to resolve the diffraction pattern, closely
before the plate is placed a square aperture with a side length
NZ,/Ax. Notice that the recorded diffraction pattern is not
oversampled.

M diffraction patterns are collected, as the plate is shifted
transversely by a multiple of the plate pixel pitch. The new
phase retrieval algorithm, as illustrated in Fig. 2, starts from
a random estimate of U, the wave front before the plate, and
proceeds with the following steps in an iterative manner. (1)
Modulate the current estimate of U, with the plate phase

o=V (E-mA¢), yielding a modulated wave front U,
=U, exp(jeg,,), where n is the iteration number, m is the cur-
rent plate position (m=0,1,...,M), and the function V(&)
represents the phase distribution of the plate. (2) Propagate
the wave front l~],, using the Fresnel algorithm to the CCD to
obtain an estimate V,, of the diffraction field. (3) Replace the
magnitude of V, with the recorded one. (4) Propagate the
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FIG. 2. Procedure for the wave-front-modulation-based phase
retrieval algorithm. n is the iteration number; M the total number of
recordings; /,, the mth recorded intensity pattern; Fr7: the Fresnel
propagation operator; 7: the beam propagation operator.
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corrected wave front \7n back to the plate plane. (5) Remove
the plate phase modulated in step 1 to obtain a new and
improved estimate of the wave front before the plate. (6)
Repeat steps 1-5 for the next plate position, i.e., m=m+1. If
the last plate position is reached, then use the first one. This
process ends when the change of amplitude between two
successive retrieved wave fronts before the plate is suffi-
ciently small. After the object field on the plate plane has
been obtained, further propagation to the object plane gives
the original object field. Under the Fresnel approximation,
the object resolution in reconstruction is approximately given
by

5x=)\Z1/S=(Zl/Z2)Ax, (1)

where S, =\Z,/Ax, represents the size of the limiting aper-
ture before the plate.

In this algorithm, the wave front can be smooth or totally
random in both its amplitude and phase. The only informa-
tion needed to know is the phase retardance introduced by
the plate. The use of a plate with a random phase results in
more uncorrelated diffraction patterns, allowing for retriev-
ing more information from each recording, and thus elimi-
nating the stagnation problem. The solution given by the
approach is unique since the random phase of the plate ef-
fectively breaks any symmetry that may exist in the object
field. Therefore, even trivial ambiguities, such as the object
field shift and the twin image as appearing in the Fienup
algorithms, do not exist in the proposed approach. Further-
more, in the recording of the diffraction pattern, the approach
avoids the over exposure problem. Here, the nondiffracted
light will be diffracted by the phase plate. By selecting the
phase of the plate and the size of its pixel, one can make the
diffraction pattern have a uniform intensity distribution over
the whole sensing area of the CCD.

Simulations have been done for different kinds of object
fields, ranging from an isolated square amplitude plus a
spherical phase to a Gaussian random amplitude plus a uni-
form random phase. In all cases the iteration converges rap-
idly when the number of recordings is larger than 4. Figure 3
shows a typical simulation result. The test object magnitude
is a fractal pattern (varying from O to 1), and the object phase
contains two singular points (varying from 0 to 27). Both the
irregular and the soft edges in the magnitude and the singu-
larity in the phase have been thought to be difficult for ex-
isting phase retrieval algorithms. In Fig. 3, one can see that
the recovered amplitude is almost indistinguishable from the
original one, while the recovered phase differs from the
original one only up to a constant offset. In this simulation,
four diffraction patterns quantized to 256 levels are used. To
qualify the accuracy of this method, the signal-to-noise ratio
(SNR), defined as

2 umnP [ 2 [0mn)|-Umn|P, (2

m,n m,n

is used as a measure, where U(m,n) and U(m,n) represent
the original wave front and the recovered wave front before
the plate, respectively. From the simulation, it is found that
the convergence curve consists of three phases. In the first
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FIG. 3. Simulation results of the wave-front-modulation-based
phase retrieval method for a complex-valued field; (a) and (b) are
original amplitude and phase; (c) and (d) are retrieved amplitude
and phase.

phase, the algorithm converges slowly, and it may last from
tens to thousands of iterations depending on the number of
recordings used. When an improved estimate has been found,
i.e., the SNR is greater than 5, the algorithm enters the sec-
ond phase. In this phase, the algorithm converges rapidly to a
final status within a few tens of iterations. In the final phase,
the SNR fluctuates slightly with a period equal to the number
of recordings. The number of iterations in the first phase can
be reduced dramatically by using the recorded intensity di-
rectly as the constraint. This is understandable because the
intensity has sharper transition areas than the amplitude. A
sharp transition on the CCD plane implies more high-
frequency components on the plate plane. Therefore, it is
more likely to push the algorithm into the “right convergence
route.” However, more investigation is required to clarify
this observation. The convergence curves for different num-
bers of recordings are shown in Fig. 4. The object is the same
as in Fig. 3. The number of iterations in which the intensity
is used as constraint is 30, 95, and 1800, respectively, when
the number of recordings is 5, 4, and 3. For the rest of the
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FIG. 4. (Color online) Convergence performance of wave-front-
modulation-based phase retrieval algorithm. M is the number of
recordings.
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FIG. 5. Experiment results of the wave-front-modulation-based
phase retrieval algorithm. (a) and (b) are the retrieved amplitude
and phase at the plate plane; (c) and (d) are the retrieved object
amplitude and object phase.

iterations, the modulus is used instead. If only the modulus
were used as the constraint from the beginning, the iteration
number to get a SNR of 100 would be 94, 600, and 5043 for
6, 5, and 4 recordings, respectively. The larger the number of
recordings the algorithm uses, the more robust and faster it
will be. When the number of recordings is larger than 3
(M =3), it is always possible to recover the phase. The ob-
servation agrees with the theoretical expectation because the
number of unknowns in a complex object field is twice larger
than the number of samplings in one recording [4]. Although
it is possible in theory to do phase retrieval using only two
intensities, it is not feasible because any distortions in the
recordings or errors in the calculation will make the iteration
stagnate. Therefore, three recordings is the minimum re-
quirement for the proposed approach to work. In fact, the
number of recordings here has the same role as the oversam-
pling factor in Ref. [6]. The computational complexity is
4N? log(N) for an iteration in the proposed approach, where
N is the effective number of samplings of the retrieved object
fields. In comparison, it is 4pN*log(Np'?) in Fienup algo-
rithms for the same number of effective object samplings,
where p is the oversampling factor. Generally, the proposed
approach is p times faster than the Fienup algorithm for an
iteration.

An experiment has also been conducted to verify this ap-
proach. A fabricated phase plate was used in the experiment.
The phase plate consisted of 1200 X 1400 pixels with a size
of 8 um?. The light source was a He-Ne laser with a wave-
length of 632.8 nm. The 8-bit, uncooled camera had 1300
X 1030 pixels with a size 6.7 um?. The recorded diffraction
patterns were cropped to 1024 X 1024 pixels in calculation,
and thus the distance Z, was calculated to be 86.7 mm. The
object field was generated by illuminating a binary photo-
graphic slide with a spherical wave front emerging from a
single-mode fiber. Figure 5 shows the recovered amplitude
and phase, at the plate plane and at the object plane, after 80
iterations from five recordings. After 60 iterations, the am-

043805-3



ZHANG, PEDRINI, AND OSTEN

plitude pattern started to become recognizable and no obvi-
ous improvement was observed after 75 iterations. Different
initial guesses (constant or random) have also been tested.
The convergence rate differs slightly. Measurement of the
plate profile using a confocal microscope showed that the
plate had slow and irregular transition areas between pixels.
The diffraction from those areas could be one source for the
residual noise in the reconstruction. Integrating a pinhole ar-
ray with the plate could eliminate this effect. Other reasons
for the residual noise could be an imperfect alignment of the
plate with respect to the CCD as well as noise from the laser
and the camera.

In the above simulation and experiment, a pure phase
plate is used as wave-front modulator. In general, a plate
with a complex modulation property will also work. A pure
phase plate, however, gives the best energy efficiency. Here,
we recorded diffraction patterns by translating the plate to
different positions. If a spatial light modulator (SLM) were
adopted, several uncorrelated phase maps could also be used.
A system using a SLM would be more compact and flexible.
In our experiment, the plate has 16 phase levels. But simu-
lation shows that a plate having a binary phase shift, 0 and 7,
works as well. A plate is required in the approach, but the
requirement on its quality is not as strict as that for a Fresnel
zone plate or a refractive lens. In Fresnel-plate-based trans-
mission X-ray microscopy, the resolution is determined by
the width of the outermost zone, and several tens of nanom-
eters are required to get a good lateral resolution. This re-
quirement is at the cutting edge of current fabrication tech-
nology. In the proposed approach, the plate pixel pitch could
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be set to a value available by current fabrication capability
simply by selecting a larger distance between the CCD and
the plate. In a high-resolution microscope, a lens having an
aspherical surface is required for good image quality. This
has proved to be difficult to fabricate and to calibrate. A
phase plate, especially one with two phase levels, would be
much easier to fabricate and to calibrate than a zone plate
and aspherical lens.

In conclusion, we have proposed and demonstrated a
technique for the phase retrieval of any complex-valued field
by using wave-front modulation and the measurement of
three or more diffraction patterns. The technique combines
the essence of the iterative phase retrieval technique with
that of the wave-front sensing technique. Meanwhile, it re-
moves the smooth curvature requirement in wave-front sens-
ing and solves the stagnation problem of current phase re-
trieval methods when they are used for complex objects.
Experimental results confirm that this technique is a practical
method for lensless microscopy. Potential future directions of
this research include the optimization of the phase plate de-
sign, the evaluation of the system performance, and the de-
velopment of a strategy for accelerating the convergence. It
is believed that the simple and robust technique would
greatly improve practical phase imaging and find applica-
tions in wave-front sensing, and metrology for a wide spec-
tral range.
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