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Conditional preparation of photon number states from a continuous-wave nondegenerate optical parametric
oscillator is investigated. We derive the phase space Wigner function for the output state conditioned on
photodetection events that are not necessarily simultaneous, and we maximize its overlap with the desired
photon number state by choosing the optimal temporal output state mode function. We present a detailed
numerical analysis for the case of two-photon state generation from a parametric oscillator driven with an
arbitrary intensity below threshold, and in the low-intensity limit we present a formalism that yields the
optimal output state mode function and fidelity for higher-photon-number states.
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I. INTRODUCTION

The study of nonclassical states of light has provided a
deeper understanding of quantum fluctuations and the role of
measurements in quantum theory and it has led to applica-
tions in precision metrology and quantum communication.
The photon number states, or Fock states, play a special role,
because they have vanishing intensity fluctuations, and their
interaction, e.g., with a single two-level atom in an optical
cavity, is particularly regular. By injection of atoms with
properly selected excitation and passage times through a mi-
cromaser, it is possible to build up a wide range of states,
including number states of the cavity field [1,2], and recent
progress in extending the photon lifetimes in microwave
cavities [3] bring promise for further experimental progress
in this direction.

By control of single photon emitters such as a single mol-
ecule [4], a color center [5], or a quantum dot [6], it is also
possible to generate traveling light pulses in the optical fre-
quency range that contain only a single photon. For a review
on single-photon emitters, see [7]. In these schemes, how-
ever, the production of higher-number states is not straight-
forward, and in the present paper we shall address an alter-
native conditional approach where the signal beam from a
nondegenerate optical parametric oscillator (OPO) is pro-
jected into the desired state by a quantum measurement per-
formed on the idler beam. This method has recently been
used to generate single- and two-photon states from an OPO
driven by a pulsed pump field [8]. Conditional generation of
nonclassical states was proposed by Dakna et al. [9] (see also
[10,11]) and generation of single-photon and Schrédinger cat
(quantum superposition) states has been demonstrated in ex-
periments where measurements performed on a small frac-
tion of the light beam from a degenerate OPO caused the
projection of the remaining beam [12-14]. Single-photon
and cat state production from continuous-wave OPOs has
been studied theoretically in [15-17], and in the present pa-
per we generalize the analysis to continuous-wave generation
of higher-photon number states. In contrast to single-photon
and Schrodinger cat state production, generation of states
with two or more photons involves multiple conditioning
photodetection events, and in the continuous-wave case, we

1050-2947/2007/75(4)/043801(8)

043801-1

PACS number(s): 42.50.Dv, 03.65.Wj, 03.67.—a

are particularly interested in determining how the generated
state is affected by the temporal separation of the condition-
ing detections. We analyze this feature generally for two-
photon states and we present an analytical treatment, re-
stricted to the low-intensity limit, for n-photon state
generation.

Figure 1 exemplifies the experimental setup used to gen-
erate Fock states. A nondegenerate OPO produces pairs of
distinguishable photons. The two kinds of photons are sepa-
rated to produce two correlated twin beams. One beam (de-
noted the trigger) is observed with an avalanche photodiode
(APD) detector. Detection of n close detector clicks in the
trigger arm projects the state in the signal beam into an
n-photon state, and the generation is verified by homodyne
detection. Since the field is a continuous-wave field the tem-
poral mode occupied by the produced state needs to be speci-
fied, and the largest n-photon fidelities are obtained by opti-
mizing the choice of signal state mode function. We shall
investigate to which extent the n photons in the signal beam
may occupy a single mode despite the click events happen-
ing not exactly simultaneously.

In order not to miss close clicks due to the finite dead time
of real detectors it might be advantageous to split the trigger
beam and send it onto more than one APD detector, as was
done in the two-photon experiment with pulsed fields [8].
However, we show that our theoretical expression for the
conditional output state, and thus also the fidelity and the
optimal signal state mode function, is independent of the
number of (ideal) APD detectors used.

In Sec. II we start out with a two-mode treatment of the
two-photon state generation process. In Sec. III we general-
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FIG. 1. Experimental setup for conditional preparation of Fock
states from a type-II (i.e., polarization) nondegenerate OPO. PBS,
polarizing beam splitter; APD, avalanche photodiode; BS, beam
splitter; and LO, local oscillator.
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ize to the multimode case valid for continuous-wave fields.
We determine the Wigner function for the output state con-
ditioned on two trigger detector click events, and we calcu-
late the two-photon state fidelity as a function of the signal
state mode function. In Sec. IV we optimize the signal state
mode function over all real functions to obtain maximal two-
photon state fidelity. Finally, in Sec. V, we consider n-photon
state generation in the low-intensity limit. We describe the
state produced in the signal beam in terms of photons occu-
pying specific temporal modes, and we determine the opti-
mal output state mode functions. Section VI concludes the

paper.

II. OUTPUT STATE CONDITIONED ON TWO TRIGGER
DETECTOR CLICK EVENTS: TWO-MODE
TREATMENT

In this section we describe the two-photon state genera-
tion in the context of a simple two-mode theory to introduce
some of the basic ideas. This treatment is approximately
valid when a pulsed pump field is used. The initial state
generated by the nondegenerate OPO is a two-mode
squeezed vacuum state [18]

2 tan

|¢i>_ (1)

h()

where r is the squeezing parameter and the first (second)
quantum number inside the ket on the right-hand side is the
number of photons in the trigger (signal) mode.

We assume that a trigger detector click results in the
transformation p— d,pd; / Tr(d,pd;) of the density operator p,
where 4, is the trigger mode annihilation operator. We apply
the click transformation twice to the state (1), and since we
do not subject the trigger mode to further measurements, we
trace over the trigger mode afterward and renormalize to
obtain the conditional single-mode output state

d

1
Wclick(xs’ps)chlickf f Z(l +xt2+pt2+xta+pt_
t

1 + cosh(2r)
cosh(2r)

1
"~ arcosh?(2r) (

where N, is a normalization constant. The two-photon
state fidelity of the generated state is given by

F2 = 27Tf f Wclick(x_wps)Wn:Z(xs’ps)dxsdps’ (8)

where W,_, is the Wigner function for a two-photon state.
Equation (8) once again leads to the result (3).
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1
2 cosh?(r)sinh*(r) iy,

Petick = S k" (nin - Dln)nl. (2)
The vacuum and the single-photon state contributions are
eliminated by the conditioning procedure, and the generated
state is a superposition of a two-photon state and higher-
photon-number states. The two-photon state fidelity is easily
obtained from (2) as

1
cosh®(r)’

The fidelity approaches unity in the limit where the squeez-
ing parameter is small, because a small r corresponds to a
weak pump field, and hence the probability to produce more
than two photon pairs within a single pulse is small.

For the multimode case it turns out to be convenient to
describe the initial unconditional state and the conditional
state in terms of Wigner functions, and we hence introduce
this alternative approach now. Since the OPO is a Gaussian
light source, the two-mode Wigner function for the initial
unconditional state is a Gaussian:

F,= <2|pclick|2> = (3)

Wy(y) = —F—=exp(-y"Vy). (4)

1

7 \det(V)
y=(x,,p;,X,,p,)" is a column vector of quadrature variables
for the trigger and the signal mode, and V is the covariance
matrix. In terms of the operators y=(%,,5,,% £, D )7, defined as
Xy= (a,,s+at,s)/\2 and p,=—i(a,,—a,,)/\2, where d, is the
annihilation operator for the signal mode, the elements of the
covariance matrix are V;;=(y;9;)+(J,9;), and from (1) we ob-
tain

Viy =V =V33=Vy=cosh(2r), (5)

Vi3= V31 == Vyy == Vg =sinh(2r), (6)

while the other matrix elements are zero.
The transformation from (1) to (2) is translated into (see
[16,17])

12 12 >2W )
+ 4 dx 2 407 v(Y) xrdpt
[1+cosh(2r)T? ) ( xf+pf )
)+ 2 cosh?(2r) x; +Ps) cosh(2r)/’ M

III. OUTPUT STATE CONDITIONED ON TWO TRIGGER
DETECTOR CLICK EVENTS: MULTIMODE
TREATMENT

In the continuous-wave case the field annihilation opera-
tors are time dependent and satisfy the commutator relation
[a(r),a"

“(t')]=8(t—1t"). In the following we denote the trigger
beam annihilation operator d,(z) and the signal beam annihi-
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lation operator da_(f) to distinguish them from the single-
mode operators in the last section. In principle, there are now
infinitely many modes, but since we can trace out all unob-
served modes, we only need to consider the two trigger
modes, in which the conditioning trigger detector clicks oc-
cur, and the signal mode occupied by the generated state,
which is a great simplification. It is necessary to include two
trigger modes since the conditioning clicks may happen at
different times. Initially we assume that the trigger modes are
distinct.

The temporal shapes of the relevant modes are given by
the mode functions fi(z), i=1,2,3, where 1 and 2 are trigger
modes while 3 is the signal mode. The single-mode operators
(corresponding to d, and d,) are then given by

Q= J fa =12, ©)

d3=ff3(z’)d_(t’)dt’. (10)

[d;,a]]1=1 implies that [|f,(¢')]?dt'=1. We assume that the
trigger modes are top-hat-shaped functions of infinitesimal
width Az, and height 1/\Ar. centered at the ith detection
time ?,;. This is valid if the duration of a detection is much
smaller than the inverse of the leakage rate y of the OPO
output mirror. The signal mode function is used to specify
the output state, and hence it may be chosen arbitrarily. In
Sec. IV we use this freedom to maximize the two-photon
state fidelity. We assume throughout the two-photon state
analysis that the signal mode function is real. Imperfect de-
tection may be taken into account by replacing d.(¢) with
Vsl (t) +41- Nyyslspac(t’) in Egs. (9) and (10), where
1/ () is the trigger (signal) detector efficiency and d. .
are field operators acting on vacuum.

With the single-mode operators established we proceed as
in the second part of the last section, but since three modes
are now included, the covariance matrix V is 6 X6, y
=(X1,p1,X%2.P2.%3,p3) 7, and 7 is replaced by 7 in Eq. (4).
To calculate the covariance matrix elements in terms of f5(),
7;, M5 and OPO parameters we need the two-time correlation
functions for the nondegenerate OPO output. These are [19]

’
e Hl=t'|

e—}\|t—t’)
+ >
21 2\

N2 = 2 —plt—t'| —\|t—t'|
@na)y=~—~ (e e :
* 4 2u 2\

22
(@)= (

(@x(na.(t") =(al(na=(") =0, (11)

where A=7y/2+€, u=7y/2—¢€, € is the nonlinear gain coeffi-
cient of the OPO, and 7 is the OPO output mirror leakage
rate introduced above. Note that the dimensionless twin
beam intensity (d.(¢)d.(s))/7y is an increasing function of
€ly.

In analogy to Eq. (7) the single-mode Wigner function for
the state conditioned on two trigger detector clicks is
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2
1 J
Weier3.03) = Niare | 11 |:dxidpi_< L4+x]+pl +x——
; 2 ax,
g 1

i=1 i
1 &
tpi~— t _2+__2) WV()’)

dp; 4dx; 4dp;

1
= 102+ G303+ p3) + Culed 4 35572,
1
(12)

where C|=D]V557T, C2=D]—V55D2, C3=D2—2V55V%5V§5,
C4=Vi5Vis, Cs=(Vss5)™, and

Dy =Va[(Vy = 1)(V33— 1) + Vi3],

D, = V55{2V15V35(V13V55 = Vi5Vas)+ Vas[ Vis(Vaz = 1)
+Vas(Vy - 1)]}-

W.jicx 1 independent of 7,.

If the trigger beam is divided into m beams, the field
operator representing the field in the jth beam may be written
as cjyd +(t)+2?:110ﬁ&,»,vac(t), where c;; are coefficients deter-
mined from the precise arrangement of beam splitters, and
@; yao(t) are field operators representing vacuum states. If a
click is observed in the jth and the kth trigger beams in the
temporal modes f,(r) and f,(r), respectively, and we trace
over all modes except the output mode (denoted by Tr’), the
density operator p,,, is transformed into

m—1
Pror — Tr' |:ffl (t) <Cj0‘2+(t) + E Cjidi,vac(t)>dt
i=1

m—1
X ffZ(t,)<ck0é+(t’) + E ckidi,vac(t,))dt’ptot

i=1

m—1
X J f2(t”)(c,i0d+(t”)+ > c,iidzwc(t”)>dt"
i=1

m—1
X ffl(t///)(c;‘oéi(t///) + E C;idzyac(tm)>dtw]v
i=1
(13)

where a normalization factor is omitted. The density operator
Pio: 18 the direct product of the density operator for the OPO
output and the density operators for the vacuum states
coupled into the system via the beam splitters. Since the
annihilation operator acting on a vacuum state is zero, (13)
simplifies to

Pror — TrlZ(Jfl (t)cj()d+(t)dt ffz(t’)ck0d+(t,)dt’

Xp123 f Fo?")crodl ()t f fl(t"’)c;odi(t’”)dt’”>,
(14)

where the trace is now over the two trigger modes, and p;,3
is the density operator for the two trigger modes and the
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FIG. 2. Optimized mode functions for |t,,—7.;| y=4 and 7,=1.
The three curves correspond to €/y=0 (dashed line), 0.08 (solid
line), and 0.2 (dotted line).

output mode. The factor ¢ jOckOC;OC;O is irrelevant because the
transformed density operator has to be normalized. The con-
ditional output state is thus independent of the trigger detec-
tor configuration, and it is justified to use the simple setup in
Fig. 1 in a theoretical treatment. One can verify that the
Wigner function of the conditional state continuously ap-
proaches the outcome of a two-photon detection in a single
trigger mode, when the click separation approaches zero. The
arguments are immediately generalized to the case of n con-
ditioning clicks.

Finally, the two-photon state fidelity of the produced state
is obtained from the conditional Wigner function W, as in

Eq. (8),

0 0.05 0.1 0.15 0.2
ely

FIG. 3. Fidelity for 7., =1, calculated using the optimized signal
mode function (solid lines) and the optimal mode function at zero
intensity (19) (dashed lines). Perfect signal detection 7,=1 is as-
sumed for the curves approaching 1 to the left, while 7,=0.8 for the
curves approaching 0.64.
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FIG. 4. Fidelity as a function of temporal distance between the
trigger detector clicks for €/y=0 (upper solid line) and €/y=0.08
(lower solid line) calculated using the optimized signal mode func-
tion. The dashed line shows the fidelity for e/ y=0.08 obtained from
the mode function (19). Perfect signal detection 7,=1 is assumed.

Fy(f5(1) = {D1(1 = Vs)2(1 + Vs5)? - D,Vis

2
Dy(1 + Vss)®
X (1= Vss)(1 + Vss)(5 = Vss)+ 2Vis(V5V3s)?

X[4Vss —5(1 - Vss)*1}. (15)

The fidelity depends on the choice of signal mode function
f5(2). In the next section we first determine the optimal mode
function f,,(¢), which leads to the largest fidelity, and then
we present explicit results for the predictions of Eq. (15).

IV. OPTIMAL SIGNAL MODE FUNCTION AND
TWO-PHOTON STATE FIDELITY

In the low-intensity limit (15) reduces to

VisVis
o 2[(Vi = (V33— 1) + Vi3]
and for small €/y
Vls=26\'Atcmmff3(t’)e‘(7’2)""’vldt’, (17)
Vss = 2€VAL 7,7, f fa(t")e P2 —teal gy (18)

while V,;, V33, and V5 are always independent of f5(¢). The
optimal signal mode function at very low intensity is thus
easily obtained by optimization of V;5V3s under the con-
straint [f,,(t)*dr=1. This leads to

liigfop(t) =N|:6Xp<— %,|t_ tcl|> +exp<— g't_ tC2|>:| ’
(19)

where N is a normalization constant.
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For larger intensities the fidelity can be optimized numeri-
cally by varying the shape of the mode function until no
further increase in fidelity is obtained. Optimized mode func-
tions for |f,,—1,,| y=4 and different intensities are shown in
Fig. 2. The peaks of the mode functions become sharper with
increasing intensity, and a dip appears on each side of the
peaks. This behavior is qualitatively the same as what was
found for the single-peaked mode function of single-photon
state generation in [17].

Figure 3 shows the optimized fidelity (solid lines) as a
function of €/vy for t.;=t., and the fidelity calculated from
the optimal mode function at zero intensity (dashed curves).
The solid and dashed curves are almost identical for small
€/ 7, so the optimal mode function at zero intensity is close
to optimal in the region where the fidelity is high and hence
provides an analytical approximation to the optimal choice
of signal state mode function. The figure shows that the fi-
delity decreases when the intensity increases. This is as ex-

o

<aAj—(tcl)aAI—(ICZ)aA+(ICZ)aA+(ICI)>

<di(tcl)d+(tcl)><éi(tc2)d+(tc2)>

increases from 1 to 2 when |t,,—1,,| v decreases from infinity
to zero: the trigger events are bunched in time.

V. MODE OCCUPATION DESCRIPTION OF THE
CONDITIONAL STATE IN THE LOW-INTENSITY LIMIT

In the previous sections we characterized the output state
by the Wigner function W, from which we were able to
calculate the fidelity for an arbitrary state in an arbitrary
mode. However, a deeper understanding of the nature of the
conditionally produced signal beam state can be obtained by
considering the state as built up of photons occupying spe-
cific temporal modes. A detailed mode description of multi-
photon states and manipulations of such states is given in
Ref. [20]. In the present section we use this approach to
investigate the state generated when conditioning on n trig-
ger detector click events. It is assumed throughout that
e/ y< 1.

If the trigger detector clicks are far apart, we know from
Ref. [17] that the fidelity for a single photon in each of the n

modes
g(t) = \/ge_(‘y/Z)lt—tCi’ i=1.2,....n.

is unity. On the other hand, for n=2 and #.,=t., we found in
the last section that the fidelity is unity for two photons in the
mode g;(¢). In both limits the state generated in the signal
beam conditioned on two clicks is thus of the form |¢)
=Ny, [ [dr dr'g,(1)g,(t"al (1)a’(1')]0), where Ny, is a nor-
malization constant. One is thereby led to consider whether

(21)
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pected because a larger mean photon flux results in larger
contributions from higher-photon-number states to the output
state.

The fidelity decreases when the temporal distance be-
tween the trigger detector clicks increases from zero as is
apparent from Fig. 4, which shows the fidelity as a function
of |t.,—t.1|y. When the click distance is different from zero,
the two photons no longer belong to precisely the same
mode. We return to this point in Sec. V, where we also obtain
an analytical expression for the two-photon state fidelity as a
function of click distance in the small intensity limit. The
fidelity calculated from the optimal mode function at zero
intensity (19) is also shown in Fig. 4 (the dashed curve), and
it is seen that (19) is a good approximation to the optimal
mode function even if the click distance is large (provided
€/ 7 is not too large).

We note that the generation method described here favors
close click events since

e Htaa=tel e—>\tcz—101|>2 ( 1 1 )2
2u 2\ 2m 2\

(20)

this result is also valid for intermediate separation of the
trigger detector clicks. In the appendix we show that the state
generated in the signal beam when conditioning on n trigger
detector click events is

n

|¢n>=N¢n<H fdtigi(ti)éi(ti))|o>7

i=1

(22)

where N¢ is a normalization constant.

To illustrate the meaning of (22) we consider the case n
=2 in some detail. Two orthogonal mode functions are con-
structed from g,(r) and g,(2):

1
faH) = /2(1—112)[g1(t) +&,(1)], (23)
1
fp(t) = \’m[gl 1) - g (1], (24)
where
] - f gl(t)gj(t)dt_ (1 + ;| ci tcj|>exp<_ %|tci - tcj|) .
(25)

The four mode functions are illustrated in Fig. 5 for
Yt.0—1.1)=38. Inserting (23) and (24) in (22) we obtain
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FIG. 5. Mode functions g;(¢) and g,(¢) (solid lines) and f,(r) and
f5(1) (dotted lines) for (¢,,—1.1)y=8.

1+1

-1
=z 2
V2(1 +17,)

T

V2(1 +13,)

B >ab 0’2>ab’ (26)

where |x,y),,=[x),®]y), and |x); means x photons in the
mode f,(¢). Figure 6 shows the norm square of the coeffi-
cients in (26). Since f,(r) is identical to the optimal mode
function for €/ y<<1 (19), the upper curve shows the maxi-
mal two-photon state fidelity as a function of temporal dis-
tance between the conditioning clicks (i.e., the same curve as
in Fig. 4). For small y|t,—t.| we find from Egs. (25) and
(26) that

y 4
Fy(f (1) =1~ <Z|fc2 - tc‘l') . (27)

Hence we still have a good two-photon state even if the
trigger detector clicks are not exactly simultaneous.

1

0.9 J

0.8 b

0.7+ 1

0.6 ]

0.5F

Foo(T(0.5(0) and F(f(0.1,(0)

L
0 5 10 15 20
It —t_ly

2 cl
FIG. 6. Upper (lower) curve shows the probability to detect two
(zero) photons in the mode f,(¢) and zero (two) photons in the mode
f»(t) as a function of temporal distance between trigger detector
clicks when e/y—0.
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The optimal mode function for a general n is obtained by
maximizing the fidelity between (22) and an n-photon state

1 n
|n>f=—,_{ f dr f(t)a’ (t)] 0), (28)
\n!

where f(r) is the mode function to be optimized. The
n-photon state fidelity is

2

ff(ti)gi(ti)dti

F(f0) =Kmy = n [N, PIT
i=1

(29)

It is apparent that the phase of f(r) should be time indepen-
dent to maximize F,(f(r)), and hence we choose f(z) real.
Variational optimization of II7_, [ f(z,)g,(t,)dt; leads to

&= g0l | ft)g ()t (30)
i=1 =1
;;ﬁi
and thus
f0) =2 cigio), (31)
i=1

where the constants ¢; and ¢ are determined from the highly
nonlinear set of equations

&= 2 ey (32)
j=1 k=1
J#Fi

and

1=22C,-leij. (33)

i=1 j=1

For n=2 Eqgs. (32) and (33) are écy=cljp+cy, &cr=c
+cylp,, and 1=C%+C%+26‘162112, and hence c¢;=c¢,
=1/y2(1+1},) and {=1+1,, in agreement with Eq. (19). For
n=3 and t,—t. =t3—1t., We obtain

\/1%2_2(1 +113) + I NI + 4(1 + 1)
Cl=C3=

6[213, — (1 + 1;)](1 +13)

s

ery==2c1I+ 1 +26 20, — (1 +13)], (34)
and for 7.,=1.

\/(4 —I}y) - V(4 - )2 -16(1-I)
C] =C2= >
24(1 - 1)

[}

1—60%
c3=———

= : 35
=5l (35)

The three-photon state fidelity for these special cases is
shown as a function of click distance in Fig. 7. In the former
case the fidelity decreases from unity to 3!/3% when the
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FIG. 7. Three-photon state fidelity as a function of temporal
distance between the first and the last trigger detector clicks for
ti3—to=tn—1. (solid line) and t, =t,, (dashed line). The insets
show the optimal mode function f(r) for the former case for |¢.
—t.1|y=3 (left) and |t ;3—1.,| y=15 (right). €/ y< 1 is assumed.

click distance increases from zero to infinity, while in the
latter case it decreases from unity to 3 X 22/33, but in both
cases a broad region with a fidelity close to unity exists.

VI. CONCLUSION

In conclusion we presented a theoretical description of
conditional higher-photon-number state generation from a

n m p
lim (H &I(tc,.)> (H Qi )) (H
i=1 =1 k=1

e—0

=f (ljgi(ti))(li[lgq(tnﬂ]) (
(H 8q(trg) )<0|(Ha (r))(

5

a1

The left-hand side is evaluated using Wick’s theorem for
Gaussian states with zero means [22], which states that

<A1A2 o 'A2k> = <A1A2><A3A4A5 o 'A2k> + <A11‘13>
X(ArAAs Ay + - + (A Ay
X(AyAsA -+ Ayy), (A2)
while (A,A," +*A,;,,)=0, where A, is either an annihilation or

a creation operator and k is a positive integer. The left-hand

e

2n
) )|o>(H dr

i=1
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continuous-wave light source. We calculated the Wigner
function for the output state conditioned on two trigger de-
tector clicks and determined its overlap with a two-photon
state. The output state mode function that gives rise to the
largest overlap was found. In the low-intensity limit, we
showed that the state generated in the signal beam when
conditioning on n trigger detector click events is |¢,)

=Ny, (117, [ dt;g (1)@’ (1,)]]0), where g,(¢) is a function local-
ized around the time for the ith click. From this we obtain the
optimal mode function and fidelity for n-photon state genera-
tion at low intensity. For small temporal distance between the
trigger detector clicks and n=2 the optimized fidelity is unity
minus a small correction of fourth order in the temporal click
distance.

In the present treatment we averaged over all possible
trigger detector outcomes outside the small time windows
specified by the trigger mode functions, but for finite inten-
sities larger fidelities are obtained if we condition on dark
intervals between the n clicks (see [17]).

APPENDIX: CONDITIONAL SIGNAL BEAM STATE AT
LOW INTENSITY

In this appendix we prove that the state generated in the
signal beam when conditioning on n trigger detector clicks at
times 7.y, ...,I, is given by (22) in the limit €/ y— 0. Since
the normally ordered moments determine the phase space P
function [21], it is sufficient to prove that the expectation
value obtained from (22) of all normally ordered products of
signal beam field operators is equal to the expectation value
obtained from the two-time correlation functions (11), when
conditioning on the trigger detector clicks, i.e.,

(H éi(rc,-)) (H m(tc,,))
i=1 =1

(t)><Hd—(lZ)<Har(ln+q 0) Hdt /f Hg,(t)
k=1
). (A1)

side may thus be expressed in terms of <él(t)di(t’)> and
(a,(t)a=(t")). For small €/y

<di(t)di(t’)> — E(l + Z|t— t!|)e—('y/2)t—t'|’ (A3)
Y 2

<ét(t)di(l‘/)> — A /E \/Ee—(y/Z)t—t'L
Y 2

It follows that the left-hand side of (Al) is zero if m# p,
since in that case we have to combine operators,where the

(A4)
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expectation value of the product of the operators is zero. It
also follows that the denominator on the left-hand side of
(A1) is proportional to €. In the numerator the lowest-order
terms in € are obtained by combining as many 4. operators
as possible with éi operators and as many d_ operators as
possible with a, operators. These terms are proportional to
€mx(2n.2m) for m=p. To obtain a nonzero left-hand side in the
limit €/ y— 0, it is thus necessary to require that m=p=n. It
is immediately apparent that the right-hand side of (Al) is
zero if m=p=n is not satisfied.

We now consider the case m=p =n and by combining the
operators as described above and using (A4) and (A3) and
the definitions (21) and (25) we obtain for the lowest-order
terms of the left-hand side (LHS) of (A1)

1
———EE&W
(n—m)!"p 1
x g]m( m) m+1]m+l ’ l ]n/zll /1 ' n] ’

(A5)

(LHS) - .. gim(trln)gjl(t,{) NEEE

where the summations are over all permutations of the n
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indices i and all permutations of the n indices j, respectively.
The right-hand side of (A1) is evaluated using the relation

a( (H éi(t,-)>|0> =2 o —1)| [T al(r) ||0)
i=1 j=1 i=1

i)
(A6)
repeatedly, which leads to
OTaeITalepITa I al(r,.,)00)
i=1 j=1 k=1 g=1
EE oty —1;) -+ 8ty —1; )
(n m)‘ ) m
X &) - tt, )
o 5(tm l’l+j )5(t o I’l+j )
S X Oy, = 147). (A7)

Inserting (A7) in (A1) we immediately obtain the result (A5)
for the right-hand side of (Al).
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