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The linewidth of an atom laser can be limited by excitation of higher energy modes in the source Bose-
Einstein condensate, energy shifts in that condensate due to the atomic interactions, or phase diffusion of the
lasing mode due to those interactions. The first two are effects that can be described with a semiclassical
model, and have been studied in detail for both pumped and unpumped atom lasers. The third is a purely
quantum statistical effect and has been studied only in zero-dimensional models. We examine an unpumped
atom laser in one dimension using a quantum field theory using stochastic methods based on the truncated
Wigner approach. This allows spatial and statistical effects to be examined simultaneously, and the linewidth
limit for unpumped atom lasers is quantified in various limits.
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden-
sates �BECs� provided a testbed for many fundamental ques-
tions in interacting quantum systems, as well as providing a
general tool for investigating aspects of atomic physics
�1–4�. One major application that BECs offer is the possibil-
ity of creating an atom laser. Atom lasers are the matter wave
analogy of the optical laser, and are created by coupling at-
oms out of a BEC by using some external means to change
the state of a subset of the atoms in the condensate from a
trapped to an untrapped state �5–7�. This can produce a beam
of atoms that exhibits both spatial and temporal coherence
�8–13�. While the optical laser is well studied and well un-
derstood, the atom laser is still in its infancy, both in terms of
a full theoretical description and experimental realization.

One property of a laser is its linewidth, which is of crucial
importance for many measurements, including spectroscopy
and interferometry �14�. For an “unpumped” optical laser,
which is simply a cavity containing light, the linewidth is
just the inverse damping rate. For a pumped optical laser, the
linewidth is often limited by technical effects of the pump-
ing, but the fundamental quantum limit is the Schawlow-
Townes limit, which can be seen as a phase diffusion process
arising from the addition of spontaneously emitted photons
with random phases into the radiation field �15�. The deriva-
tion of this limit in the optical case relies on the fact that
photons do not interact with each other, and consequently the
damping rate of the cavity is independent of the photon
population.

For an atom laser, the situation is more complicated. The
different dispersion relations of free atoms compared to free
photons means that the relationship between outcoupling and
linewidth of a cavity is nontrivial, except in the weak out-
coupling limit �14�. When the Bose-Einstein condensate is
stable in a single lasing mode with no interactions, the
equivalent of the Schawlow-Townes limit also exists for
weak outcoupling �16�. Unlike photons, however, atoms in-
teract with each other strongly, resulting in a nonlinear inter-
action term arising from atom-atom collisions. This has sev-
eral important effects on the dynamics of an atom laser.
Semiclassical calculations show that single-mode operation

of an atom laser tends to occur in parameter regimes where
the interactions are dominant �17,18�. Interactions also cause
diffusion of the phase of the condensate, and this quantum
noise is the dominant contribution to the linewidth when the
single mode approximation is valid �19�. In practice, this
phase diffusion will also be spatially dependent, and the spa-
tial effects may interact with the effects of the quantum noise
on the output.

This paper examines the linewidth of an unpumped atom
laser with strong interactions, without making single mode or
semiclassical approximations. The results are compared to
simulations based on the semiclassical approximation and
theoretical results based on a single-mode, zero-dimensional
model. We find that our results scale similarly to the semi-
classical and zero-dimensional models, but the quantitative
details depend on the system parameters.

General quantum field theoretic problems even in a single
dimension are intractable by brute force methods, and the
dominant nonlinear interactions in atom laser systems means
that linearized analytic calculations are not valid. An alterna-
tive to brute force calculation is offered by stochastic phase
space methods. In this paper, we apply a truncated Wigner
approach to the problem of determining the linewidth of an
experimentally realistic, multimode atom laser.

II. THEORETICAL METHODS

Our model for the atom laser consists of a population of
three level atoms in a trap, as shown in Fig. 1. Bose con-
densed atoms in state �1� are confined by a harmonic trapping
potential. These trapped atoms are then coupled to an un-
trapped state �2� in which they do not see the confining po-
tential and consequently leave the trap forming the atom la-
ser beam. The coupling from the trapped to the untrapped
state is done via a Raman transition using the intermediate
level �3�. Raman outcoupling has been used by two atom
laser experiments �7,20�, and leads to an atom laser with
superior properties such as a higher flux and higher bright-
ness �20�, the ability to give the beam directionality �7,20�,
and the possibility of creating nonclassical states of the beam
�21�. The Raman outcoupling scheme reduces to an rf out-
coupling scheme in the limit of a zero momentum kick.
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The three level system shown in Fig. 1 can be reduced to
a two level system by adiabatically eliminating the upper
level. The effective second-quantized Hamiltonian describ-
ing this reduced two-level system is given by
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where �̂1�r� and �̂2�r� describe the trapped and untrapped
matter fields, respectively, �=�23−�13 is the two photon de-
tuning, �=�13

* �12/�13 is the two-photon Raman Rabi fre-
quency, and k0=k2−k1 is the momentum kick imparted to
the untrapped atoms from the two photon transition. The trap
has been assumed to be isotropic and the trapping frequency
is �. As we have included position dependence in the matter
fields, the effective Hamiltonian describes the full multimode
nature of the problem, and also includes nonMarkovian ef-
fects. We assume that the atomic gas is sufficiently cold and
dilute, so only binary collisions are relevant and the nonlin-
ear potentials are defined by

Uij = 4��2aij/m , �2�

where aij is the s-wave scattering length between atoms in
state �i� and state �j�.

When the quantum statistics have no effect on the dynam-
ics of the mean field, these equations can be solved semiclas-
sically, using the Gross-Pitaevskii �GP� equation to describe
the atoms. The coupled GP equations arising from Eq. �1� are
given by
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where we have moved to a rotating frame. These equations
can be solved numerically in one, two, or even three dimen-
sions, depending on the spatial resolution required and com-
putational resources available.

In the absence of interactions, the field theory solution
and the semiclassical solution are identical, and demonstrate
that in the limit of weak interactions the output approaches a
Lorentzian with a linewidth that depends on the dispersion
relations of the output field �14�. In this Markovian limit the
linewidth is the inverse of the time taken to empty the con-
densate. While the proportionality constant changes depend-
ing on the potential seen by the output field, in the limit the
linewidth is always proportional to the rate of the state-
changing mechanism, and therefore has no lower bound. At
higher coupling rates, the time scale of the transport of the
atoms from the outcoupling regime becomes comparable to
the back-coupling rate, and the beam demonstrates increas-
ingly complicated spatial and spectral behavior, up to and
including the shut down of the outcoupling process alto-
gether �22�.

In the presence of interactions, the semiclassical equations
given by Eq. �3� can be solved numerically, and demonstrate
important issues even in the limit of weak outcoupling, such
as a “chirp” in the frequency of the output beam due to the
decay of the energy of the trapped state �14�. The “chirp” can
be removed by adjusting the two-photon detuning during the
outcoupling, but the presence of interactions also causes the
quantum field to exhibit effects not seen by the semiclassical
model. The phase diffusion of the atomic field will cause a
broadening of the linewidth of the atom laser and, in the
limit of weak outcoupling, this will be the dominant lower
bound to the linewidth. It is also possible for these effects to
have spatial effects in the high outcoupling limit, as the three
time scales in the problem become comparable to each other.

We will first estimate the size of the effects of the quan-
tum statistical effects before calculating them in a multimode
model.

A. Single mode limit

Weakly outcoupled atom lasers use condensates that
should be well described by the Thomas-Fermi limit. In this
limit, the chemical potential depends on the dimension of the
condensate and is given by
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FIG. 1. Atomic level scheme. Using a Raman process, trapped
atoms in the condensate ��1�� are transferred to the untrapped state
��2�� via an intermediate state ��3��.
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where the nonlinear potential U is given by Eq. �2�, � is the
geometric mean of the trapping frequencies, and A and l are
dimensional reduction factors corresponding to an area and a
length, respectively.

These dimension reduction factors arise when one has a
condensate that is tightly confined in one or two dimensions,
corresponding to a highly anisotropic trap. The tight confine-
ment along one or two axes ensures the nonlinearity has
negligible effect in these directions, meaning the matter field
operator will factorize with the transverse dependence com-
pletely described by a coherent state occupation of the lowest
radial trap mode. This assumption leads to a second quan-
tized Hamiltonian identical to Eq. �1�, except that the matter
fields are one-or two-dimensional, the integral is over a
length or an area rather than a volume, and the nonlinear
potentials are scaled by a transverse area or transverse
length. This area or length corresponds to the cross sectional
area or width of the condensate along the tight trap directions
�23�. Dimensional reduction is a useful technique for numeri-
cal simulation, as reducing a three-dimensional problem to a
one-dimensional problem greatly reduces the computation
required.

If one assumes that the condensate is in a coherent state, it
has one standard deviation number uncertainty given by N.
Consequently, the energy uncertainty in the condensate due
to number fluctuations will be given by

�E = N
d


dN
, �7�

which means the energy uncertainty of the condensate is
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Equations �8�–�10� give a rough measure of the fundamental
linewidth of an atom laser, provided that the linewidth limit
is due to number fluctuations in the condensate being trans-
formed into phase fluctuations due to the nonlinear atom-
atom interactions. In order to test the accuracy of this esti-
mate, we require a fully multimode model of the system.
Multimode atom laser models with Markovian pumping and
damping have been produced via the Hartree-Fock-
Bogoliubov formalism �24� and the stochastic Langevin
equation �25�, both of which take account of certain excita-
tions beyond the mean field approximation. We will use sto-
chastic methods, which can in principle describe fully arbi-
trary quantum states of the field.

B. Stochastic methods

The standard approach to using stochastic methods for a
specific problem is to express the density matrix of the sys-
tem in a specific basis as a quasiprobability distribution such
as the P, positive P, or Wigner distribution. The master equa-
tion of the system is then converted to an equivalent partial
differential equation in terms of the distribution chosen,
which can be cast in form of the Fokker-Planck equation
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��i

�

�� j
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�11�

where � is a vector of complex fields and D=BBT is the
diffusion matrix. Given a Fokker-Planck equation of the
form �11�, a fully equivalent formulation is given by the
system of Itô stochastic equations

��i

�t
= Ai + Bji�i�t� , �12�

where the �i�t� are a set of noise sources with zero mean that
are delta correlated in time. It is therefore possible to de-
scribe the evolution of a quantum system in terms of a set of
Langevin or stochastic partial differential equations. These
stochastic equations contain all the information of the origi-
nal quantum problem in that various ensemble averages of
the stochastic variables correspond to various expectation
values of the original quantum fields. In the case of the
Wigner distribution, the stochastic average of an expression
consisting of complex-valued fields corresponds to the ex-
pectation value of the symmetrized version of the quantum
field operator version of that expression.

This means that if we wish to find the expectation value

of some normally ordered operator Ô given by

Ô�â, â†� = �
n,m

cnmâ†nâm, �13�

we need only calculate the stochastic average of some
c-number function Os��* ,��. For the Wigner distribution, Os

is given by �15�
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where the overbar indicates a stochastic average. Thus, for
example, the stochastic average equivalent to the number
operator is given by

�â†â� = �*� −
1

2
. �16�
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The master equation corresponding to the effective
Hamiltonian �1� is given by

d�̂

dt
= −

i

�
��̂Ĥeff − Ĥeff�̂� . �17�

We determine this master equation in terms of the field op-

erators �̂1�r� and �̂2�r� and make the following replace-
ments to transform it into an equation of motion for the
functional Wigner distribution:
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We then rearrange the result in the form of a Fokker-Planck
equation in terms of the c-number stochastic variables 	1 and
	2. This gives
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where K=−�2�2 /2m, V=m�2r2 /2, and where the third or-
der functional derivatives have been dropped. These third
order terms do not have a simple mapping to stochastic par-
tial differential equations and can be assumed to be negli-
gible when the field has a high occupation number. This
“truncated� Wigner approach has been used successfully in a
range of calculations �23,26–32�.

A Fokker-Plank equation can be sampled with equivalent
stochastic equations where the noise terms depend only on
the second order derivatives. As Eq. �23� has no second order
terms, the equivalent equations are completely deterministic
once a particular initial state is chosen. Although the evolu-
tion is completely deterministic, we have not removed all
effects of the quantum noise, as the noise will still enter in
the choice of initial states.

Comparing Eqs. �11�–�13� we see that Eq. �23� is equiva-
lent to the following pair of partial differential equations
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where �V is the volume element of the discretization of the
problem. The terms inversely proportional to these volume
elements compensate for the mean field of the vacuum,
which is nonzero in the Wigner approach. Apart from these
terms, these equations are identical to the semiclassical equa-
tions for the system given in Eq. �3�.

To determine the noise distribution we need to apply to
our initial states, we make the assumption that the conden-
sate is in a multimode coherent state, which is equivalent to
assuming that each of the single mode fields at each of the
grid points xi is in a single mode coherent state �	 j

0�xi��. We
can find an appropriate ground coherent state for the trapped
atoms by integrating the semiclassical equations in imagi-
nary time and the output is assumed to be in the vacuum
state initially.

The Wigner distribution for a single mode coherent state
��� is given by
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W�y1,y2� =
2

�
exp�− 2��y1 − �r�2 + �y2 − �i�2�� , �26�

where �r and �i are the real and imaginary parts of the co-
herent amplitude � and y1 and y2 correspond to the real and
imaginary parts of the atomic field. This Wigner function
represents a Gaussian uncertainty with a standard deviation
of one-half along both the y1 and y2 axes. Thus, to give our
initial fields the correct statistics, at each grid point we need
to apply noise of the following form:

	1�xi� = 	1
0�xi� +

�1�xi�
�V

, �27�

	2�xi� = 	2
0�xi� +

�2�xi�
�V

, �28�

where the � j�xi� are complex Gaussian noise functions with a
standard deviation in the real and imaginary components of
one-half.

To investigate the linewidth behavior, we solved the sto-
chastic equations �24� and �25� numerically, using the math-
ematical package XMDS �33�. This open source package al-
lows the solution of systems of both stochastic and
deterministic partial differential equations on grids of arbi-
trary dimension. It also allows the use of message passing
interface methods to distribute the computation over many
processors, an approach that is crucial when carrying out
multitrajectory simulations such as those required by sto-
chastic partial differential equations. These stochastic solu-
tions were then compared with the semiclassical solutions
obtained by solving Eq. �3�.

The linewidth of the atom laser beam is the width of the
momentum distribution of the beam as a function of time.
Using Eq. �16� along with the linearity of the Fourier trans-
form, one can show that the expression for the beam momen-
tum in terms of the stochastic variables is given by

��̂2
†�k��̂2�k�� = �	2�k��2 −

1

2�Vk
, �29�

where �Vk is the volume element of the discretized grid in
momentum space.

The system was mostly solved in one dimension for rea-
sons of computational efficiency, although a limited number
of two-dimensional simulations were carried out in order to
ensure that the scaling laws carried over from one dimension
to two as expected. The dimensional reduction of the prob-
lem from three dimensions to one was performed as de-
scribed in Sec. II A. We chose a transverse area of A=1.2
�10−11 m2 for reduction to a one-dimensional �1D� problem
and a transverse length of l=3.46�10−6 m for the reduction
to a 2D problem.

We focus on the weak outcoupling regime in these simu-
lations so that we can examine the effects of interaction-
induced phase diffusion in isolation from other limits to the
linewidth. In the strong outcoupling regime a number of ef-
fects can cause density fluctuations in the condensate which
are reproduced in the output beam �22� and this classical
noise dominates the resulting linewidth. Also, the chemical

potential decreases with the number of atoms in the conden-
sate, resulting in a smaller mean field kick to the atoms as
they leave the trap. This causes a “chirp” in the momentum
distribution of the beam, artificially broadening the linewidth
�14�. In the weak outcoupling limit, the interaction-induced
phase diffusion is the dominant limit to the linewidth.

III. RESULTS

The quantum noise has no effect on the short term behav-
ior of the atom laser. The main short-term features are shown
in Fig. 2, which shows the outcoupled field in momentum
space. In the first few microseconds, the output momentum
spectrum mimics the trapped momentum spectrum shifted to
be centered around the total momentum kick from the Ra-
man transition �k0. As the atoms are accelerated out of the
condensate due to the mean field repulsion, this peak moves,
and over time the energy width of the output field reduces
and this peak narrows. Thus, just after outcoupling begins,
there is a spread of momenta in the beam ranging from the
Raman kick �k0 up to the Raman kick plus the momentum
corresponding to the kinetic energy 
 gained from the mean
field. As time progresses, many more atoms accumulate in
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FIG. 2. �Color online� Momentum space power spectrum of the
output beam after 5 ms �a� and 10 ms �b�. Over time, the atoms
build up outside the coupling region, and gain a small extra mo-
mentum kick due to the BEC-beam repulsion. Parameters: N=5
�106, �=250 rad s−1, a=1�10−9 m, and k0=2�107 m−1.
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the part of the beam that is outside the condensate rather than
in the outcoupling region within the condensate. Conse-
quently, in momentum space, most of the momentum is now
concentrated in a peak at �k=�2k0

2+2m
, and it is the
width of this peak that we will consider to be the linewidth
of the atom laser. Early snapshots of this behavior are shown
in Fig. 2.

Previous semiclassical analyses of the width of this peak
have shown that it is essentially Fourier limited: That is, its
width is inversely proportional to the outcoupling time �14�.
This narrowing continues indefinitely according to a semi-
classical analysis, a result that must inevitably fail at some
point due to quantum statistical fluctuations of the phase of
the BEC providing the atom source. The quantum statistics
become important on a time scale depending on the strength
of the interactions, which was typically on the order of tens
of milliseconds in our simulations.

The momentum space power spectrum of the output beam
was calculated by using Eq. �29� and taking the stochastic
average over 1024 paths unless otherwise stated. The result-
ing power spectrum of the beam was then fit to a Gaussian
envelope function and the full width, 1 /e height taken as the
linewidth. This definition of linewidth corresponds to twice
the standard deviation of the Gaussian, and as such is given
by twice the energy uncertainty given in Eqs. �8�–�10�. Due
to the finite number of paths and the stochastic nature of the
problem, the Gaussian fit is not exact, but it still resembles a
Gaussian very closely. An example is shown in Fig. 3. When
we examine the narrowing of the laser linewidth using both a
semiclassical and a stochastic approach, we notice a striking
difference in long-term behavior. The linewidth of the beam
over time is plotted for two different parameter regimes in
Figs. 4 and 5. These figures show that both the semiclassical
and stochastic results agree initially on the rate at which the
linewidth narrows, but at later times the stochastic simulation
shows that the linewidth hits a limit, while in the semiclas-
sical simulation it continues to narrow.

In the long time limit the shape of the semiclassical
�dashed� curve in Figs. 4 and 5 is linear with a slope of −1,

indicating that linewidth is inversely proportional to the out-
coupling time. This agrees with the Fourier arguments in
�14�. The fundamental linewidth limit due to interaction-
induced phase diffusion for an approximate single mode
model, given by twice Eq. �8�, is shown on the figures as a
horizontal bar, and agrees closely with the results of the mul-
timode stochastic simulations.

To check the possibility that the good agreement between
the linewidth limit given by Eq. �8� and the results of the
stochastic simulation is related to the restricted dimensional-
ity of the one-dimensional simulations, we repeated the
simulation in two dimensions using 256 trajectories. In two
dimensions the momentum distribution is now no longer a
simple peak, but rather an arc in momentum space satisfying
the energy conservation relation
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FIG. 3. Power spectrum of the output beam at t=0.35 s accord-
ing to the stochastic simulation �solid line� as well as a Gaussian
fitting profile �dashed line�. Parameters: N=107, �=250 rad s−1, a
=3�10−9 m, and k0=107 m−1.
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FIG. 4. Linewidth narrowing as a function of outcoupling time
�log-log plot�. Dashed line shows the semiclassical result; solid line
shows the result of the stochastic simulation. Horizontal line indi-
cates the fundamental linewidth limit according to twice Eq. �8�.
Parameters: N=107, �=250 rad s−1, a=1�10−9 m, and k0

=107 m−1.
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FIG. 5. Linewidth narrowing as a function of outcoupling time
�log-log plot�. Dashed line shows the semiclassical result; solid line
shows the result of the stochastic simulation. Horizontal line indi-
cates the fundamental linewidth limit according to twice Eq. �8�.
Parameters: N=107, �=250 rad s−1, a=3�10−9 m, and k0

=107 m−1.
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px
2 + pz

2 = �2k0
2 + 2m
 , �30�

where x is the transverse degree of freedom that we have
added. An example of this two-dimensional momentum
space density is shown in Fig. 6. The peaks in the momen-
tum distribution are due to transverse structure arising from
interference effects in the beam and the outcoupling process.
The parabolic arc has a specific thickness that narrows and
corresponds to the energy linewidth of the output beam. The
results of this narrowing as a function of time are shown in
Fig. 7. Again, the fundamental lower linewidth limit closely
tracks that predicted by Eq. �9�. Consequently the argument
that number fluctuations coupling to energy fluctuations
cause a fundamental limit to the linewidth appears to scale
correctly across dimensions, indicating that Eqs. �8�–�10�

will correctly estimate the fundamental linewidth of a real
atom laser experiment in three dimensions.

IV. NUMBER SQUEEZING

As the linewidth of the atom laser scales with the size of
the number uncertainty of the condensate, it is natural to
consider to what extent the linewidth could be reduced by
minimizing number uncertainty via number squeezing.

The most straightforward approach is to consider quadra-
ture squeezing. In the single-mode case one defines ampli-
tude and phase quadrature operators by

X̂+ = ei�â + e−i�â†, �31�

X̂− = i�ei�â − e−i�â†� , �32�

where � is the phase angle at which the measurement is

carried out. The variances of X̂± are unity for a coherent state
and, consequently, a state is squeezed if the variance of one
of the quadrature operators is less than one. Squeezing effec-
tively repartitions the unavoidable uncertainties associated
with simultaneous measurement of a pair of noncommuting
observables, increasing the uncertainty in one of the observ-
ables in order to reduce uncertainty in the other. In the case
of quadrature squeezing, the two observables are amplitude
and phase. Using typical notation, the squeezing in a state
can be characterized by a parameter r, where the variances of
the two quadratures are given by

var�X̂+� = e−2r, �33�

var�X̂−� = e2r. �34�

For our purposes, the relevant property of this state is that it
exhibits number squeezing. The expectation value and vari-

ance for the number operator N̂= â†â are given by

�N̂� = ���2 + sinh2 r , �35�

var�N̂� = �� cosh r − �*e−i� sinh r�2 + 2 cosh2 r sinh2 r ,

�36�

where � is the coherent amplitude of the squeezed state.
In order to stochastically simulate an atom laser sourced

from a quadrature squeezed BEC, we require initial noise
that represents such a squeezed state, albeit the multimode
rather than single mode version. Analogous to Eq. �26�, the
Wigner distribution for a squeezed coherent state is given by

W�x1,x2� =
2

�
exp�− 2��x1 − �r�2e−2r + �x2 − �i�2e2r�� .

�37�

This noise is applied to the initial fields at each of our grid
points as before. For our simulations we chose a squeezing
parameter r=ln 2, which results in a number variance of

var�N̂�=N /4. This reduction in the number variance by a

k
x

(106 m−1)

k z
−

k 0
(1

06
m

−
1 )

−2.5 1.25 0 1.25 2.5

0.8

0.4

0

−0.4

−0.8

−1.2

−1.6

−2.0

−2.4

FIG. 6. �Color online� Momentum space density of a two-
dimensional atom laser, with px=�kx and pz=�kz. The parabolic
shape is due to energy conservation as per Eq. �30�, with the thick-
ness of the line tracing out the parabola giving the linewidth. Pa-
rameters: N=5�106, �=1500 rad s−1, a=1�10−8 m, and k0=4
�106 m−1.
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FIG. 7. Results for a two-dimensional simulation. Linewidth
narrowing as a function of outcoupling time, with energy spread
measured in the longitudinal direction �log-log plot�. Dashed line
shows the semiclassical result; solid line shows the result of the
stochastic simulation. Horizontal line indicates the fundamental
linewidth limit according to Eq. �9�. Parameters: N=5�106, �
=2000 rad s−1, a=1�10−8 m, and k0=2�107 m−1.
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factor of 4 over that of a coherent state corresponds to re-
ducing the standard deviation, and hence the linewidth, by a
factor of 2.

Figure 8 shows the linewidth of the atom laser in the long
time limit over a range of BEC atom numbers. The results of
stochastic simulations calculating the linewidth for a laser
sourced from both squeezed and nonsqueezed condensates
are shown, along with the theoretical prediction for the line-
width based on Eqs. �8� and �36�. Figure 8 demonstrates that
the linewidth limit scales as N1/6 as predicted and that the
reduction in number uncertainty due to number squeezing
reduces the linewidth limit in agreement with Eq. �36�.

V. CONCLUSIONS

We have quantified the lower bound for the linewidth of
an atom laser due to the quantum diffusion of the BEC mode.
We have simulated this process in one and two dimensions,

showing that the resulting linewidth limit is slightly lower
than that estimated from a single mode BEC undergoing
phase diffusion, but that the result scales in the same way as
the zero-dimensional model.

Just as the semiclassical model exhibits complicated spa-
tial behavior when the physical time scales of the outcou-
pling and physical transport of the atoms from the outcou-
pling regime become comparable, so might we expect
significant spatial effects due to the quantum noise in the
system as the coupling rate is increased. This rich behavior
due to the interaction of the three time scales in the problem
is essentially undesirable when considering an atom laser as
an atom source, effectively resulting in an unpredictable
atomic flux and energy spectrum. It will therefore be desir-
able to find ways to minimize this linewidth limit while re-
maining in the low outcoupling rate limit. This is a compli-
cated tradeoff: Pumped systems tend to be more stable and
narrow when operating at high flux, and high flux implies
either high atom densities �and therefore interactions�, or
high outcoupling rate, where the linewidth limit is higher.

One obvious solution might be to attempt to reduce
atomic interactions via some process such as a Feshbach
resonance �34�, but this introduces a further complication,
which is that earlier work has suggested that pumping
schemes will tend to lead to modal instabilities except in the
regimes of high interactions �17,18�. Further studies are re-
quired in order to determine the optimum way of finding a
compromise between these competing processes. By the very
nature of this compromise, these studies will require a quan-
tum statistical model of the atom laser system with pumping
that includes at least one spatial dimension. The model and
results in this paper are an important step in that direction.
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