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We investigate the linewidth of a quasicontinuous atom laser within a semiclassical framework. In the high
flux regime, the lasing mode can exhibit a number of undesirable features such as density fluctuations. We
show that the output therefore has a complicated structure that can be somewhat simplified using Raman
outcoupling methods and energy-momentum selection rules. In the weak outcoupling limit, we find that the
linewidth of an atom laser is instantaneously Fourier limited, but, due to the energy “chirp” associated with
depletion of the condensate, the long-term linewidth of an atom laser is equivalent to the chemical potential of
the condensate source. We show that correctly sweeping the outcoupling frequency can recover the Fourier-
limited linewidth.
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I. INTRODUCTION

Optical lasers have found broad application in precision
measurements that address questions both fundamental and
applied in nature. In many cases, we expect to be able to
perform such experiments more effectively and to higher
precision with atom interferometry �1,2�. Ultracold en-
sembles of thermal atoms are already utilized in interfero-
metric systems where they have been demonstrated to com-
pete with the best inertial and gravitational measurement
apparatus available �1,3–6�. For this reason, there is signifi-
cant interest in the production of a coherent source of ultra-
cold atoms from a Bose-Einstein condensate �BEC� for ap-
plications in precision measurement and metrology �7,8�. A
free-space BEC atom interferometer in the Mach-Zehnder
configuration has been demonstrated to produce 100% con-
trast at the output port �9�, and there are proposals to put
atom interferometers into space �10�. Due to trap stability
and mean-field effects, precision experiments will most
likely need to be performed with a low density, untrapped
atomic beam rather than in more dense atomic sources such
as full Bose Einstein condensates �10�. There is also interest
in producing and measuring nonclassical quantum states of
atomic beams �11–13�. All of these proposed applications
will require a spatially stable atom laser beam with good first
order coherence.

In this paper we investigate the key spatial properties of a
quasicontinuous atom laser. In the cases where the out-
coupled atom laser is stable, we focus on the linewidth of the
output spectrum as the key measure of the first-order coher-
ence of the beam. We begin by highlighting the particular
importance of linewidth for dispersive fields such as atoms.
In Sec. III we introduce our model and we calculate the
properties of the output in various limits in Sec. IV. In Sec. V
we describe methods for reducing the atom laser linewidth.

II. IMPORTANCE OF LINEWIDTH

In a precision interferometric measurement made at the
shot noise limit, all that is theoretically required of the wave
source, whether it be a source of matter waves or light, is that
it have high flux. In principle, classical source fluctuations in
frequency and phase can be removed through good interfer-
ometer design. A long coherence length, equivalent to a spec-
trally narrow source, is not required if the path length differ-
ence in the interferometer is less than the coherence length.
In principle, mode matching on the output beam splitter of an
interferometer can be performed just as well on a compli-
cated spatial mode as a simple one and a highly divergent
beam can be collimated with lenses. In practice, however, if
an interferometer is to operate at the shot noise limit, none of
this is true. The shot noise limit for a high flux source is
difficult to achieve, and it is essential to have a spectrally
narrow, classically quiet, low divergence beam with the
minimum transverse structure in both phase and amplitude.
For these reasons, typical precision optical measurements
use classically quiet lasers operating on the TEM00 mode.

These points apply equally well to optical and atom lasers
suggesting that, in the absence of a perfect experiment, a
spectrally pure output beam is highly desirable. The differ-
ence is that unlike in an optical interferometer, the linewidth
of a matter wave interferometer can still be critical even for
a perfect experiment. To see this we consider the case of an
equal path length Mach-Zehnder interferometer and an
atomic beam that has an average momentum �k and a mo-
mentum spread of ��k. We now introduce some disturbance
in one of the arms, corresponding to the effect we wish to
measure, and model it as a step function potential of width L
and height V0. This is shown schematically in Fig. 1.

Assuming that �k�k, it is easily shown that due to the
dispersive nature of the atomic beam a phase difference of

�� =
L�k

2
��k��2k2 − 4mV0�
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builds up between the k and k+�k components of the inci-
dent beam. The phase difference �� represents an inherent
uncertainty in the phase resolution of the interferometer, re-
gardless of what measurement technique is used at the output
ports. This uncertainty arises purely from the finite linewidth
of the atomic beam, and will exist no matter how accurately
the path lengths of the interferometer arms are matched.

Now consider the case of an optical interferometer, again
using spectrally broad beams, and again with path lengths
perfectly matched. If a potential is introduced into one of the
arms, it corresponds to a change in the refractive index over
that region. Provided this change is not dispersive, all the
components in the beam will see the potential simply as an
increase in path length—crucially, the same increase. Conse-
quently the interferometer can be nulled and brought back to
correct operation by physically readjusting the distance in
one of the arms. As indicated in Eq. �1�, this readjustment is
not possible in an atom interferometer.

In general, generating an atomic source with low line-
width also requires the beam to have well-controlled spatial
properties in other respects, which makes it a good choice of
metric for the first order coherence of atomic sources. Appli-
cations that do not specifically benefit from the narrow line-
width of an atom laser will still tend to benefit from the
associated controlled spatial mode.

III. MODEL

In the most general terms, an atom laser requires coupling
atoms out of a BEC into a coherent beam. The most common
way to accomplish this is to use a state-changing outcoupling
method, where the atomic species making up the BEC has at
least two separate internal states—a trapped state and an un-
trapped state. The BEC consists of atoms in the trapped state,
which “feel” some confining potential that keeps them local-
ized and Bose condensed. Some external perturbation is then
applied to the BEC, which flips a portion of the trapped
atoms into the untrapped state where they no longer experi-
ence the confining potential and are free to leave the trap.

There are two common outcoupling methods, both of
which require that the atoms of the BEC be in a specific
angular momentum substate, for example mF=1, meaning
they can be confined by a magnetic trap. The two methods
are shown schematically in Fig. 2.

In the first outcoupling scheme, an external rf field is
applied that flips the atoms into an mF=0 state that does not
see the trapping magnetic field. Consequently the atoms fall
from the trap under the influence of gravity, creating a semi-
directed beam of coherent atoms: The atom laser. In the sec-
ond scheme a Raman outcoupling method is used, where two

optical fields transfer the state of the atoms from trapped
�mF=1� to untrapped �mF=0� via a third intermediate level.
The use of two optical fields means that a significant mo-
mentum kick can be imparted to the untrapped atoms as they
leave the condensate, leading to an atom laser with superior
properties such as a higher flux and higher brightness �14�
and the ability to give the beam directionality �14,15�. In
addition, the Raman scheme allows for the possibility of cre-
ating nonclassical states of the beam �13,16�.

Regardless of whether an rf or a Raman outcoupling
scheme is used, the second-quantized Hamiltonian describ-
ing the system can be written most generally as

Ĥ =� �Ĥtrap + Ĥbeam + Ĥint�d3r , �2�

where Ĥtrap describes the atoms in the trap, Ĥbeam describes

the atoms in the atom laser beam, and Ĥint describes the
outcoupling process. For the purposes of this paper we as-
sume an isotropic harmonic trapping potential for the trapped
atoms, which enables us to write the terms of Eq. �2� with
greater specificity as

Ĥtrap = �̂t
†�−

�2

2m
�2 +

1

2
m�t

2r2 +
Utt

2
�̂t

†�̂t	�̂t, �3�

Ĥbeam = �̂u
†�−

�2

2m
�2 − �� +

Uuu

2
�̂u

†�̂u	�̂u, �4�

Ĥint = − �„	�r��̂u
†�̂t + 	*�r��̂t

†�̂u + Utu�̂t
†�̂u

†�̂u�̂t… ,

�5�

where �̂t�r� and �̂u�r� describe the trapped and untrapped
matter fields, respectively, �t is the harmonic trapping fre-
quency, and the Uij are nonlinear potentials arising from
atom-atom collisions. For rf outcoupling the detuning is
given by �=�rf and for Raman outcoupling it is given by

� = �23 − �13 +

	23
2

�13
−


	13
2

�13
. �6�

The specifics of the outcoupling strength 	�r� depend on the
outcoupling method. In the rf outcoupling case 	=	rf and

V0

L

k

δk+ k

FIG. 1. Two matter waves with wave vectors k and k+�k are
incident on a step potential of height V0.
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FIG. 2. An atom laser based on �a� rf outcoupling and �b� Ra-
man outcoupling. In both cases trapped atoms in state 
1� are trans-
ferred to an untrapped state 
2� via electromagnetic fields. The 	ij

represent the Rabi frequencies of the applied fields and the �ij

represent detuning from resonance.
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has no position dependence. With Raman outcoupling, how-
ever, 	 is position dependent and is given by

	�r� =
	13

* 	12

�13
eik0·r, �7�

where k0=k2−k1 is the momentum kick imparted to the out-
coupled atoms from the two optical beams.

We assume that the atomic gas is sufficiently cold and
dilute, so only binary collisions are relevant and the nonlin-
ear potentials are defined by

Uij = 4
�2aij/m , �8�

where aij is the s-wave scattering length between atoms in
state 
i� and state 
j�.

When the quantum statistics have no effect on the dynam-
ics of the mean field, we can use the Gross-Pitaevskii �GP�
equation to describe the atom laser. The coupled GP equa-
tions arising from Eqs. �2�–�5� are given by

i�
��t

�t
= �− �2

2m
�2 +

1

2
m�t

2r2 + Utt
�t
2 + Utu
�u
2	�t

− �	�r��u, �9�

i�
��u

�t
= �− �2

2m
�2 − � + Uuu
�u
2 + Utu
�t
2	�u − �	*�r��t.

�10�

These equations can be solved numerically in one, two, or
even three dimensions, depending on the spatial resolution
required and computational resources available.

As we have included position dependence in the matter
fields, Eqs. �9� and �10� describe the full multimode nature of
the problem, and also include non-Markovian effects.

IV. LINEWIDTH CALCULATIONS

Unlike the electromagnetic field of the optical laser,
atomic fields do not have a simple proportional relationship
between energy and momentum spectra, and hence the line-
width of one does not translate trivially to a linewidth in the
other. In free space, the distinction is largely irrelevant as
both spectra are static, but this is not always true. In most
current experimental atom lasers, atoms are outcoupled from
a trap and allowed to fall under gravity. As they fall, they
gain kinetic energy at the expense of potential energy. This
results in a kinematic compression effect, leading to a nar-
rower spread in momentum the further the atoms fall, while
the energy spread remains constant. The energy spread of the
beam is thus a more stable measurement of the beam’s line-
width than the momentum spread.

Before numerically solving the full equations �9� and
�10�, it is worthwhile studying a number of simplified ver-
sions of the problem in order to extract as much analytic
insight as possible from the problem. To this end, we will
first examine the problem in the case where the atomic non-
linearities in the condensate are negligible and assume the
condensate remains single mode. We then examine the case

where the condensate is allowed to be multimode, but still
linear. Finally, we consider the fully general case numeri-
cally.

A. Single-mode condensate with no nonlinearity

To begin, we assume the condensate begins in a single
mode and remains single mode due to the outcoupling being
weak enough such that there is negligible back action on the
condensate. This is the simplest possible case and will result
in the minimum possible linewidth achievable in a non-
pumped atom laser.

We will also assume that the condensate has no nonlinear
interactions, which means we set Utt=Uuu=Utu=0 in Eqs.
�9� and �10�. This represents a regime where the condensate
contains few atoms, the trapping potential is weak, or the
s-wave scattering length of the atomic species is small.

In this situation one might naively assume that the line-
width of the atom laser is the power-broadened linewidth of
the atomic transition. To see this, one can consider the out-
coupling process as a classical picture of “atoms rolling
down a hill,” where the untrapped atoms are created on a
potential hill arising from the fact that the potentials the
trapped and untrapped atoms “see” are different. In this naive
picture the untrapped atoms appear on the potential hill with
a spread in position given by setting the energy spread equal
to the power broadened linewidth, as depicted in Fig. 3. This
picture is false, however, as the wavelike nature of the atoms
can cause destructive interference of some energies and con-
structive interference of other energies. It is necessary to take
the wavelike nature of the atoms into account to accurately
describe the energy spread.

The Hamiltonian given by Eq. �2� consists of terms de-
scribing the trapped matter field, the untrapped matter field,
and the coupling between the two. We denote the ground

state energy eigenfunction of the trapping Hamiltonian Ĥtrap
as �t�x� and the energy eigenfunctions of the beam Hamil-

tonian Ĥbeam as �u�q ,x�, where q is any convenient continu-
ous parameter that can label the energies of the atom laser
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FIG. 3. �Color online� Naive description of the energy spread of
outcoupled atoms due to a “balls on a hill” model. The atomic
transition has a resonant width � such that the coupling happens
over a region �z, corresponding to a change in potential of ��. This
leads to a spread in energies of �� for the outcoupled atoms. This
model neglects the wavelike nature of the atoms and the fact that
there is interference between the different energies.
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beam. The eigenvalues of �t�x� and �u�q ,x� are ��0

=��t /2 and ���q�, respectively.
We can now expand the wave functions of the trapped and

untrapped matter fields as

�t�x,t� = �0�t��t�x� , �11�

�u�x,t� = �
−





��q,t��u�q,x�dq . �12�

Under the approximations described above, Eqs. �9� and �10�
become

i�̇0 = �0�0 − 	�
−





A�q���q,t�dq , �13�

i�̇�q,t� = ���q� − ����q,t� − 	*A*�q��0�t� , �14�

where A�q�=�−


 �t

*�x��u�q ,x���x�dx and ��x�=	�x� /	
represents the spatially dependent part of the electromagnetic
field coupling the atoms out of the trap. In the case of Raman
outcoupling ��x�=eik0x and in the case of rf outcoupling
��x�=1.

Equations �13� and �14� can easily be solved numerically,
but we first derive an approximate analytic solution to gain
insight into how the linewidth scales with various param-
eters.

By making the transformation

�̃0�t� = �0�t�ei�0t, �15�

�̃�q,t� = ��q,t�ei���q�−��t, �16�

we obtain

i�̇̃0 = − 	�
−





A�q��̃�q,t�ei���q�tdq , �17�

i�̃
˙ �q,t� = − 	*A*�q��̃0�t�e−i���q�t, �18�

where ���q�=�0− ���q�−��. Formally integrating Eq. �18�
and assuming the initial state of the output field is vacuum
we obtain

�̃�q,t� = i	*A*�q��
0

t

�̃0�t��e−i���q�t�dt�. �19�

Substituting this result into Eq. �17� gives

�̇̃0 = − 
	
2�
0

t �
−






A�q�
2�̃0�t��ei���q��t−t�� dq

d�
d� dt�.

�20�

To proceed we make use of the fact that in the weak
outcoupling regime the momentum spread of the output is
much narrower than the momentum spread of the conden-
sate. This means that due to momentum conservation we are
only selecting atoms with a narrow range of momenta from
the condensate and thus can assume that the form of A�q� is

flat over this range, allowing us to replace A�q� with A�q0�
and take it outside the integral.

Similarly, due to energy conservation, the energy of the
outcoupled atoms will be centered around ���0+��, meaning
most of the dynamics will occur at frequencies close to �0
+�. Provided dq /d��q� is slowly varying close to �0+�, a
valid approximation is to replace dq /d� with 
dq /d�
�0+�.
For free space dq /d���−1/2, which means that for a Raman
transition with a large momentum kick it will be approxi-
mately constant. In the case of a gravitational potential,
dq /d� is constant, so the approximation is exact. Using
these approximations we obtain

�̇̃0 = − 
	
2
A�q0�
2
 dq

d�



��0t+��

� �
0

t �
�=−


�=


�̃0�t��ei���q��t−t��d� dt�

= −
�

2
�̃0�t� , �21�

where

� = 2

	
2
A�q0�
2
 dq

d�



��0+��
. �22�

As �̃0�t=0�=�N0, where N0 is the number of atoms in the
condensate at t=0, the solution to Eq. �21� is

�̃0�t� = �N0e−��/2�t. �23�

Consequently, the condensate number N�t�= 
�0�t�
2 will de-
cay exponentially according to N�t�=N0e−�t.

The spectrum of the output �i.e., number of atoms per
mode q� can now be obtained from Eq. �19�. We find


��q,t�
2 = 
	
2
A�q�
2N0F���,t� , �24�

where

F���,t� = �1 − 2 cos���t�e−��/2�t + e−�t

�2

4
+ ��2 � . �25�

This spectrum is plotted in Fig. 4.
In the weak coupling limit, when A�q� varies with � much

more slowly than F��� , t�, as t→
 the spectral power den-
sity of the output beam 
��q�
2 becomes a Lorentzian with a
full width at half maximum given by �. Thus, in the long
time limit, the fundamental limit to the linewidth of an atom
laser is related to the time it takes to drain the condensate via
�=�drain

−1 , where � is the spectral linewidth �measured in
rad s−1� and �drain is the drain time of the condensate, i.e., the
time required for N /N0 to reach 1/e, measured in seconds.
This result shows that the linewidth of a pulse of atoms
coupled out of the condensate sufficiently weakly is only
limited by Fourier arguments, although it should be noted
that most atom laser experiments are in a stronger coupling
regime. Such Fourier limiting of the output has been ob-
served in an experiment by Köhl et al. �17�.
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The weak coupling limit gives us the same separation of
time scales found in optical cavities and thus the spectrum is
identical to the spectrum of photons draining out of an opti-
cal cavity. As the average flux from our atom laser is Fav
=N0 /�t �where �t is either the drain time of the condensate
or an artificially imposed cutoff time of our atom laser pulse�
and our spectral linewidth is always limited to ���1/�t,
we obtain the inequality

Fav

��
� N0, �26�

relating the average flux and spectral linewidth of an un-
pumped atom laser.

As a number of approximations were used to obtain Eqs.
�24� and �22�, we also solved Eqs. �13� and �14� numerically
and compared the numerical solutions to our analytic results.
For our numerical model we took parameters typical to a
87Rb atom laser such as one described in �14�, and chose
k0=107 m−1, �t=50 rad s−1, and 	=50 rad s−1. We assumed
outcoupling into free space and, with the free space disper-
sion relation, Eq. �22� becomes

� = �

	
2� m

��t

1

k0
. �27�

Table I shows the comparison between the analytic theory
and the numerical simulations. Overall, there is good agree-
ment, allowing us to use Eqs. �24� and �27� with some con-
fidence.

The key point of this semiclassical analysis is that for an
ideal, single-mode, nonpumped atom laser, the linewidth is
given by the inverse of the drain time of the condensate.
Consequently it can be made as narrow as desired by reduc-
ing the outcoupling strength arbitrarily. The tradeoff is that
this arbitrarily narrow linewidth comes at the expense of re-
duced flux.

B. Multimode condensate with no nonlinearity

We now consider a more realistic model, where the con-
densate is not constrained to remain in a single mode, al-
though we still assume the nonlinearities are negligible.

We proceed as in the previous section, except now we
allow the condensate to be multimode and for simplicity treat
both the condensate modes and atom laser modes as discrete.
The wave functions of the trapped and untrapped atoms are
now expanded as

�t�x,t� = �
n

�n�t��tn�x� , �28�

�u�x,t� = �
n

�n�t��un�x� , �29�

where �tn�x� and �un�x� are the nth eigenstates of the Hamil-

tonians Ĥtrap and Ĥbeam, respectively. We denote their eigen-
values by ��tn and ��un. Proceeding as before, we find that
the equations of motion in an appropriate rotating frame are
given by

i�̇̃m = − 	�
n

Amn�̃nei��tm−��un−���t, �30�

i�̃
˙

m = 	*�
n

Amn
* �̃ne−i��tn−��um−���t, �31�

where Anm=�−


 �tm

* �x��un�x���x�dx.
When the coupling 	 is weak, the phase rotation of �̃m�t�

and �̃m�t� is approximately at zero frequency. This means
that over long times the only significant contribution to the

growth of �̃m�t� is from the trapped mode �̃n with frequency

�tn = �um − � , �32�

as all other modes will on average cause no net growth on
time scales much larger than �= ��tn− ��um−���−1.
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FIG. 4. �Color online� F��� , t� for �=1 Hz. As t→
, F����
asymptotically approaches a Lorentzian of FWHM �.

TABLE I. Comparison of condensate inverse drain time 1/�drain

and the long-time linewidth of an atom laser for different values of
	 and k0. �a and �n represent the linewidths for the analytic theory
and numerical simulation, respectively. The table shows close
agreement between our approximate analytic result and our numeric
calculation. The entries marked with an asterisk display poor agree-
ment between the analytic and numeric results. This is because the
coupling is sufficiently large such that the approximation made in
Eq. �21� is invalid.

k0 �m−1� 	 �rad s−1� 1/� �Hz� �n �rad s−1� �a �rad s−1�

400* 270* 320* 292*

1�107 100 18 18 18.3

25 1.1 1.2 1.14

10 0.18 0.18 0.183

100 35 37 36.5

5�106 25 2.3 2.4 2.28

10 0.36 0.35 0.365

100* 100* 245* 182*

1�106 25 11 13 11.4

10 1.8 1.8 1.83
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In the case of rf outcoupling, the momentum kick to the
outcoupled atoms is negligible, so the atoms retain the mo-
mentum they had when they were in the trap. This means the
energy conservation relation �32� is the only condition that
must be satisfied when considering the output spectrum and
consequently the energy spread of the output is now related
to the energy spread of the condensate via the magnitude of
the matrix elements Anm. Thus the spectrum of the atom laser
will essentially mimic the spectrum of the condensate, with
the energy peaks in the output beam at frequencies �tn+�
corresponding to different energies in the condensate, mod-
erated by the magnitude of Anm, with each peak broadened
such that it is the Fourier limit of the outcoupling time, as
discussed in the previous section. It is therefore clear that in
the rf case any dynamic fluctuations in the BEC will result in
an atom laser with a broader spectral linewidth than if the
BEC were single mode.

The situation is more complicated in the case of a Raman
outcoupling scheme with a large momentum kick. If we as-
sume that our condensate is initially in the superposition

�t�x� = �
n

�n�tn�x� , �33�

then, for long times, only the states that satisfy the energy
resonance �tn=�uj −� will be present in the output, just as in
the rf case. However, now there is an additional constraint
arising from the dispersive nature of the atoms. Taking free
space as an example, we have

�uj =
�kj

2

2m
, �34�

where �kj is the momentum of �uj�x�. Thus the output will
only contain momentum states

kj =�2m�� + �n�
�

. �35�

However, conservation of momentum demands kj =k+k0,
where k is the initial momentum of the atoms. The source of
outcoupled atoms will then be the component of the conden-
sate with momentum

kn =�2m�� + �n�
�

− k0. �36�

The relative amplitude of the component of the output with
momentum kj is then proportional to the value of An�k�, the
k-space representation of �t,n�x�, evaluated at kn. This can
lead to interesting effects. As an example, we choose our
trapped system as a harmonic oscillator. When k0 is small,
the spacing between the output k modes is of order �kj

��2m�t /�, which is about the spacing of the “lobes” in the
k space representation of �tn�x�. When k0 is large, �kj �0, so
the outcoupling always happens close to the center of the
momentum space wave function. As An�k� are Hermite Gaus-
sians in the case of the harmonic oscillator, An�k=0�=0 for n
odd, so there is no outcoupling from odd modes. This is
represented in Fig. 5.

The relative intensity of each k component in the output is
proportional to 
�n
2
An�kn�
2. Figure 6 shows 
An�kn�
2 for
different values of k0. Figure 6 was checked against a mul-
timode Gross-Pitaevskii simulation for the first five modes.
Close agreement was found for the relative amplitudes, al-
though the momentum resolution was insufficient to accu-
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An�k�
2 for n=0 �top�, n=3 �middle�, and n=8 �bottom�.
kn=���+�n�2m /�−k0, the place in the k-space wave function from
where resonant outcoupling occurs, is indicated by a vertical black
bar in each case. For k0=105 m−1, kn follows the largest “lobe” of
An�k� for increasingly excited states. For k0=108 m−1, kn remains
approximately in the center of An�k�. �=�k0

2 /2m−�t0 was chosen
such that the outcoupling was perfectly on resonance for the zero
momentum component of the ground state.
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FIG. 6. The relative intensities of the momentum components of
the atom laser beam corresponding to the first 20 condensate eigen-
modes for �a� k0=105 m−1, �b� k0=106 m−1, and �c� k0=108 m−1.
For small k0 �k0=105 m−1�, the relative intensity of each mode de-
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=108 m−1�, only even modes are present in the output. This is due
to kn falling at nodes of An�k� for the odd modes. In the intermediate
case, there is complicated structure, with some odd modes and some
even modes being attenuated.
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rately resolve the difference in momentum for each peak. For
small k0, all modes are present in the output, with the relative
intensity of each mode decreasing due to the spreading out of
An�k�. For large k0, only even modes are present in the out-
put. This is due to kn falling at nodes of An�k� for the odd
modes. In the crossover regime �when k0 is of order
�m�t /��, there is complicated structure in the output with
some even and some odd modes severely attenuated in the
output. For 87Rb, at a typical trapping frequency ��t

=50 rad s−1�, this crossover occurs at around k0�4
�105 m−1, which is much less than the maximum recoil of
k�1.6�107 m−1 achievable with a two-photon transition,
using light of wavelength �=780 nm. This suggests that this
effect should be observable in experiments, although our
theory has neglected the atomic interactions, which will
complicate the effect.

C. Multimode condensate with nonlinear interactions

We now turn to an analysis of the complete problem and
allow the nonlinear interactions in the condensate to be sig-
nificant, which is the case in many experimentally realizable
atom lasers.

The existence of nonlinearities makes a difference to a
number of properties of the condensate and the atom laser,
affecting things such as mode shapes, memory functions, and
classical density fluctuations. The change that is most rel-
evant to the linewidth, however, is the fact that the energy of
the condensate is now dependent on the number of atoms in
the condensate.

To understand this, we note that when an atom in the
condensate is flipped from a trapped to an untrapped state, it
experiences a mean field potential that depends on the den-
sity distribution of the condensate. As the density of the un-
trapped field 
�u
2 is much less than that of the trapped field
inside the condensate, it is clear from Eq. �10� that this mean
field potential is given by

Vmf = Uuu
�t�r�
2, �37�

where Uuu is defined by Eq. �8�. As density is always positive
and increases towards the center of the condensate, this re-
sults in a repulsive force on the untrapped atoms that accel-
erates them out of the BEC.

As an example, we consider the Thomas-Fermi limit,
where the nonlinear energy of the condensate is considerably
larger than the kinetic energy and the wave function for the
condensate can be found analytically. Assuming a harmonic
trapping potential with frequency �t, the atomic density in
the condensate is given by


�t�r�
2 =
1

Utt
���N� −

1

2
m�t

2r2 − mgz	 , �38�

where

��N� =
m�t

2

2
� 15NUtt

4
m�t
2	2/5

. �39�

Equations �37� and �38� show that after the atoms have been
flipped into an untrapped state, they slide down a quadratic

potential hill of height �, giving them a kinetic energy � as
they leave the condensate.

Assuming the condensate is not pumped, its atom number
will inevitably reduce during the outcoupling process. As the
number of atoms N in the condensate falls, the chemical
potential also falls, resulting in a situation where atoms out-
coupled later in time will have a smaller kinetic energy as
they leave the condensate compared to atoms outcoupled at
an earlier time. Consequently, the atom laser beam will con-
sist of atoms with a wide spread of energies; a spread that
can be as large as ��N0� if all the atoms are outcoupled.

To demonstrate this effect we numerically solve the full
Eqs. �9� and �10� for a situation with experimentally realistic
parameters and a large nonlinearity. The equations were
solved in one dimension only, using a dimensional reduction
procedure where the nonlinear potentials Uij were scaled by
a transverse area corresponding to the cross sectional area of
the beam �18�. This not only makes the computation far more
tractable, but also removes additional complications that ob-
scure the linewidth such as part of the mean-field kick being
transferred into transverse modes of the laser. The simulation
coupled into free space rather than a gravitational potential,
meaning the momentum space wave function of the beam
could be used to give the linewidth.

Figure 7 shows the result of the simulation, displaying
snapshots of the beam’s momentum space wave function at
various points in time. Initially the momentum is centered at
kcent=�k0

2+2m��N0� /�2 and the linewidth �i.e., momentum
spread of the beam� begins to narrow in accordance with the
Fourier argument laid out in Sec. IV A. After enough atoms
have been outcoupled to significantly change the chemical
potential, however, new atoms appearing in the beam have
lower and lower energies, resulting in the line center being
“chirped.” Consequently, the effective linewidth becomes
ever broader, ultimately spanning all momentum states be-
tween k0 and kcent when the entire BEC has been drained.
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FIG. 7. �Color online� Momentum space density of an atom
laser beam after �a� 20 ms, �b� 100 ms, �c� 400 ms, and �d� 1000 ms
of outcoupling. After 1000 ms 65% of the atoms in the condensate
have been outcoupled. Parameters: N0=106, �=150 rad s−1, a=4
�10−11 m, and k0=3.2�106 m−1.
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The complicated structure seen in Fig. 7 arises from the
fact that since an atom laser beam is a complex field and the
frequency of condensate phase evolution is changing, there
can be destructive interference between atoms emitted with a
particular energy and atoms emitted at a later time with the
same energy but out of phase.

V. METHODS TO REDUCE LINEWIDTH

In this section we review possible methods for reducing
the linewidth from an unpumped atom laser in various pa-
rameter regimes.

A. Weak outcoupling

The most obvious way to minimize the linewidth of an
atom laser is to outcouple extremely weakly, as this increases
the drain time, effectively without limit. Thus, provided the
condensate nonlinearities are negligible, the Fourier argu-
ments in Sec. IV A demonstrate that the linewidth can be
made arbitrarily narrow.

In the case where condensate nonlinearities are not negli-
gible, weak outcoupling still succeeds in reducing the line-
width as the condensate will undergo almost no depletion,
meaning the chemical potential is static and there is no chirp
of the line center. However, unlike the case where nonlin-
earities can be ignored, we cannot weakly outcouple all the
atoms—we must ensure that over the entire duration of the
experiment the change in chemical potential is less than the
minimum linewidth we are willing to accept. In the case of a
strongly nonlinear condensate, if we require the temporal
linewidth to be less than ��, then by Eq. �39� we must en-
sure that the number of atoms outcoupled from the conden-
sate is less than

�N �
5

m�t
2�
�4
m�t

2

15Utt
	2/5

N0
3/5�� , �40�

where �t is the harmonic trapping frequency and N0 is the
number of atoms initially in the condensate.

This approach can be arbitrarily effective if high flux is
not important. We solved Eqs. �9� and �10� for a highly non-
linear system, and examined the linewidth of the beam over
time. Over the simulation approximately 10 atoms were re-
moved from the condensate, corresponding to extremely
weak outcoupling. The results are shown in Fig. 8. In the
long time limit, the curve shown in Fig. 8 is linear with a
slope of −1, indicating that linewidth is inversely propor-
tional to the outcoupling time. This agrees with the Fourier
arguments our approximate single-mode linear theory pre-
dicts.

The difficulty with weak outcoupling is that high flux is
one of the more desirable qualities in a laser. What we have
demonstrated here is that in the ultralow flux limit the atom
laser can be regarded in some sense as having a very narrow
linewidth with a slowly moving line center. In practice, this
flux limit will make any experiments impractical, so we now
consider a method to achieve narrow linewidth without sac-
rificing flux.

B. Chirp compensation

The source of the drift of the line center is the mean field
potential that untrapped atoms experience as they leave the
condensate. If we ignore gravity, this mean field potential
can be found from Eqs. �37� and �38� and is given by

Vmf = ��t� −
1

2
m�t

2r2, �41�

where we have taken Utt=Uuu and allowed the chemical po-
tential time dependence to take into account condensate
depletion. If we choose the outcoupling point to be the center
of the condensate, atoms acquire the full chemical potential
��t� worth of energy on their way out of the condensate.
However, as the condensate depletes, ��t� decreases, mean-
ing atoms outcoupled later have less energy, broadening the
linewidth.

The solution is to begin outcoupling from a point away
from the center of the condensate, so that initially atoms do
not acquire the full ��t� worth of energy as they slide down
the potential hill. If we then move the outcoupling point back
in towards the center of the condensate as it depletes, it is
possible to ensure that atoms outcoupled later acquire the
same amount of energy as those outcoupled earlier, thus re-
moving the chirp effect.

This shifting of the outcoupling point can be accom-
plished by making the two-photon detuning � time depen-
dent. If we wish to initially begin outcoupling atoms from a
distance r0 from the minimum of the magnetic trap �which
will coincide with the center of the condensate if gravity is
ignored� and sweep this point towards the center of the trap
in such a way that atoms always leave the condensate with
the same energy, then, since the energy of atoms as they
leave the condensate is

Eout = ��t� + ��t� , �42�

we need to choose

��t� =
�2k0

2

2m
− ��t� + ��0� −

1

2
m�t

2r0
2. �43�
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FIG. 8. �Color online� Linewidth narrowing as a function of
outcoupling time for a highly nonlinear atom laser with very weak
outcoupling �log-log plot�. Parameters: N=107, �t=250 rad s−1, a
=3�10−9 m, and k0=107 m−1.
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To test this scheme we numerically solved Eqs. �9� and
�10� for the same nonlinear system that was considered in
Sec. V A, carrying out simulations with both a fixed two-
photon detuning and a time-dependent two-photon detuning
given by Eq. �43�. The behavior of the atom laser linewidth
over time is shown in Fig. 9. It is clear that using a time-
dependent detuning prevents the deleterious chirp of the line
center and recovers the underlying narrow spectrum of the
laser output.

C. Pumping

A pumped atom laser operating at steady state would ex-
perience no chirp, as the energy of the lasing mode would be
stable by definition. Lasers operating well over threshold
also experience mode-selection effects that help provide a
stable mode, although previous work suggests that it may be
nontrivial to operate an atom laser in this regime �19,20�.
Pumping can also induce gain narrowing to combat the
linewidth-broadening effects of quantum noise. A continuous
pumping scheme for BECs has not been demonstrated, how-
ever, and consideration of quantum noise contributions to the
linewidth of an atom laser requires a model that goes beyond
the semiclassical approximation. Examination of these quan-
tum effects in zero-dimensional models has occurred in a

variety of contexts �21–23�, but no model has examined the
competition between the multimode effects and the quantum
noise in these devices. A multimode quantum model investi-
gating the quantum noise contribution to the linewidth of an
unpumped atom laser is the subject of a separate paper �24�.

VI. CONCLUSIONS

We have examined the linewidth of experimentally real-
istic nonpumped atom lasers in a variety of regimes. In
strong outcoupling regimes, output spectra show a variety of
undesirable features. If the condensate does not remain
single mode due to non-Markovian effects causing back ac-
tion of the beam on the condensate, then the spectrum of the
output beam will also be multimode, with peaks correspond-
ing to the energy spacing of the excited modes in the con-
densate. We have shown that it is possible to use Raman
outcoupling and momentum conservation rules to selectively
filter out some of the excited modes of the condensate, re-
sulting in a cleaner beam.

As the coupling strength becomes weaker, we have shown
that the linewidth of nonpumped atom lasers has two main
limits. Weakly outcoupled, single-mode atom lasers with
negligible nonlinearities will approach the Fourier limit,
where the linewidth is given by the inverse of the outcou-
pling rate. This outcoupling rate is a function of the atomic
properties as well as the Rabi frequency of the change of
state of the atoms. When the condensate has significant non-
linearities, as is the case of the most current experimental
atom lasers, depletion of the condensate causes the chemical
potential to decrease over time, resulting in a downwards
“chirp” in the central frequency of the output beam during
the outcoupling process. This effect causes significant broad-
ening of the linewidth of the beam. If high flux is required
and therefore a significant fraction of the condensate must be
outcoupled, we have demonstrated that it is feasible to use a
chirp compensation scheme such as sweeping the detuning
of the state-changing outcoupling process.
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