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We use the hydrodynamic representation of the Gross-Pitaevskii and nonlinear Schrödinger equations in
order to analyze the dynamics of macroscopic tunneling processes. We observe a tendency to wave breaking
and shock formation during the early stages of the tunneling process. A blip in the density distribution appears
on the outskirts of the barrier and under proper conditions it may transform into a bright soliton. Our approach,
based on the theory of shock formation in solutions of the Burgers equation, allows us to find the parameters
of the ejected blip �or soliton if formed�, including the velocity of its propagation. The blip in the density is
formed regardless of the value and sign of the nonlinearity parameter. However, a soliton may be formed only
if this parameter is negative �attraction� and large enough. A criterion is proposed. An ejection of a soliton is
also observed numerically. We demonstrate, theoretically and numerically, controlled formation of a soliton
through tunneling. The mass of the ejected soliton is controlled by the initial state.
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I. INTRODUCTION

The recent advances in experiments on real Bose-Einstein
condensates �BECs� �1–3� and nonlinear optical waves �4,5�
have generated a huge body of works on the theoretical side
based on the Gross-Pitaevskii �GP� �6,7� �see also Refs.
�8–10�� or nonlinear Schrödinger �NLS� equation �9,11�

i�
�

�t
��r,t� = �−

�2

2m
�2 + U�r� + ����r,t��2���r,t� . �1�

The dynamics of solutions of this equation is very complex
and rich. The phenomena of coherence �12�, macroscopic
tunneling �14,15�, vortex formation �16–21�, instabilities, fo-
cusing, and blowup are all concepts related to the nonlinear
nature of the systems. Dark solitons, or kinkwise states—i.e.,
states with dynamically stable propagating density minima—
are expected in condensates with repulsive interactions. They
have been predicted for one-dimensional BECs �22–25� and
may occur in higher dimensions as well. There have been
several suggestions for techniques to engineer dark solitons
in BECs �26�, and these were indeed successfully created and
observed �27,28�. The two groups used far-off-resonance la-
ser beam pulses to shift the matter wave phase, thus creating
density minima.

As for bright solitons, the situation is more subtle, since in
such systems instability of the gas is unavoidable above a
critical particle number where the zero-point kinetic energy
does not suffice to balance the collapse mechanism. The lat-
ter renders the system to behaviors which deviate signifi-
cantly from the mean-field validity range. The critical num-
ber has been calculated theoretically for 7Li to be Ncr
=1400 �29,30�, which is consistent with the experimental
measurements. A condensate with a limited number of at-
oms, however, can be stabilized by confinement in a trap. In

1995, the first evidence for a BEC in 7Li atomic gas with
attractive interactions was reported �3�. Later that year, the
stability of solitons created in condensates in a small har-
monic trap, constrained to one-dimensional �1D� motion,
was predicted from numerical calculations �31�. For the 3D
case, however, the solitons were predicted to be stable for
modest ranges of nonlinearities. In 1998 an analytic solution
was obtained for BEC bright soliton creation in an asymmet-
ric, cigar-shaped trap. It was then shown that the solitons do
not expand when confinement in one direction is lifted �32�.
A major stepping stone was undoubtedly the production and
observation by two experimental groups �33,34� of bright
solitons in ultracold 7Li gas, released from a one-
dimensional trap. Both groups reported propagation without
dispersion over macroscopic distances. The latter group also
observed propagation of a soliton train.

The question of BEC bright soliton formation, stability,
and dynamics is far from being solved and the ongoing re-
search is very active. Ways to stabilize two-dimensional BEC
solitons by using spatial modulation of the interaction
strength �35� and by using rapid oscillations between repul-
sive and attractive interactions �36� were suggested. The ex-
istence of vortex solitons in periodic potentials �optical lat-
tices� was revealed in Refs. �37–39�. Exact solutions for the
dynamics of 1D trapped BEC bright solitons with a time-
dependent interaction strength were found in Ref. �40�. In-
terference of tunneling BEC matter waves in an optical array
was observed �41� and the existence of bounce solutions in
macroscopic tunneling was investigated in Ref. �42�. The
dynamics of an initially nonuniform bright soliton was stud-
ied in �43� as was friction and diffusion of bright solitons by
the thermal cloud �44�. The dynamics of a bright BEC soli-
ton in an expulsive potential was investigated in �45�. Fi-
nally, pulsed macroscopic quantum tunneling of BECs is ex-
pected, which is induced by the scattering of solitons on the
Gaussian potential barrier �13�.

Remarkably, many similar phenomena are observed in
light propagation, when we have to turn to electromagnetic*Electronic address: fleurov@post.tau.ac.il
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wave propagation and penetration into media with different
refraction indices instead of matter wave dynamics. Atomic
correlations now correspond to the coherence of laser light,
while many-body �mean-field� interactions correspond to
Kerr nonlinearity. Examples of parallel dynamics include
soliton formation and modulation instability �34� in the fo-
cusing �attractive� case and dark solitons �46� and dispersive
shock waves in the defocusing �repulsive� case �47,48�. Mul-
tispecies condensates relate to multicomponent, or vector,
beams of light, while periodic potentials for both the atomic
and photonic systems have been demonstrated using standing
light waves �4,49�. Of course, there are also significant dif-
ferences between the two systems, particularly when atomic
excitations and quantum �versus classical� statistics are in-
volved. In these cases, too, it is useful to contrast optics with
BECs in order to better understand the underlying dynamics
of both.

Most of the theoretical analysis of the works mentioned
above have so far been dealt with by a combination of nu-
merical schemes �e.g., Ref. �13,14�� and finite-dimensional
phenomenological models. Furthermore, all assume long-
time existence of the solitons in the gas. None has considered
the problem of tracing the mechanisms responsible for the
actual formation of the soliton in the course of tunneling. In
other words, the problem of the short-time dynamics of tun-
neling has so far not been addressed. The tendency to shock
formation and creation of solitons at the early stages of the
tunneling process is another aspect of the theory presented in
this paper. As we shall see below an interesting aspect of this
process is the possibility to control such soliton parameters
as mass, geometrical factors, and velocity.

The hydrodynamic formulation for the Schrödinger equa-
tion was originally proposed in Ref. �50�. A similar approach
is also well known in linear and nonlinear optics �see, e.g.,
�51,52��. Recently a hydrodynamic formalism received much
attention �53–57� as a useful tool for analyzing the GP-NLS
equation as well as other systems like the fractional quantum
Hall effect �58�. The time-independent problem has been
studied as far back as the early 1950s �59�. We apply this
approach to one-dimensional systems. Its generalization to
higher dimensions is straightforward, although it may require
special consideration of vortices.

We study nonlinear phenomena in the macroscopic tun-
neling of a BEC gas or optical systems. Employing the hy-
drodynamic representation we analyze the time-dependent
GP-NLS equation �1� and obtain the dynamics of a trapped
droplet tunneling through a barrier both on the short and long
time scales. We predict a splitting process, in which a blip in
the density distribution is formed at short times outside the
confining potential. We find the conditions under which it
may evolve into an outgoing bright soliton. Our approach
allows for an analytical calculation of its parameters, includ-
ing the velocity and energy. We also show numerical evi-
dence for the blip and soliton formation. This theory allows
one to design a structure in which we can fully control the
parameters of the ejected soliton, including its velocity and
mass fraction split off of the initially trapped BEC. The latter
observation also indicates a way to extract a stable BEC
soliton out of a less stable one. These are feasible processes.
Their experimental implementation may be carried out, e.g.,

by measuring light propagation in samples with spatially
modulated refraction index �60,61�.

II. GENERAL APPROACH

We consider here the 1D dynamics of BEC in an external
potential Vext�x�. Equation �1� for a complex wave function
��x , t� describing the system may be equivalently written as
two equations for two real functions: the continuity equation

�

�t
��x,t� +

�

�x
���x,t�v�x,t�� = 0 �2�

for the particle density distribution ��x , t�= ���x , t��2 and the
Euler-type equation

�

�t
v�x,t� + v�x,t�

�

�x
v�x,t� = −

1

m

�

�x
Vef f�x,t� �3�

for the velocity field v�x , t�= �
�x�, where � is the phase of

wave function and the effective potential

Vef f�x,t� = Vext�x� + Vqu„���x,t�	… + ���x,t� �4�

includes the quantum potential

Vqu„���x,t�	… = −
�2

2m

1

��x,t�

�2

�x2

��x,t� . �5�

The latter is often also called quantum pressure �QP�. The
effective potential �4� is a functional of the density distribu-
tion ��x , t� and may vary in time so that generally the two
equations should be analyzed together.

Sometimes we have information about the density distri-
bution and may solve Eq. �3� separately. The diffusion term

�

2m

�2

�x2v�x,t�

on the right-hand side of Eq. �3� is introduced as a singular
perturbation �62� which ensures its dissipative regularization,

�

�t
v�x,t� + v�x,t�

�

�x
v�x,t� =

�

2m

�2

�x2v�x,t� −
1

m

�

�x
Vef f�x,t� .

�6�

We expect a tendency to formation of a shock wave in the
velocity and density distributions. It is well known that the
Burgers equation with the diffusion term has steplike solu-
tions, which survive even if the “diffusion” coefficient �
tends to zero. However, this type of solution does not appear
if �=0 from the very beginning �see, e.g., Eqs. �4.1� and
�4.2� in Ref. �57��. Therefore we first analyze Eq. �6� for
finite values of the coefficient � and then take the limit �
→0 in the final results.

We may now apply the Cole-Hopf transformation

v�x,t� = −
�

m

�x�x,t�
��x,t�

, �7�

so that the new function ��x , t� satisfies the linear diffusion
equation with a source:
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�t�x,t� =
�

2m
�xx�x,t� +

1

�
Vef f�x,t���x,t� . �8�

The Green function of Eq. �8� can be represented by the
Wiener path integral

G�x,x0,t,0� = �
x0,0

x,t

D�x�	��e−�1/��S„�x�	��;t,0…, �9�

where

S„�x�	��;t,0… = �
t0

t � m

2�
�dx�	�

d	
2

d	 − Vef f„x�	�,	…�d	

has the form of an action for a particle with the mass m
moving along a path in the potential Vef f. Distinguishing as
usual the contribution of the classical path xc�	� we get the
saddle point approximation for the Green function,

G�x,x0;t,0� = F�t�e−�1/��S„�xc�	��;t,0…. �10�

This approximation leads in fact to exact results in the limit
�→0. In particular the preexponential factor F�t� plays no
role in this limit. We look for the solution ��x , t� of Eq. �8�,
which at t=0 has the form

�0�x� = e−�1/��S0�x�.

Returning to the Cole-Hopf transformation �7� we under-
stand that the function S0�x� must be chosen to satisfy the
condition

v0�x� =
1

m

dS0�x�
dx

,

where v0�x� is the initial velocity field at t=0 of the original
physical problem.

The solution of Eq. �8� with this initial condition then
reads

��x,t� = �
−





dx�G�x,x�,t��0�x��

= F�t��
−





dx�e−�1/���S0�x��+S�x,x�,t��. �11�

The integration in Eq. �11� is carried out around the saddle
point defined by

�S�x,x�,t�
�x�

= − mv0�x�� , �12�

so that

��x,t� � e−�1/���S0„x̄�x,t�…+S„x,x̄�x,t�,t…�, �13�

where x̄�x , t� is obtained by solving Eq. �12� with respect to
x� for a given x and t. Substituting solution �13� into Eq. �7�,
using the initial condition �12�, and taking the limit �→0 one
gets the velocity field in the form

v�x,t� =
�S„x, x̄�x,t�,t…

�x
.

This result has a simple interpretation. As mentioned
above the function S�x , x̄ , t� is the mechanical action of a
particle �to be called “tracer” below� with the mass m mov-
ing from point x̄ to x during time t in the potential Vef f. v0�x̄�
is its initial velocity. In other words, we have to solve the
following equivalent problem. At a time t an observer mea-
sures the velocity field in an “effective fluid” flowing in the
external potential Vef f�x , t� under the condition that the initial
velocity field be v0�x�. The possible compressibility of the
fluid is accounted for by the dependence of the quantum
pressure and, hence, Vef f�x� on the density distribution. If the
measurement is carried out in the point x, the observer sees
the tracer, which has started at time 0 from point x̄ with
velocity v0�x̄�. The question is what the tracer’s velocity
measured by the observer is. Solving this problem we obtain
the velocity distribution of the fluid flowing in the effective
potential �16�, which according to the above procedure coin-
cides with the velocity field of the actual quantum fluid. Be-
low we analyze this problem for a model choice of the ef-
fective potential Vef f and obtain the velocity field as a
function of time t.

III. MODEL

A. Adiabatic approximation

We consider here tunneling escape from the one-
dimensional potential trap, Fig. 1.

Tunneling of a particle with energy  from the trap is
characterized by the time of tunneling escape:

	tun � �−1e�tun,

where � is the frequency of oscillations within the trap and

�tun =
1

�
�

a

b

dx
2m�Vext�x� − �

is the tunneling integral of the classically forbidden under-
barrier region �a ,b�. There is also another important charac-
teristic of tunneling which is the time 	tr needed to traverse

Vext(x)

x

V0(x)

chemical potential

FIG. 1. The right half view of the trap potential Vext�x� keeping
the droplet. The dashed line shows the auxiliary potential V0�x�
which differs from Vext�x� only to the right from the top of the
potential barrier. The dash-dotted line corresponds to the chemical
potential  for a given number N of particles.
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the underbarrier region �63�. This duality in tunneling char-
acterization was first introduced in Ref. �64� and has been
dealt with in many works since �63,65–67�. The traversal
time is a matter of intensive research and has attracted atten-
tion for both fundamental and technological reasons. Among
many possible definitions of the traversal time the “semiclas-
sical” traversal time

	tr =
m

2
�

a

b

dx
1


Vext�x� − E
�14�

proposed in Ref. �67� is most popular and will be used be-
low. It is obtained by modulating the potential barrier with a
small cosine perturbation and finding the traversal time as
the crossover between high- and low-frequency behaviors.

In what follows we embrace the definition �14� for the
traversal time and rely on the additional important observa-
tion that the density field varies on the time scale 	tun,
whereas the velocity field varies on the time scale 	tr �56�.
The inequality 	tr�	tun, valid for typical barriers, assumes
the dynamics of the velocity field at virtually constant den-
sity. We may therefore use this assumption in order to apply
the adiabatic approximation in the first iteration. The second
step will be to calculate the time dependence of the density,
��x , t�, for the time-dependent velocity field found in the first
iteration. The former will end, by definition, when changes in
the density field become significant.

We consider now a droplet trapped in the potential Vext�x�
from which it escapes due to tunneling through the potential
barrier. In order to define the initial density distribution �0�x�
we introduce an auxiliary confining potential V0�x� from
which tunneling is impossible and a stationary state is
formed. This potential coincides with Vext�x� for small x up
to the top of the potential barrier but differs for larger x
�dashed line in Fig. 1�. The density distribution �0�x ;N� of
the stationary state in the auxiliary potential V0�x� is obtained
from Eq. �3� at v�x , t�=0, which becomes

�V0�x� −
�2

2m

�2

�x2 + ��0�x;N��
�0�x;N� = �N�
�0�x;N� .

�15�

Equation �15� is in fact the stationary GP-NLS equation with
the potential V0�x� and determines therefore the initial den-
sity distribution �0�x ;N�. Here �N� is the chemical poten-
tial. The calculations are carried out for a given total number
N of particles in the trap.

Using Eq. �15� for �0�x ;N� we get that the effective po-
tential in Eq. �6� for a given number N�t� of particles be-
comes

Vef f�x� = Vext�x� − V0�x� +  + Vqu„���x,t�	…

− Vqu���0„x;N�t�…	� + ����x,t� − �0„x;N�t�…� .

�16�

The number of particles, N�t�, in the trap may vary slowly
with time. Generally the effective potential follows the varia-
tion of the density distribution. However, the adiabatic ap-
proximation implies that the density field varies much slower

than the velocity field. It ensures also that the QP follows
also the change of the total number of particles in the trap in
the course of time, which is reflected by a slow variation of
the chemical potential  with slowly changing number of
particles, N�t� �56�. Hence we may, to within a good preci-
sion, assume that ��x , t�=�0(x ;N�t�) in Eq. �16�, meaning
that

Vef f�x� = Vext�x� − V0�x� − U0, �17�

where U0 is the asymptotic value of the difference Vext�x�
−V0�x� at large x. Hence this parameter is just the height of
the barrier. The chemical potential is dropped under the de-
rivative over the coordinate x in Eq. �6�, and the constant
−U0 is introduced for the sake of convenience so that
Vef f�x�→0 at x→
. Therefore the effective potential is
shifted by the time-independent difference U0 of the actual
potential forming the trap and the auxiliary potential used to
form the initial density distribution �at large �x��.

The effective potential �17� has a bell-like shape, being
zero at x→ ±
 and reaching its maximum value of about U0
at x=0. Its width is related to the barrier width. We plan at
this stage to follow an analytical approach to the problem.
For this sake it is worthwhile to choose a model shape,
which will properly reflect the above-mentioned properties
of the effective potential and will be simple enough to carry
out the calculations. At a later stage we will carry out
straightforward numerical calculations and compare the re-
sults. This aim can be achieved by choosing the effective
potential �17� in the form

Vef f�x� =
U0

cosh2 �x
, �18�

which includes the height U0 of the barrier and another pa-
rameter � which characterizes the inverse width of the bar-
rier. Since we start from the stationary state �0�x ;N� as the
initial density distribution, we also assume the zero initial
velocity field v0�x�=0. The effective potential �18� is time
independent so that we deal with an “adiabatically” incom-
pressible flow. The compressibility—i.e., variations of ��x , t�
and, hence, Vef f with time—can be accounted for in higher
iterations.

According to the analysis in Sec. II we have to calculate
the velocity field v�x , t� of the equivalent fluid at a given
point x and time t with the initial conditions described above.
For this sake we consider a fluid tracer which starts moving
at a point x̄ at initial time t=0 with initial velocity v�x ,0�
=0. The initial energy of the tracer,

�̄ =
U0

cosh2 �x̄
, �19�

is conserved in the Lagrange coordinates when we follow the
tracer along the path of its motion. Hence at the point of
observation x �which is a static Euler coordinate� and at the
time of observation t it becomes

�̄ = ��x,t� �
U0

cosh2 �x
+

mv2�x,t�
2

. �20�
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Equations �19� and �20� allow us to connect the starting point
x̄ of the tracer motion with the velocity field measured at
time t at point x.

The tracer, which has started from point x̄ with energy �,
reaches the point of observation, x, after time

t = �
x̄

x 1


 2

m
�� −

U0

cosh2 �x
dx . �21�

This integral together with the initial condition �19� implic-
itly defines the energy ��x , t� of the tracer observed at point x
at time t. Calculating the integral in Eq. �21� we arrive at the
equation

F�w;�,	� � 2 − w + 2
1 − w − w exp� 	


 w sinh2 � + 1
� = 0,

�22�

where

w =
U0 − �

� sinh2 �
,

with 0�w�1. Here we use dimensionless time, 	
=2t
2U0�2 /m, and space, �=�x, coordinates. It is worth
noting that the time scale 
m /2U0�2 is of the order of the
traversal tunneling time �14� and appears as a natural scale
for the time variation of the velocity field in the course of
tunneling.

B. Velocity field

Equation �22� is solved with respect to w, so that we get
the quantity ��� ,	� at a given � and 	. Then we obtain the
velocity field

v��,	� =
 2

m
����,	� −

U0

cosh2 �
� .

Equation �22� is nonlinear and may have more than one so-
lution. One can find the critical time 	c=5.55 and position
�c=2.005 from the condition that the function F�w ;� ,	� in
Eq. �22� become zero simultaneously with its first and sec-
ond derivatives. Then, for 	�	c, Eq. �22� has only one so-
lution at each value of the coordinate �. At longer times 	
�	c, there is a finite range of � values at ���c, where Eq.
�22� has three solutions.

The appearance of three solutions corresponds to a break-
down of the wave �see, e.g., discussion in Ref. �68�� and to
formation of a shock wave. In the critical region the proce-
dure as outlined in Sec. II should be amended. It means in
fact that Eq. �12� has several solutions and, hence, the inte-
grand in Eq. �11� has several saddle points. The saddle point,
at which the action S�x ,x� , t� is the smallest will determine
the actual velocity field in the limit �→0.

The velocity field at 	�	c is shown in Fig. 2. A blip is
formed on the outskirts of the barrier, which then approaches
the wave breakdown at 	=	c, Fig. 3. This type of behavior is
characteristic of shock wave formation. We do not follow the
further evolution of the velocity field since we have stretched
the adiabatic approximation to its limit. In fact, we should
consider this result as the first iteration and calculate the
evolution of the density field by means of the continuity
equation �2�, which may introduce corrections to the effec-
tive potential �18� in the region where the shock wave is
going to be formed.

Although the fully developed shock with a sharp step in
the density distribution would be an artifact of the approxi-
mation of incompressible flow used to calculate the velocity
field, its analysis allows for an estimate of the speed of blip
propagation. Solving simultaneously the equations

F�w;�,	� = 0,
�F�w;�,	�

��
= 0,
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FIG. 2. Velocity profiles �in the 
2U0 /m
units� ṽ��� for increasing times 	=1,2 ,3 ,4 ,5.
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at a given time 	�	c, we find two values of the coordinate �
between which the shock occurs. Using the fact that w is
small in this region, we obtain the upper limit of the blip
velocity:

vb =
2U0

m
.

It is worth emphasizing that vb is of the order of the velocity
with which the tunneling particles traverse the classically
forbidden barrier region.

C. Density field

The development of a blip in the velocity field results in a
local increase of the density at 	�	c �see Fig. 4�. The varia-

tion of ��x , t� near the blip is found from the continuity equa-
tion �2� assuming similarly to Ref. �56� that in the region
where the blip is formed �i.e., outside the trap� the initial
density distribution is

�0�x� = �̃e−�x,

where �=2
2m�U0−� /� and �̃ is a constant. We solve the
equation

���x,t�
�t

= −
�

�x
��0�x,t�v�x,t�� , �23�

where v�x , t� is the time-dependent velocity field calculated
in Sec. III B. The relative variation of the density,
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FIG. 3. Velocity profile �in the 
2U0 /m units�
at 	=	c where breakdown of the wave occurs.
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FIG. 4. The blip in the density distribution at
	=1,3 ,5 for �=0.25�. The lines become dashed
inside the trap where the calculation errors may
be large. The shape of the effective potential �out
of scale� is shown by the dash-dotted line.
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is obtained by integrating Eq. �23� over time.
The calculated distribution �rel�� ,	� of the relative density

variation is shown in Fig. 4 at several times 	�	c. The blip
in the density propagates with the velocity vb, leaving a de-
pleted region behind. Although the depletion is a real effect,
the approximate procedure leads to a too strong depletion
inside the trap as shown by the dashed lines, meaning that
we cross the applicability limits of the procedure.

We clearly see a tendency to wave breakdown and forma-
tion of a shock at times approaching the critical time 	c. This,
however, does not happen, and the wave does not break
down and form a shock in the density field ��x�, since such a
development is inhibited by the quantum potential �5�. The
latter contains the second derivative of the density which
may become large in the area of the blip formation even
though the absolute value of �rel�� ,	� may be still small. The
corresponding correction to the effective potential �16� pre-
vents the sharp shock formation.

Formation of a soliton

At 	=3 the blip moves in a weak potential in the outskirts
of the trap and we deal with a new problem of a packet
propagating with a the velocity �vb, which may or may not
transform into a soliton. A direct comparison shows that the
shape of the blip is close to that of the soliton. The latter is
formed if the blip energy Eblip in its center-of-mass coordi-
nate system is negative �e.g., Ref. �69� and references
therein�. This condition may be fulfilled only if the interac-

tion parameter �̃=2m� /�2 is negative �attractive interac-
tion�. Calculating Eblip by means of the Gross-Pitaevskii sur-
face energy functional we get the inequality

��̃��̃ � �12.95�2 + 0.123
mU0

2�2 ; �25�

i.e., for each value of U0 and � there is a lower limit for the
interaction strength above which a soliton may be formed. Its
width is about twice the width of the trap, and it contains
about 10% of the initial packet. For the typical parameters of
the currently available systems, m=7 amu=11.69
�10−27 kg �for Li atoms�, U0=10−33 J, �=104 m−1, and �̃

=1016 m−3, we get ��̃��2.38�10−7 m. Finally, a soliton is
formed if the interaction coefficient satisfies the condition
����0.73�10−49 J m3, which is typically fulfilled and has
been measured experimentally �see, e.g., �33��.

The condition �25� is necessary for the soliton formation.
In the one-dimensional case the soliton, if formed, remains
stable. In the two- and three-dimensional cases the condition
�25� by itself does not guarantee the survival of such a soli-
ton, which may be unstable with respect to the collapse at

��0. For ��0 the soliton cannot exist and the blip dis-
perses. However, it is important to emphasize that we con-
sider here very-short-time processes so that the blip forma-
tion can be observed before the possible instabilities become
fully developed. The blip formation at short times takes place
for any sign of the interaction term or even in the case of a
more complicated functional dependence. For example, a
self-saturating nonlinearity is considered in nonlinear optics
�see, e.g., �46�� so that the collapse problem loses its acute-
ness. Another possibility is to use a positive higher-power
term with a small coefficient �9� which also removes the
blowup.

It is also emphasized that in the case of a weaker than in
Eq. �25� negative �attractive�, zero, or even positive �repul-
sive� interaction parameter � the soliton is not formed; how-
ever, the solitonlike blip in the density will be always formed
and propagate far away from the trap �many hundreds of
barrier widths� before being dispersed.

D. Numerical solution

We may observe as soliton is formed and ejected in the
course of tunneling also in the direct numerical solution of
the GP-NLS equation �1� carried out using the program
KITTY �70�. Varying the trap potential in a wide range of its
parameters we were always able to observe the formation of
the blip. Here we present an example of the computation
carried out for the GP-NLS Hamiltonian

H = −
1

2
�2 + V�x� −

1

2
���x,t��2,

where

V�x� =
9

8
�1 +

x4

25
exp�−

x4

35
 ,

with the initial wave function

��x,0� =
3
2

4

1

cosh �3x/4�
.

We may construct the effective potential �4� for this model
and roughly fit it to the model choice �18� with �=0.5 and
U0=1.2. Then we get 1 /
8U0�2 /m=0.65 as the time unit in
our above analysis in Sec. III. It means that the reduced units
used in this numerical calculation differ not essentially from
those applied above.

Formation of a blip with a negative energy outside the
potential barrier at short times is shown in Fig. 5, whereas
Fig. 6 shows its propagation at longer times. One can clearly
see two parallel lines showing the core of the blip, which
slowly oscillates approaching the soliton shape. It is worth
emphasizing that the characteristics of the soliton, obtained
numerically, are quite close to those obtained in our above
analysis, including the time ��6� and location of the blip
formation ��6� and the velocity of its propagation �0.8.
These numbers are recalculated with the units compatible
with the analysis in the main body of the paper. We see that
the numbers obtained in the numerical procedure are only a
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little bit larger �smaller for the velocity� than those obtained
in the analytical procedure. Keeping in mind a rather rough
approximation made by choosing the shape �18�, this quan-
titative agreement is quite impressive.

IV. CONCLUSIONS

Using the fluid dynamics paradigm, we have analyzed the
GP-NLS equation and demonstrated the phenomenon of
shock formation in the course of tunneling short-time dy-
namics. It results in the formation and ejection of a blip in
the density field of the outgoing mass. It is emphasized that
the process takes place at early stages of tunneling and is not
dependent on the particular shape of the nonlinear term in
the GP-NLS equation. When the suitable conditions are ful-
filled the blip may later on transform into a bright soliton.
We propose a technique which allows for analysis of the
short-time dynamics of tunneling processes and provides us
with a insight to the fundamental problem of macroscopic
tunneling.

We believe that the conclusion of this paper can be
straightforwardly verified experimentally both in BEC

tunneling or in nonlinear optics measurements. By engineer-
ing a trap with the proper parameters we control the tunnel-
ing process and formation of bright solitons. The blip splits
from a larger and narrower and thus less stable trapped
packet; therefore, a general approach of ensuring stability by
the BEC tunneling is presented.

Although the model considered here assumes that a BEC
droplet is bound within a trap, the blip formation in the
course of tunneling is the property of the barrier and is ob-
served for other initial states as well; e.g., numerics show a
similar effect in 2D systems.

The model we analyzed can be implemented experimen-
tally both for BEC and optical soliton devices. The latter
requires a quite simple setup of an optical fiber, with a spa-
tially modulated refraction index, constituting the trap and its
outings. As the light propagates, a blip should be detected
near the trap outings, which escapes towards the sides of the
fiber and develops into a soliton. By controlling the initial
state—i.e., the initial mass of the BEC droplet or light
intensity—we may obtain a “soliton gun” for the prescribed
mass and velocity of the ejected solitons. Our approach
applies to other nonlinear soliton dynamical effects—e.g.,
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FIG. 5. Contour plot of the density distribu-
tion evolving with time. The figure shows the for-
mation of a blip outside the barrier at short times.
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gation of the blip and its gradual conversion into
a soliton at long times. The lower graph uses the
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and follows the blip.
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soliton slicing �71� �by a potential bump� and generally soli-
tons interacting with a potential. Another important example
may be the dynamics of nonlinear models of fission �see,
e.g., �72��.

Note added in proof. Recently, our attention was drawn to
the work of L. D. Carr and Y. Castin �73� that studies dy-
namics and stability of a bright BEC soliton in an expulsive
potential.
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