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We study the two-particle wave function of paired atoms in a Fermi gas with tunable interaction strengths
controlled by Feshbach resonance. The Cooper pair wave function is examined for its bosonic characters,
which is quantified by the correction of the Bose enhancement factor associated with the creation and annihi-
lation composite particle operators. An example is given for a three-dimensional uniform gas. Two definitions
of Cooper pair wave function are examined. One of which is chosen to reflect the off-diagonal long range order
�ODLRO�. Another one corresponds to a pair projection of a BCS state. On the side with negative scattering
length, we found that paired atoms described by ODLRO are more bosonic than the pair projected definition.
It is also found that at �kFa�−1�1, both definitions give similar results, where more than 90% of the atoms
occupy the corresponding molecular condensates.
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I. INTRODUCTION

Recent advancement in the control of Feshbach molecules
has given rise to many new experimental observations in the
world of ultracold atomic gas �1–5�. At sufficiently low tem-
peratures, fermionic atoms are known to form pairs under an
attractive interaction. The interaction strength can be ma-
nipulated by tuning magnetic fields near Feshbach reso-
nance, which is characterized by a detuning energy between
the close channel bound state energy and the open channel
collision threshold. A positive detuning leads to a negative
scattering length, in this regime paired atoms are loosely
bound. Upon negative detuning, the scattering length be-
comes positive and atoms can form bound molecules, which
could further condense into a Bose-Einstein condensate
�BEC� state. Unlike bosonic molecules, the statistics of in-
teracting fermionic atoms is dictated by the Pauli exclusion
principle, the ground state is thus made up of a large number
of modes, even at zero temperature. One usually uses a BCS
state to approximate the ground state at which fermions are
paired up according to their natural orbits �6�. This is very
different from BEC formed by pure bosons at zero tempera-
ture, which is well-described by a single mode wave func-
tion. We may, however, expect, upon a strong enough inter-
action, that paired fermionic atoms become so tightly bound
that they look just like bosons �7�. In that case, one natural
question to ask is, how alike are a fermionic pair and a bo-
son? In this paper, we address this question by constructing a
Cooper pair creation operator and examine its bosonic prop-
erties across resonance.

One fundamental feature that distinguishes fermions from
bosons is the commutation relation between their creation
and annihilation operators. For bosons, the commutator
�C ,C†� is one, while the anticommutator �C ,C†� is one for
fermions. For composite two-particles, the corresponding
commutator is not exactly one �8–10�. A useful indicator
measuring the deviation from the bosonic commutation rela-
tion is the M-pairs normalization factor �M defined by
�0�CMC†M�0	=M!�M, where �0	 is the vacuum state. The
value of �M reflects the correction of the Bose enhancement
factor and was used to study ground state excitons statistics

�8,9� and the connection to quantum entanglement �10�. The
key quantity was shown to be the ratio �M+1 /�M which goes
to one for a perfect boson. This ratio will be one of our
primary indicators of the bosonic characters of Cooper pairs.

However, there has been an ambiguity in defining the ex-
plicit form of a Cooper pair wave function. Ortiz et al. �11�
have given a discussion at length on this matter. In �12�,
Yang showed that off-diagonal long range order exists in a
superconducting state, and is characterized by a dominant
eigenvector of the two-particle density matrix. The eigenvec-
tor is sometimes recognized as a Cooper pair wave function.
On the other hand, the pair projection wave function of a
BCS state �13� is also a candidate. Both Cooper pair wave
functions will be examined in this paper. Their bosonic char-
acters are compared and we shall discuss their suitability as a
bosonic mode in a Fermi gas.

In this paper, we employ the one-channel approach to
discuss the crossover phenomena at zero temperature
�11,15–17�. Specifically, a BCS state will be used as our
ground state wave function

��	 = 

n

�ũn + ṽn�n
†�n

†��0	 . �1�

Here �n and �n are the annihilation operators of two spin
components of fermonic atoms, n denotes the quantum num-
ber of pairing orbit, and ũn and ṽn are amplitudes subjected
to normalization constraint �ũn�2+ �ṽn�2=1. The number of at-
oms in each spin component is given by N=�n�ṽn�2. In this
paper, we will use the solution of ũn, ṽn in homogeneous
systems. For trapped systems, the amplitudes can be deter-
mined by methods described in Refs. �18,19�.

II. BOSONIC TESTS

We begin by reviewing some tests on the bosonic charac-
ters of a particle operator. Consider the annihilation operator
of a composite particle defined by
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C = �
n

�n�n�n, �2�

where �n��n�2=1. The operator C, when sandwiched by the
BCS state given in Eq. �1�, has the following properties:

�C†C	 = ��
n

�nũn
*ṽn�2

+ �
n

��n�2�ṽn�4, �3�

��C,C†�	 = �
n

��n�2��ũn�2 − �ṽn�2� � 1. �4�

Equation �3� gives the number of composite particles exist-
ing in the gas. To quantify how “bosonic” the C molecule is,
we study the commutator �C ,C†�. Note, however, only the
expectation value of the commutator is given in Eq. �4�, not
the commutator itself. How close the expectation value to
unity it is, is a necessary but not sufficient condition for C to
be bosonic. To actually compare C with a pure boson opera-
tor, we adopt the views pointed out in Refs. �8–10�. It was
suggested that the bosonic characters should be quantified by
the normalization factor �M, where

�0�CMC†M�0	 = M!�M . �5�

�M is obviously 1 if C is a perfect boson. It is often more
convenient to look at the ratio �M+1 /�M, since

C�M	 = �M

�M−1

M�M − 1	 + ��M	 , �6�

where ��M	 is a correction term orthogonal to �M −1	, and it
has the norm given by

��M��M	 = 1 − M
�M

�M−1
+ �M − 1�

�M+1

�M
. �7�

So we see that the ratio �M+1 /�M plays the role of a correc-
tion of a Bose enhancement factor with respect to a many
body state. It tells us how the gas differs from being bosonic
when one more pair of atoms is added to or removed from a
M-pairs gas. The closer it is to one, the less a correction it is.
The criterion of a perfect boson is �M+1 /�M =1, only then is
��M ��M	 zero. In this paper we will examine the case with
M =N, which is the number of atoms of one of the spin
components in the gas.

In the case of fermions and if N	1, Combescot et al. �9�
have shown that

�N+1

�N
�

N

z0
, �8�

where z0 can be solved from the equation �9�

N

z0
= �

n

��n�2

1 + z0��n�2
. �9�

From this last equation the ratio can be solved numerically.
In Refs. �8,9�, the correction factor in Eq. �6� has been stud-
ied in exciton systems. Here we will apply Eq. �9� to atomic
Cooper pairs with �n defined in the next section. One of the
general features is that the �N+1 /�N would deviate more from
unity when the density of atoms increases. This is because

when the pair density is large, atoms within each pair would
see the Pauli effect from atoms in nearby pairs.

It is useful to indicate the meaning of Eqs. �8� and �9�
through a simple model. Let us consider ��k�2= ��k�
kC

�−1 for
�k�
kC and zero otherwise, where kC is the extension of the
wave function in momentum space, such that the two particle
wave function has a spatial radius �1/kC. It can then be
shown that Eq. �9� reads

�N+1

�N
�

N

z0
= 1 −

N

V

6�2

kC
3 . �10�

Noting that 1 /kC
3 is the spatial volume of our pair wave func-

tion, N is the maximum number of pairs in a total volume V,
the second term in Eq. �10� is thus the volume occupied by
all Cooper pairs over the total volume. In the BCS limit
where a Cooper size is large �kC�Fermi momentum kF, N

V
�kF

3 /6�2�, paired atoms are Pauli blocked by atoms in be-
tween, preventing a bosonization, and hence N /z0 is nearly
zero. While in the BEC limit where kC→�, each Cooper pair
is essentially isolated from each other, and this gives N /z0
→1 �9�.

III. COOPER PAIR WAVE FUNCTIONS

We now discuss two choices of �n in defining the Cooper
pair wave functions. First, it was shown in �12� that the long
range correlation ��r1−r1��→�, �r2−r2��→�� in a paired state
is reflected in the eigenvalue decomposition of the two par-
ticle density matrix

G�r1�,r2�;r1,r2� = ��
†�r1���

†�r2����r2���r1�	

� ��
m

�ũm
* ṽm�2��̃�r1,r2��̃*�r1�,r2�� , �11�

where ��r�=�nfn�r��n and ��r�=�nfn
*�r��n are the field

operators of the respective species, and �fn� is an orthonor-

mal set of natural orbits. The mode function �̃ can be written
as

�̃�r1,r2� =

�
n

ũn
*ṽnfn

*�r2�fn�r1�

�
m

�ũm
* ṽm�2

�12�

in terms of the natural orbits �fn�. �̃�r1 ,r2� is often consid-
ered as a Cooper pair wave function and 2�n�ũn

*ṽn�2 is the
number of atoms that condense into Cooper pairs. We shall
thus construct C with respect to this wave function. �̃�r1 ,r2�
is obviously associated with C through

�n =
ũnṽn

*

�
n

�ũnṽn
*�2

, �13�

which gives the explicit expressions

�C†C	 = �
n

�ũn
*ṽn�2 +

�
n

�ũnṽn
*�2�ṽn�4

�
n

�ũn
*ṽn�2

, �14�
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��C,C†�	 =

�
n

�ũnṽn
*�2��ũn�2 − �ṽn�2�

�
n

�ũn
*ṽn�2

. �15�

The second term in �C†C	 is smaller than unity, while the
first term is of order N. So as long as the number of particles
is large, the second term can be dropped. In the large N limit,
�C†C	 is just the eigenvalue given in Eq. �11�. We remark
that Eq. �13� was also recognized by Leggett �20� as a form
of Cooper pair wave function, and recently Salasnich et al.
have made use of the definition to calculate the condensate
fraction �15�.

There is, however, another way of defining a Cooper pair
based on the single pair projection from a BCS state
�7,11,13,14�. By expressing the BCS state as

��	 = �

n

ũn��
j=0

�

��
n

�ṽn/ũn�2� j/2C�†j

j!
�0	 , �16�

C�† would then be a Cooper pair creation operator. It can be
shown that C� takes the form �7,11,13,14�

C� = �
n

�n��n�n, �17�

�n� =
ṽn/ũn

�
m

�ṽm/ũm�2
. �18�

Applying the previous procedures on C�, we have

�C�†C�	 = 1 +

�N	2 − 2�N	 + �
n

�ũn
*ṽn�2

�
n

�ṽn/ũn�2
, �19�

��C�,C�†�	 = − 1 + 2�N	/�
n
� ṽn

ũn
�2

. �20�

Note that the BCS state given in Eq. �16� is in fact a coherent
state if C� is perfectly bosonic.

IV. RESULTS IN A UNIFORM GAS

Before proceeding, let us recap some familiar results in a
homogeneous BCS gas. The natural orbits are the plane wave
mode fk�r�=eik·r /V and the occupation amplitudes are
given by

�ũk

ṽk
� =

1
2
1 ±

k2 − 2�

�k2 − 2��2 + 4�2
, �21�

where �=4�a���r���r�	=−4�a�kũkṽk is the pairing gap,
� is the chemical potential, and a is the scattering length. �,
�, a, and the atom density � of each species are related by a
regularized gap equation and a number equation,

−
1

4�a
=� d3k

�2��3� 1

2�k2/2 − ��2 + �2
−

1

k2� , �22�

� =
N

V
=� d3k

�2��3 �ṽk�2, �23�

where the integration can be expressed in terms of elliptic
integrals �16�. The Fermi momentum is defined as kF
= �6�2��1/3, which is the reciprocal of the interatomic dis-
tance. An important dimensionless parameter is �kFa�−1. The
BCS limit is indicated by �kFa�−1�−1, the BEC limit corre-
sponds to �kFa�−1	1, and the crossover occurs at �kFa�−1

=0 �15,16�. Some integrals used are listed in the Appendix
for reference.

Using Eq. �21� for ũk and ṽk, we evaluate Eqs. �14� and
�15� and Eqs. �19� and �20�. In Fig. 1 we plot the fraction of
condensation in the gas as a function of the dimensionless
parameter �kFa�−1. With either choice of �k, the fraction goes
to one in the BEC limit �kFa�−1	1. Notice that �C†C	 /N is
an appreciably higher fraction than �C�†C�	 /N, showing a
dominant condensation of atoms into the pair wave function
defined in Eq. �12�.

The expectation value of the commutator ��C ,C†�	 as a
function of �kFa�−1 is shown in Fig. 2. Again both definitions
of �k give unity in the BEC limit, but Eq. �15� is always
closer to one than Eq. �20�.
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FIG. 1. �Color online� The fraction of condensate particles
�C†C	 /N with two different definitions: �k� ũkṽk �solid line� �Eq.
�14�� and �k�� ṽk / ũk �dashed line� �Eq. �19��.
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FIG. 2. �Color online� Expectation value of the commutator
��C ,C†�	 with two different definitions: �k� ũkṽk �solid line� �Eq.
�15�� and �k�� ṽk / ũk �dashed line� �Eq. �20��.
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Next we calculate the factor �N+1 /�N. By solving Eq. �9�
numerically for �k and �k�, we obtain the ratios �N+1 /�N and
�N+1� /�N� from Eq. �8�. These ratios are shown in Fig. 3 as a
function of �kFa�−1. We see that �N+1 /�N is closer to one
throughout the transition region. Together with the tests
based on expectation values above, �k defined by Eq. �13�
seems to be a more suitable choice for the bosonic descrip-
tion of paired atoms.

Our calculations indicate an interesting region roughly at
−2� �kFa�−1�2 where Cooper pairs transit from being non-
bosonic to bosonic. Note that it does not require �kFa�−1

	1 for the emergence of a bosonic character. At �kFa�−1=1,
the fraction of condensation �C†C	 /N is already 95%,
��C ,C†�	�0.94 and �N+1 /�N�0.97. In particular at the
point where the chemical potential �=0 ��kFa�−1�0.553�
�16�, which is sometimes recognized as the boundary be-
tween BEC and BCS regimes �21,22�, we have ��C ,C†�	
=0.835, �N+1 /�N=0.937. The use of definition �18� gives
slightly weaker numbers, but a narrower transition region.

V. CONCLUSION

To conclude, three indicators were used to quantify the
bosonic characters of a Cooper pair in an interacting Fermi
gas: �a� �C†C	, �b� ��C ,C†�	, and �c� �N+1 /�N. Two different
definitions of a Cooper pair were examined, �n�� ṽn / ũn and
�n� ũn

*ṽn. Our calculations suggest that the latter one pro-
vides a better description of the Cooper pairs as bosonic
particles. Moreover, as the fraction of composite particles
goes to one in the BEC limit, the gas is basically in its
simplest single mode. It appears that using either one of the
two definitions makes little differences in the strong coupling
regime �kFa�−1�1. This is consistent with the results in Ref.
�11�, in which the authors addressed the similarity of both
definitions. As shown in Fig. 4, the difference between Eqs.
�13� and �18� on the BCS side is that the former only takes
into account a few momentum states on the Fermi surface,
whereas the latter one takes the average of all states inside
the Fermi sphere. In a weakly interacting gas, only atoms
lying on the Fermi surface interact effectively, the composite
particle based on Eq. �13� would thus be more bosonic since
it takes into account the dominant correlated states. In the

deep BEC limit, the Fermi sphere is totally smeared out, and
either choice of �n would weigh different momentum states
on an almost equal footage, resulting in the merge of two
different pictures.

If the system is not in the BEC limit, we have shown that
the bosonic character of a Cooper pair depends on how the
pair wave function is defined. Our work here is an attempt to
identify what definition is more effective to reveal a Cooper
pair as a boson. From an experimental point of view, it is
interesting to search for observables associated with C or C�,
so that one can probe the quantum statistics of Cooper pairs
directly. We also remark that our method can in principle be
extended to nonuniform systems. However, the coefficients
ũn and ṽn, which are calculated from the natural orbits
�18,19�, do not have closed forms for analytical discussions.
The question how a trapping potential affects the bosonic
properties of Cooper pairs is an open problem for future
studies.
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FIG. 3. �Color online� The quantity �N+1 /�N with two different
definitions: �k� ũkṽk �solid line� and �k�� ṽk / ũk �dashed line�.
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APPENDIX

We list here some integrals used in this paper. A detailed
analysis can be found in the paper by Marini et al. �16� and
the paper by Ortiz et al. �11�. In the following list, we adopt
the following change of variables:

x0 = �/�, x2 = k2/�2�� �A1�

and introduce shorthand notations

�x = x2 − x0, Ex = �x
2 + 1, �A2�

�2 =
1

2
�1 + x0/x0

2 + 1� , �A3�

q = − x0/x0
2 + 1. �A4�

So we have �k2dk= �2��3/2�x2dx. Some integrals that ap-
peared in our calculation are listed below:

−
1

4�a
=

2�

2�2 �
0

�

x2dx� 1

Ex
−

1

x2� , �A5�

N

V
=

�2��3/2

4�2 �
0

�

x2dx�1 −
�x

Ex
� , �A6�

� d3k

�2��3 �ũkṽk�2 =
�2��3/2

8�2 �
0

� x2dx

Ex
2 , �A7�

� d3k

�2��3� ṽk

ũk
�2

=
�2��3/2

2�2 �
0

�

x2dx
Ex − �x

Ex + �x
. �A8�

The integrals are expressed in terms of K and E, which are,
respectively, the complete elliptic integral of the first and
second kind. We also need Pn, the Legendre function of the
first kind of degree n.

�
0

�

x2dx� 1

Ex
−

1

x2� =
K��2� − 2E��2�

�x0
2 + 1�−1/4 , �A9�

�
0

� x2dx

Ex
2 =

�

22
x0 + x0

2 + 1. �A10�

�
0

�

x2dx�1 −
�x

Ex
� =

�1 + q�K��2� − 2qE��2�
3�x0

2 + 1�−3/4 , �A11�

�
0

�

x2dx
Ex − �x

Ex + �x
=

2�

35

�q2 − 5�P3/2�q� + 4qP1/2�q�
�x0

2 + 1�−7/4 .

�A12�

Choosing �k= ũkṽk /�k��ũk�ṽk��
2, Eq. �9� is solved with the

help of the following integral:

�
0

� x2dx

bEx
2 + 1

=
�x0 + x0

2 + 1 + 1/b
8b�b + 1�

, �A13�

where b is a positive real number. For �k�
= �ṽk / ũk� /�k��ṽk� / ũk��

2, Eq. �9� is numerically integrated
and solved.
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