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The shear viscosity of a two-component Fermi gas in the normal phase is calculated as a function of
temperature in the unitarity limit, taking into account strong-coupling effects that give rise to a pseudogap in
the spectral density for single-particle excitations. The results indicate that recent measurements of the damp-
ing of collective modes in trapped atomic clouds can be understood in terms of hydrodynamics, with a decay
rate given by the viscosity integrated over an effective volume of the cloud.
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I. INTRODUCTION

Strongly interacting Fermi systems play a central role in
physics over a vast range of energies, from cold atoms over
condensed matter systems to quark-gluon plasmas. For
atomic gases, the regime of strong interaction is reached by
the use of Feshbach resonances at which the scattering length
diverges. This so-called unitarity limit has been studied ex-
perimentally through the expansion of a two-component
Fermi gas �1� and by measuring its collective modes �2,3�.
These experiments indicate that under certain conditions the
dynamic properties of atomic gases in the unitarity limit are
well described by hydrodynamics, both in the superfluid and
in the normal phase. Related results have been reported for
the strongly interacting quark-gluon plasma produced in
heavy-ion collisions at RHIC �4,5�.

In this paper we shall carry out a quantitative analysis of
the hydrodynamic damping for the normal phase in the uni-
tarity limit and compare our results to the measured rate of
decay of the collective modes �2,3�. In the hydrodynamic
limit, the rate of decay is related to the shear viscosity inte-
grated over the volume of the trapped atomic cloud. As we
shall see, under the given experimental conditions, hydrody-
namics applies only in a limited temperature region above
the superfluid transition temperature Tc. Furthermore, hydro-
dynamics necessarily fails in the outer parts of the atomic
cloud, where the density is low and the mean free path there-
fore long. Since for a classical gas the viscosity is indepen-
dent of density, one must introduce an explicit cutoff in the
spatial integration of the viscosity, as shown in Ref. �6�.

In the unitarity limit, we can use a dimensional argument
�7� to write � as

� = n���T/TF� . �1�

Here � is a dimensionless quantity which can only depend
on temperature through T /TF. The Fermi temperature is TF
=kF

2 /2m, where kF is the magnitude of the Fermi momentum
given by kF= �3�2n�2/3 with n being the density of the gas
�with the exception of Eq. �1�, we use units such that �
=kB=1�. Our aim is to obtain an approximate expression for
the universal function ��T /TF� which will allow us to com-
pare theory with experiment.

The present work is a continuation of two previous papers
�8,9�, in the following referred to as papers I and II, respec-
tively, on the damping of collective modes in Fermi gases.

Before we describe the results of our present calculation we
shall therefore summarize the approach taken in papers I and
II, and indicate their limits of applicability.

In paper I we employed a Boltzmann equation for the
fermion distribution function f�r ,p , t�, taking into account
the dependence of the scattering cross section on the energy
in the relative motion of two particles, as well as the effect of
the mean field in the streaming terms of the Boltzmann equa-
tion. The collective mode frequencies were calculated by
taking moments of the Boltzmann equation, which intro-
duced the spatially averaged viscous relaxation rate as the
effective collision rate entering the imaginary part of the
�complex� mode frequencies. At low temperatures, well be-
low the Fermi temperature, the validity of this approach is
restricted to the limit of weak coupling kF�a��1, where a is
the scattering length and kF is the magnitude of the Fermi
wave vector. In this limit the method is accurate within a few
percent, since the viscous relaxation rate used in paper I is
obtained from a trial function which yields viscosities that
differ by only a few percent from those obtained from exact
solutions to the Boltzmann equation at both low and high
temperatures. At temperatures well above the Fermi tempera-
ture the Boltzmann approach used in paper I is accurate for
any value of a, including the unitarity limit in which the
cross section is proportional to the inverse of the energy in
the relative motion. We shall demonstrate this in detail in the
Appendix.

When kF �a� becomes comparable to or larger than unity,
one enters the regime of strong coupling, in which perturba-
tive approximation schemes such as the Boltzmann approach
can no longer be trusted at temperatures comparable to or
less than the Fermi temperature. Progress in understanding
the viscosity of such strongly coupled Fermi systems must
necessarily rely on an interplay between experiment and
theory, since there is no small parameter available for a per-
turbation expansion that could yield firm theoretical predic-
tions. For an atomic gas close to a Feshbach resonance we
explored in paper II the influence of the medium on the scat-
tering cross section, which in paper I was taken to be its
value in vacuum. Due to Fermi blocking of the pair states
into which the molecular state can decay, the lifetime of the
resonant state was found to be significantly increased, lead-
ing to a corresponding increase in scattering rate �and hence
a decrease in viscosity� close to the superfluid transition tem-
perature Tc. For a uniform gas the calculated viscosity just
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above Tc was found to be reduced by the factor 7.5 compared
to the value obtained in paper I by use of the vacuum scat-
tering matrix. For a trapped gas the difference was less pro-
nounced: the thermal relaxation rate, which is closely related
to the inverse viscosity, was found near Tc to be 3.6 times the
value obtained using the vacuum scattering matrix.

The assumption underlying the approach taken in paper II
was that the main effects of the interaction in the strong-
coupling limit arose through a modification of the scattering
cross section, while strong-coupling effects that lead to spec-
tral broadening of single-particle excitations were not taken
into account. Put in different terms, only the collision term in
the kinetic equation was modified by taking into account the
medium effects mentioned above, while the streaming terms
were assumed to be unaffected by interactions. In the present
paper we abandon this assumption and consider specifically
the role of the pseudogap occurring in the spectral function
of single-particle excitations �10�. The presence of the
pseudogap in the normal phase influences the Bragg spec-
trum observed when an atom absorbs a photon from one
laser beam and emits a photon into another, resulting in a
change of the energy and momentum of the atom �11�. In the
normal phase, at the unitarity limit, the pseudogap was found
to cause a significant suppression of the low-frequency
Bragg spectrum.

The use of a Boltzmann equation as in papers I and II
implicitly assumes the existence of quasiparticles with a
definite energy-momentum relationship. When the spectral
functions broaden, the quasiparticles are less well defined,
and it therefore becomes relevant to investigate the effect of
this broadening on the transport properties of the gas. Ideally,
one should derive a kinetic equation that takes all strong-
coupling effects systematically into account, but due to the
lack of a small parameter in the strong-coupling limit this
would be far too ambitious an undertaking. Our aim here is
more modest: to compare results for the viscosity in the pres-
ence and absence of spectral broadening in order to gain
insight into its quantitative significance, and to use this to-
gether with the results of papers I and II to construct an
approximate formula for � that allows for an explicit com-
parison with experiment.

A main result of the paper is the calculation in Sec. II of
the shear viscosity from a Kubo formula, which allows one
to take into account the presence of the pseudogap in the
spectral density of states for single-particle excitations. Since
our results are based on a ladder approximation to the self-
energies, they cannot be expected to be quantitatively accu-
rate, but as we shall see, our present results are quite close to
those of paper II at low temperatures. At high temperatures,
however, the Kubo expression gives results that lie signifi-
cantly below the classical result obtained from the Boltz-
mann equation. Since the latter is essentially exact for all
values of a in the classical limit, as we shall demonstrate in
the Appendix, we construct an approximate formula for �
which interpolates between the low-temperature result and
the exact high-temperature limit. This interpolation formula
is then used for comparison with experiment in Sec. III,
where the decay rate is related to the viscosity integrated
over an effective volume of the trapped gas. The resulting
agreement with experiments �2,3� that were carried out at

two very different frequencies indicates that the interpolation
formula provides a qualitatively correct picture of the phys-
ics involved in the viscosity of a strongly interacting Fermi
gas. The calculations also illustrate how information on the
viscosity of strongly interacting Fermi gases can be extracted
from measurements of the damping of collective modes.

II. THE SHEAR VISCOSITY

Consider the shear viscosity � of a uniform, two-
component Fermi gas of atoms with mass m in the normal
phase. There is no interaction between atoms in the same
internal state whereas the interaction between atoms in the
two different internal states is characterized by the s-wave
scattering length a. Unitarity means that we take kF �a � →�.
The shear viscosity relates the momentum current density
�xy to the gradient in flow velocity ux�y� according to �xy

=−��ux /�y.
The Landau-Boltzmann approach assumes well-defined

quasiparticle excitations. However, with strong interactions
present the spectral functions may become significantly
broadened and the quasiparticles therefore ill defined. Close
to Tc in the normal phase, the spectral weight is found to be
suppressed near the Fermi surface resulting in a double-peak
structure of the spectral function �10,11�. This suppression is
referred to as the presence of a pseudogap. In order to inves-
tigate the importance of the pseudogap we turn to the Kubo
formalism, which allows for a treatment of these effects.

The velocity field ux�y� gives rise to a perturbation

Ĥ� = − m� d3r ux�y�ĵx�r� =
1

i	

�ux

�y
� d3r �̂xy �2�

with ĵ being the current density operator and �̂xy
the momentum-current density operator. To obtain the
second equality in Eq. �2�, we have used momentum conser-

vation m� ĵi /�t=−��̂ij /�rj �i and j=x ,y ,z� taking ĵ�r , t�
=exp�−i	t�ĵ�r�. We can now calculate �xy induced by Ĥ�
within linear response. The shear viscosity is then obtained
by taking the limit 	→0:

� = − lim
	→0

Im 
�	�/	 �3�

with


�	� = − i� d3r dt ei	t��t����̂xy�r,t�,�̂xy�0,0��� . �4�

The approximation for 
 shown in Fig. 1 yields

� = −
1

15m2 � d3p

�2��3 p4� d�

2�
A2�p,��

�f���
��

. �5�

Here, A�p ,��=−2 Im GR�p ,�� is the spectral function for the
atoms with GR being the retarded Green function and f���
= �exp�� /T�+1�−1. A relativistic version of Eq. �5� has been
used to calculate � for quark-gluon plasmas using a phenom-
enological ansatz for A�p ,�� �12�. Here, we use a micro-
scopic theory for A�p ,�� as explained below.
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To obtain A�p ,��, we calculate the Green function using a
multichannel BEC-BCS crossover theory based on the ladder
approximation for the thermodynamic potential and the atom
self-energies. This is the minimal approach which includes
the correct two-body physics leading to the Feshbach reso-
nance �13–15�. The structure of the theory is shown in Fig. 1
and is described in detail in Refs. �11,15�. We take a broad
resonance for which the multichannel theory becomes
equivalent to the original single channel BEC-BCS crossover
theory �16� for most observables. The spectral functions are
found numerically to obey the sum rule 	A�p ,	�d	=2� to a
very good approximation. It should be noted, however, that
the approximation leading to Eq. �5� is not conserving. To
obtain a conserving approximation, we need to solve an in-
tegral equation for 
 �17�. However, the present analysis is
already heavy numerically since one needs to integrate over
the atom self-energies which themselves are evaluated nu-
merically; a conserving approximation is thus beyond the
scope of the present paper.

It is instructive to compare the Kubo approach with the
relaxation-time approximation to the Boltzmann equation,
since these yield identical results at high temperatures. In the
relaxation-time approximation, the collision integral of the
Boltzmann equation given in Eq. �13� of Ref. �8� becomes
I�f�=
f /�, where 
f is the deviation of the distribution func-
tion from local equilibrium. The relaxation time ��p� is ob-
tained by setting the distribution functions for particles in
states other than p equal to their equilibrium values

1

��p�
=� d3p1

�2��3 � d�
d�

d�

�p − p1�
m

�
f��p1

��1 − f��p����1 − f��p1�
��

1 − f��p�
. �6�

Here d� /d� is the differential cross section for the scatter-
ing of two particles with incoming momenta p and p1 to
outgoing momenta p� and p1�. The corresponding energies
are �p= p2 /2m−�, etc., and � is the solid angle of �p�
−p1�� /2 with respect to �p−p1� /2. It is straightforward to
find 
f from the Boltzmann equation and thus the momen-
tum current density from �xy =2�2��−3	d3p�pxpy /m�
f ,
where the factor of 2 is from the two internal states. We
obtain for the shear viscosity

� = −
2

15m2 � d3p

�2��3 p4 �f

��p
��p� . �7�

The factor 1 /15 arises from the angular average of px
2py

2.
The Kubo formula �5� reduces to the relaxation-time ap-

proximation �7� in the limit of weak interaction with narrow
spectral function peaks. To see this, put A�p ,��=2�p / ���
−�p�2+�p

2� with �p=−Im ��p ,�p� the imaginary part of the
atom self-energy. Using A2→2�
��−�p� /�p for �p→0, Eq.
�5� reduces to Eq. �7� with �−1�p�=−2 Im ��p ,�p�. It can
furthermore be shown that the ladder approximation for
Im ��p ,�p� yields Eq. �6� when medium effects are ignored
�15�. The Kubo formula for the viscosity �5� thus reduces to
Eq. �7� in the limit of weak interactions.

In Fig. 2, we plot ��T /TF� in Eq. �1� for a gas in the
unitarity limit with T�Tc. For the numerical calculations,
we have chosen parameters corresponding to a resonant in-
teraction with kF�a�=25�1 and a negligible effective range.
The critical temperature is found from the divergence of the
scattering matrix at zero total momentum �the Thouless cri-
terion� yielding Tc
0.26TF in good agreement with other
BEC-BCS crossover results �13,18�. The Kubo result �5� ap-
proaches Eq. �7� for T�TF. This is to be expected since
medium effects are negligible in the classical limit. For T
�TF, ��T3/2 which can be seen in the relaxation-time ap-
proximation from Eqs. �6� and �7� which give �=nT� with
��T1/2, resulting in �=1.1�T /TF�3/2. At low T, the difference
between Eqs. �7� and �5� is significant; for T=Tc, Eq. �7�
yields �=0.4 whereas Eq. �5� predicts �=0.2. This reduction
is due to strong-coupling medium effects. The imaginary part
Im � is large leading to a significant damping of the quasi-
particles. Close to Tc a pseudogap opens up and the effective
density of states at the Fermi surface is suppressed, leading
to a reduction of the viscosity.

Γ

Γ
= +

Γ

Σ

Σ
+

=

=

=

+

FIG. 1. 
 and the atomic propagator G in the ladder approxi-
mation for a broad resonance. � is the self-energy and � is the
scattering matrix.
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FIG. 2. �Color online� The viscosity in units of n� for T�Tc.
The dashed-dotted line is the Kubo formula �5�, the dashed line is
the Boltzmann equation result in the relaxation-time approximation
�7�, the solid line is the variational solution of the Boltzmann equa-
tion with the medium cross section �9�, and the dotted line is the
high-T result �8�.
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We also plot � obtained from a variational solution to the
Boltzmann equation �8,9�, which yields a lower bound on the
viscosity, given by

� =
45�3/2

64�2
� T

TF

3/2

= 2.77� T

TF

3/2

. �8�

This lower bound deviates by less than 2% from the exact
result, as we shall demonstrate in the Appendix, where we
investigate the leading correction to the lowest-order varia-
tional result for a general form of the cross section. In the
unitarity limit the leading correction is found to increase the
lower bound �8� by 3/190 or 1.58%. For comparison we
consider in the Appendix also the weak-coupling limit where
the cross section is a constant, independent of the relative
momentum of the colliding particles. In this case the leading
correction is found to increase the lower bound by 3/202 or
1.49% in precise agreement with the known result for hard-
sphere molecules �19�.

Since medium effects are negligible for T�TF, we con-
clude that Eq. �8� is a very accurate expression for � at high
temperatures in the unitarity limit. At low T, however, we
saw by comparing Eqs. �5� and �7� that medium effects are
important. Compared to the Kubo result, the variational so-
lution includes medium effects only in the sense that the
medium scattering rate �−1�p�=−2 Im ��p ,�p� is used in the
Boltzmann equation implicitly assuming Im ���F whereas
Re � is neglected �9�. On the other hand, the variational
nature of the solution corresponds to approximately sum-
ming diagrams beyond the approximation in Fig. 1 leading to
the Kubo result �5�. Comparing the two approximations for
�, we see that the variational solution of the Boltzmann
equation obtained in Ref. �9� agrees reasonably well with the
Kubo result for low T. Note that since in the unitarity limit
Tc /��Tc�
0.6 is rather large, the T−2 divergence in � for
T→0 due to Fermi blocking is not seen for T�Tc in Fig. 2.

III. COMPARISON WITH EXPERIMENT

When conditions are hydrodynamic, the attenuation of a
collective mode is related to the viscosity. We now use our
calculated viscosity to interpret the measured �2,3� damping
of the collective modes in an atomic gas trapped in a poten-
tial of the form

V�x,y,z� =
m

2
�	x

2x2 + 	y
2y2 + 	z

2z2� . �9�

The attenuation � of a collective mode is defined in terms of
the amplitude decay of the density oscillations given by one
half the rate of change of mechanical energy, i.e.,

� = −
�Ėmech�t

2�Emech�t
, �10�

where �¯�t indicates the time average over a period of the
cycle �6�. The modes we examine are characterized by a
velocity field v= �ax ,by ,cz�. Following Ref. �6�, we obtain

� =

2�a2 + b2 + c2 − ab − ac − bc� � d3r ��r�

3m� d3r n�r��a2x2 + b2y2 + c2z2�
�11�

for the damping. Here n�r� is the density of atoms in the trap.
In the unitarity limit, Eq. �1� gives ��r�=n�r����T /TF�r��
with TF�r�= �3�2n�r��2/3 /2m. We parametrize � for T�Tc in
the form

� = �0 + �3/2�T/TF�3/2, �12�

where �0=−0.2 and �3/2=2.77 are numbers chosen to fit our
numerical results for � in Sec. II.

The �0 term yields a spatial integral of n�r� in Eq. �11�,
whereas the �3/2 term gives a spatial integral of a constant
since the viscosity in the classical limit is independent of
density. The integration must be cut off near the edge of the
cloud where the density is small and hence the mean free
path long, resulting in the breakdown of the validity of hy-
drodynamics. We adopt the procedure described in Ref. �6�
that the hydrodynamic description holds out to a distance
given by the condition that an atom incident from outside the
cloud has a probability of no more than 1/e of not suffering
a collision. Since the density is well approximated by its
classical value near the edge we obtain as in Ref. �6� a cutoff
distance that depends weakly on the cross section �. In the
unitarity limit this cross section is �=C�T

2, where �T

=�2� /mT is the thermal de Broglie wavelength and C is a
numerical constant of order unity.

In the experiments �2,3�, the trap is very elongated with
	z�	x ,	y. The transverse frequencies 	x and 	y differ by
10–20%, but to leading order this ellipticity can be taken into
account for the mode frequencies by considering a cylindri-
cally symmetric trap

V�x,y,z� =
m

2
	�

2 �x2 + y2 + �2z2� �13�

with 	�=�	x	y. To model the experiments, we therefore
consider such a trap in the following with ��1, which re-
sults in a separation of the transverse and longitudinal mo-
tion. Hence, a=b and c=0 for the transverse mode, while
a=b=0 and c�0 for the axial mode.

In the classical limit with � given by �8�, Eq. �11� yields

�

	�

= 1.08�2/3N−1/3� T

TF

2

f��,�0� , �14�

where f�� ,�0�, given in Ref. �6�, is an angular average aris-
ing from the integration over volume, with �0
=�n�0��T /2m /2�	�. The total number of trapped atoms is
N. For the axial mode, one obtains a similar expression for
� /	z with �2/3 replaced by �5/3, while the numerical constant
in front is 3.1.

We shall now compare our calculated damping rates with
experiments on trapped 6Li atoms �2,3�. Measurements of
the damping of the axial mode �2� yielded the value � /	z

0.0045 in the unitarity limit for a trap with �=0.030 and
N=4�105. The temperature, however, was not known, and
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we cannot therefore make a direct comparison to our calcu-
lated damping. To obtain an estimate, we use the classical
result �14�, which yields values in the range 0.004�� /	z
�0.007 for 0.3�T /TF�0.6 �C=1�.

The Duke experiments �3� allow for a more direct com-
parison, since information on the temperature is available. In
Fig. 3, we plot the observed damping rate of the lowest trans-
verse collective mode. The temperature is determined by fit-
ting the observed density profile to an ideal gas profile with

a rescaled Thomas-Fermi radius R̃TF
2 =�1+�RTF

2 , where RTF
2

=2�3�N�1/3a�
2 and a�

−2=m	� �3�. Here, �1+�� is the param-
eter used conventionally in the unitarity limit, equal to the
ratio between the ground-state energy and that of a noninter-
acting Fermi gas. In the classical regime, the fitted tempera-

ture T̃ is related to the physical temperature by �1+�T̃
=T /TF. We have used this relation for all T �with �=−0.5�,
since the profile is approximately classical above the critical
temperature �20�.

We plot the calculated damping rate from Eq. �11� for two
different values of C of order 1. The spatial integrals are
performed with a density profile corresponding to an ideal

gas with temperature T̃, Thomas-Fermi length R̃TF, N=2
�105, and �=0.045. We also plot the classical limit �14�. As
expected from Fig. 2, we see that the effects of the medium
are small except for low T. Note that our theoretical curves
are not reliable in the region where they predict a decreasing
damping with increasing temperature, since this reflects the
breakdown of hydrodynamic behavior: for larger T the cloud
becomes less dense and the cross section � also decreases as
1/T, implying that the mean free path increases with tem-
perature. To estimate the temperature above which the be-
havior ceases to be hydrodynamic, we compare the mean
free path l�0��1/n�0�� in the center to the spatial extent of
the cloud in the transverse direction. In the classical limit
l�0��RxRyRz /N�, where Ri= �2�T /m	i

2�1/2. The condition
l�0��R� implies that T�	���N�1/2. For the experimental
parameters, this means that the gas is hydrodynamic for T
�5 �K�2TF and there is a limited temperature range in

which we can compare the theory to the measured damping
rate, since our calculations only apply to the normal phase.
The fact that the observed mode remains hydrodynamic with
a small damping for T→0 indicates superfluidity �21�.

The results for the damping yield the correct order of
magnitude for two experiments measuring at two very differ-
ent frequencies. This cannot be obtained simply by adjusting
the parameter C since the results depend only weakly on C
and we have used C�1 in both cases.

IV. DISCUSSION AND CONCLUSIONS

The shear viscosity of a normal Fermi gas in the unitarity
limit was analyzed as a function of temperature. For high
temperatures where one can perform systematic calculations,
we demonstrated that a variational solution to the Boltzmann
equation yields a value of � which is accurate to better than
two percent. At low temperatures, the role of the strong-
coupling pseudogap effect was analyzed by calculating the
viscosity within the Kubo formalism. We showed that the
pseudogap reduces the viscosity significantly since it sup-
presses the density of states at the Fermi level. While we
stress that our calculations of the viscosity are approximate
in nature for Tc�T�TF, it is interesting that the Kubo ap-
proach yields values that are close to those obtained from the
Boltzmann equation �with a medium cross section� in this
regime. This suggests that the main effects of the medium
can be taken into account by using a medium cross section in
a Boltzmann approach to the transport properties of the
atomic cloud in the unitarity limit. Based on these high- and
low-temperature results, we constructed an interpolation for-
mula for the viscosity as a function of temperature at unitar-
ity. This formula was used to analyze two experiments on the
decay of collective modes in terms of viscous damping. In
performing this analysis, it was crucial to introduce an ex-
plicit cutoff in the spatial integrations since hydrodynamics
necessarily fails in the outer parts of the cloud, where the
density is low. We concluded that the hydrodynamic ap-
proach of viscous damping accounts reasonably well for the
experimental observations; this holds for both the longitudi-
nal and the transverse modes for which the observed damp-
ing differs by an order of magnitude. It would be very valu-
able to be able to compare theory and experiment at higher
temperatures, where the behavior should be collisionless. In
this limit the mode frequencies should approach twice the
oscillator frequencies and the damping rate become propor-
tional to the inverse relaxation time rather than the viscosity.
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APPENDIX: THE HIGH-TEMPERATURE LIMIT

In this Appendix we derive the leading correction to the
lowest-order variational result for the shear viscosity of a
classical gas. As is well known �see, e.g., paper I for details�,
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FIG. 3. �Color online� The damping of the transverse mode. The
�’s are experimental values from Ref. �3� and lines are theory.
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the properties of the collision integral in the Boltzmann
equation allow one to derive a lower bound on the viscosity
of the form

� �
�U,X�2

�U,HU�
, �A1�

where �…,…� denotes a suitably defined scalar product. Here
X denotes the inhomogeneous term in the Boltzmann equa-
tion while U is the trial function and the positive, semi-
definite integral operator H represents the collision term.
Since we are only interested in determining the relative cor-
rection to the high-temperature viscosity arising from an im-
proved trial function we use units such that 2m=kBT=1 in
order to simplify the presentation. It is convenient to con-
sider the equivalent upper bound on the inverse viscosity,
and we shall therefore seek to minimize the functional F
given by

F =
�U,HU�
�U,X�2 �A2�

by varying the trial function U. The lower bound on the
viscosity given in Eq. �8� corresponds to the choice U=X.

In order to improve this bound we derive the minimum
value of F for a trial function U given by a variable linear
combination of the functions U1 and U2,

U = �U1 + c�1 − ��U2, �A3�

where � is a parameter to be varied, while c is a constant. We
choose c such that �U ,X� is independent of �,

c =
�U1,X�
�U2,X�

, �A4�

with which we obtain �U ,X�= �U1 ,X�. The numerator in Eq.
�A2� is a quadratic form in �, which is readily minimized
resulting in the value Fmin. We are interested in the relative
difference between Fmin and the value F�=1 of F for �=1.
Consequently we define 
 according to


 = 1 −
Fmin

F�=1
, �A5�

where F�=1= �U1 ,HU1� / �U1 ,X�2. The integral operator H is
symmetric and therefore �U1 ,HU2�= �U2 ,HU1�. We define
the quantities h12 and h22 by

h12 = c
�U1,HU2�
�U1,HU1�

and h22 = c2 �U2,HU2�
�U1,HU1�

, �A6�

in terms of which 
 assumes the form


 =
�1 − h12�2

1 + h22 − 2h12
. �A7�

Note that both h12 and h22 are independent of any constant
multiplying U1 or U2. We take U1�p�= �pz

2− p2 /3� �corre-
sponding to U1�X� and U2�p�= �pz

2− p2 /3�p2. We also define

�i =
1

2
�Ui�p� + Ui�p1� − Ui�p�� − Ui�p1��� �A8�

for i=1,2. It is convenient to introduce relative and center-
of-mass momentum variables according to

p = q +
Q

2
, p1 = − q +

Q

2
; p� = q� +

Q

2
, p1� = − q� +

Q

2
.

�A9�

Since the scattering is elastic, we have q2=q�2. We obtain

�1 = qz
2 − qz�

2 �A10�

and

�2 = �qz
2 − qz�

2��q2 +
Q2

4

 + q · Q�qzQz −

q · Q

3



− q� · Q�qz�Qz −
q� · Q

3

 . �A11�

In order to determine h12 and h22 we first calculate the angu-
lar averages ��1

2�, ��1�2� and ��2
2� by integrating over the

directions of each of the vectors q, q�, and Q. We get

��1
2� =

8

45
q4 �A12�

together with

��1�2� =
8

45
q4�q2 +

7

12
Q2
 �A13�

and

��2
2� =

8

45
q4�q2 +

Q2

4

2

+
16

135
Q2q4�q2 +

Q2

4



+ 2q4Q4� 2

75
−

4

405

 . �A14�

The final integrations over the magnitude of the total and
relative momentum are given by

�
0

�

dq q2q��q��
0

�

dQ Q2e−2q2−Q2/2�¯� , �A15�

where the exponential factors arise from the product of the
equilibrium distribution functions f��p�f��p1

� and ��q� is the
q-dependent cross section. The additional factor of q in the
integrand of Eq. �A15� is due to the relative velocity occur-
ring in the collision integral. Putting these results together
and using that c=��7/2� /��9/2�=2/7 we finally get

h12 =
2

7
� I6

I4
+

7

4

 �A16�

and

h22 =
4

49
� I8

I4
+

7

2

I6

I4
+

301

48

 , �A17�

where we have defined the integrals In by
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In = �
0

�

dq qn+3��q�e−2q2
. �A18�

In the weak-coupling limit � is independent of q and we
obtain I8 / I4=5 and I6 / I4=2, resulting in h12=15/14 and
h22=877/588. When inserted into Eq. �A7� these values
yield 
=3/205 in precise agreement with �19�, since

�1−
�−1=1+3/202. As shown in Ref. �19� the convergence
is very fast, the next-order term yielding a further correction
of only a tenth of a percent. For resonant scattering ��q−2,
in which case I8 / I4=3 and I6 / I4=3/2, resulting in h12
=13/14 and h22=697/588, which yields 
=3/193 or, corre-
spondingly, �1−
�−1=1+3/190. We can thus safely conclude
that the expression �8� is accurate to better than 2% at all
values of a, including the unitarity limit a→�.
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