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We study the quantum dynamics of a material wave packet bouncing off a modulated atomic mirror in the
presence of a gravitational field. We find the occurrence of coherent accelerated dynamics for atoms beyond the
familiar regime of dynamical localization. The acceleration takes place for certain initial phase-space data and
within specific windows of modulation strengths. The realization of the proposed acceleration scheme is within
the range of present-day experimental possibilities.
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Enrico Fermi, in his seminal paper “On the origin of cos-
mic rays,” conjectured that “cosmic rays are originated and
accelerated primarily in the interstellar space of the galaxy
by collisions against moving magnetic fields” �1�. Following
this work, the possibility of accelerating particles bouncing
off oscillating surfaces �2� was extensively studied in accel-
erator physics, leading to the development of two major
models: The Fermi-Ulam accelerator, which deals with the
bouncing of a particle off an oscillating surface in the pres-
ence of another fixed surface parallel to it; and the Fermi-
Pustyl’nikov accelerator, where the particle bounces off an
oscillating surface in the presence of gravity. In the case of
the Fermi-Ulam accelerator �3,4� it was shown that the en-
ergy of the particle remains bounded and the unlimited ac-
celeration proposed by Fermi is absent �5�. In the Fermi-
Pustyl’nikov accelerator, by contrast, there exists disks of
initial data within specific domains of phase space that result
in trajectories speeding up to infinity.

In recent years, the efficient transfer of large momenta to
laser-cooled atoms has become an important problem for a
number of applications such as atom interferometry �7� and
the development of matter-wave-based inertial sensors in
quantum metrology �8�. Possible schemes of matter-wave ac-
celeration have been proposed and studied. For example, a
spatially periodic optical potential applied at discrete times
to an atom was found to accelerate it in the presence of a
gravitational field �9–11�. The �-kicked accelerator operates
for certain sets of initial data that originate in stable islands
of phase space.

In this paper, we propose an experimentally realizable
technique to accelerate a material wave packet in a coherent
fashion. It consists of an atom-optics version of the Fermi-
Pustyl’nikov accelerator �12� where a cloud of ultracold at-
oms falling in a gravitational field bounces off a spatially
modulated atomic mirror. This scheme is different from pre-
vious accelerator schemes in the following ways: �i� The
regions of phase space that support acceleration are located
in the mixed phase space rather than in the islands of stabil-
ity �or nonlinear resonances�; �ii� the acceleration of the
wave packet is coherent; �iii� it occurs only for certain win-
dows of oscillation strengths �13�.

Our starting point is the analysis by Saif et al. �12� that
establishes the dynamical localization of atoms in the Fermi-
Pustyl’nikov accelerator �or Fermi accelerator for short� and
shows a diffusive behavior both in the classical and in the
quantum domains beyond the localization regime �14�. We
now extend these results to identify conditions leading to the
coherent acceleration of the atoms. We find clear signatures
of that behavior both in an ensemble of classical particles
and for a quantum wave packet. In quantum mechanics,
however, the Heisenberg uncertainty principle restricts the
phase-space size of the initial atomic wave packet which
may result in coherent acceleration occurring on top of a
diffusive background.

We consider a cloud of laser-cooled atoms that move
along the vertical z̃ direction under the influence of gravity
and bounce back off an atomic mirror �15�. This mirror is
formed by a laser beam incident on a glass prism and under-
going total internal reflection, thereby creating an optical
evanescent wave of intensity I�z̃�= I0 exp�−2kz̃� and charac-
teristic decay length k−1 outside of the prism.

The laser intensity is modulated by an acousto-optic
modulator as �14�

I�z̃, t̃� = I0 exp�− 2kz̃ + � sin �t̃� , �1�

where � is the frequency and � the amplitude of modulation.
The laser frequency is tuned far from any atomic transition,
so that there is no significant upper-state atomic population.
The excited atomic level�s� can then be adiabatically elimi-
nated, and the atoms behave for all practical purposes as
scalar particles of mass m whose center-of-mass motion is
governed by the one-dimensional Hamiltonian

H̃ =
p̃2

2m
+ mgz̃ +

��eff

4
e−2kz̃+� sin �t̃, �2�

where p̃ is the atomic momentum along z̃ and g is the accel-
eration of gravity.

We proceed by introducing the dimensionless position and
momentum coordinates z� z̃�2 /g and p� p̃� / �mg�, the
scaled time t��t̃, the dimensionless intensity V0
� ��2�eff / �4mg2�, the “steepness” ��2kg /�2, and the
modulation strength 	��2� / �2kg� of the evanescent wave
field, in terms of which the Hamiltonian takes the dimension-
less form*Electronic address: saif@fulbrightweb.org
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H = ��2/mg2�H̃ =
p2

2
+ z + V0exp�− ��z − 	 sin t�� . �3�

When extended to an ensemble of noninteracting particles,
the classical dynamics obeys the condition of incompressibil-
ity of the flow �3�, and the phase-space distribution function
P�z , p , t� satisfies the Liouville equation

� �

�t
+ p

�

�z
+ ṗ

�

�p
�P�z,p,t� = 0, �4�

where ṗ=−1+�V0 exp�−��z−	 sin t�� is the force on a clas-
sical particle.

In the absence of mirror modulation, the atomic dynamics
is integrable. For very weak modulations the incommensu-
rate motion almost follows the integrable evolution and re-
mains rigorously stable, as prescribed by the Kolmogorov-
Arnold-Moser theorem. As the modulation increases, though,
the classical system becomes chaotic.

In the quantum regime, the atomic evolution is deter-
mined by the corresponding Schrödinger equation

ik–
�


�t
= � p2

2
+ z + V0 exp�− ��z − 	 sin t��	
 �5�

where k–� ��3 / �mg2� is the dimensionless Planck constant,
introduced consistently with the commutation relation

�z , p�= i��3 /mg2�� � ik– for the dimensionless variables z
and p. We use Eqs. �4� and �5� to study the classical and
quantum-mechanical evolution of an ensemble of atoms in
the Fermi accelerator.

For very short decay lengths �−1 and atoms initially far
from the mirror surface, we may approximate the optical
potential by an infinite potential barrier at the position
z=	 sin �t. In that limit the atoms behave like falling par-
ticles bouncing off a hard oscillating surface �12,16�.

The classical version of the problem �6� demonstrates the
existence of a set of initial conditions resulting in trajectories
that accelerate without bound. Specifically, the classical evo-
lution of the Fermi accelerator displays the onset of global
diffusion above a critical modulation strength 	l=0.24 �4�,
while the quantum evolution remains localized until a larger
value 	u of the modulation �12,17,18�. Above that point both
the classical and the quantum dynamics are diffusive. How-
ever, for specific sets of initial conditions that lie within
phase-space disks of radius �, accelerating modes appear for
values of the modulation strength 	 within the windows �6�

s�  	 � 
1 + �s��2, �6�

where s can take integer and half-integer values for the sinu-
soidal modulation of the reflecting surface considered here.

In the experimental setup �14� cesium atoms of mass
m=2.2�10−25 kg bouncing off an atomic mirror. The modu-
lation frequency may take a value from 0 to 2 MHz, there-
fore, for a frequency �=5.84 kHz of the external field, we

find an effective Planck’s constant k–= ��3 /mg2=1. Further-
more it is possible to change the amplitude of the modula-
tion, �, from 0.1 to 0.82, because, by using our suggested
parameters, the first acceleration window can be realized in

experiment by tuning � from 0.54 to 0.64, provided the decay
length of the exponentially decaying field is fixed at
kL

−1�0.55 �m, which is still an experimentally accessible
value �19�.

In order to compare the classical and quantum atomic
dynamics within these windows in the present situation we
calculate the width of the momentum distribution,
�p�
�p2− �p2, as a function of the modulation strength
	�	u. In the classical case, we consider an ensemble of
particles with a Gaussian initial phase-space distribution
P�z , p ,0� centered in a region of phase space that supports
unbounded acceleration, and record the dispersion in mo-

FIG. 1. �Color online� �a� Standard deviation of the momentum
�p �solid line� and average number of bounces �n �dotted gray
line� are displayed after an evolution time t=300 as a function of
the modulation strength 	. The initial ensemble of 10 000 particles
is a narrowly peaked Gaussian distribution originating from the area
of phase space that supports accelerated trajectories. The initial dis-
tributions in coordinate space are centered at z̄=0 and p̄=2�2 with
�p�0�=�z�0�=0.1, as shown in inset in �b�. The momentum distri-
bution at t=300 is illustrated in �b� for 	=3� /2. The broad, barely
visible background results from the tails of the initial Gaussian
distribution outside the area of phase space that supports acceler-
ated trajectories.
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mentum of that ensemble after a fixed propagation time. The
corresponding quantum problem is treated by directly solv-
ing the Schrödinger equation for an initial Gaussian wave
packet of zero mean momentum.

Classically, the width in the momentum space �p remains
small and almost constant for very small modulation
strengths, which indicates the absence of diffusive dynamics,
but starts to increase linearly �12� as a function of the modu-
lation strength for larger values of 	. As 	 is further in-
creased, though, we find that the diffusion of the ensemble is
sharply reduced for modulation strengths within the accelera-
tion windows of Eq. �6� �see Fig. 1�a��. Following each win-
dow, the momentum dispersion grows again approximately
linearly with 	. We interpret the sharply reduced value of the
dispersion as resulting from the nondispersive, coherent ac-
celeration of the atomic sample above the atomic mirror
which is illustrated in Fig. 1�b� and absent otherwise.

In the quantum case the Heisenberg uncertainty principle
imposes a limit on the smallest size of the initial wave
packet. Thus in order to form an initial wave packet that
resides entirely within regions of phase space leading to a
coherent and dispersionless acceleration, the appropriate
value of the effective Planck constant is to be evaluated, for
example, by controlling the frequency � �20�. For broad
wave packets, the situation that we consider in this paper, the
coherent acceleration manifests itself instead, both in the
classical and in the quantum cases, as regular spikes in the
marginal probability distributions P�p , t�=�dx P�x , p , t� and
P�x , t�=�dp P�x , p , t�, which are absent otherwise.

Figure 2 illustrates the marginal probability distribution
P�p , t� in momentum space for 	=1.7 �a� and 2.4 �b�, both in
the classical and in the quantum domains. In this example,
the initial area of the particle phase-space distribution is
taken to be large compared to the size of the phase-space
regions leading to purely unbounded dispersionless accelera-
tion. The sharp spikes in the time-evolved momentum distri-
bution P�p , t� appear when the modulation strength satisfies
the condition of Eq. �6�, and gradually disappear as it exits
these windows. These spikes are therefore a signature of the
coherent accelerated dynamics. In contrast, the portions of
the initial probability distribution originating from the re-
gions of the phase space that do not support accelerated dy-
namics undergo diffusive dynamics.

We can gain some additional understanding of the diffu-

sive behavior from the close mathematical analogy between
the system at hand and the kicked rotor model �12�. It has
been established mathematically �21� that for large modula-
tion strengths the diffusive behavior of classical systems de-
scribed by the standard map displays a modulated growing
behavior. For large 	, the diffusion coefficient is given by

D	 = D0�1

2
− J2�K� − J1

2�K� + J2
2�K� + J3

2�K�	 , �7�

where K=4	 and D0=K2 /2=8	2 �21� and J1, J2, and J3 are
first-, second-, and third-order Bessel functions. Recent ex-
periments by Kanem et al. �22� also report such a behavior
for the �-kicked accelerator in the case of large modulations.

A comparison between the classical behavior and the
quantum momentum dispersion as a function of 	 is illus-
trated in Fig. 3, while the scaled diffusion coefficient D	 /D0
is shown in arbitrary units. It is interesting to note that the
dispersion exhibits maxima for oscillation strengths 	m

= �s�+
1+ �s��2� /2, which reside at the center of the accel-
eration windows �2�, indicating that those trajectories that do

FIG. 2. Mirror images of the classical and quantum-mechanical
momentum distributions P�p� plotted for 	=1.7 �a� and 2.4 �b�,
after a propagation time t=500. The spikes in the momentum dis-
tribution for 	=1.7 are a signature of coherent accelerated dynam-
ics. The initial width of the momentum distribution is �p=0.5.
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FIG. 3. �Color online� Standard deviation of momentum �p as a
function of 	 for an atomic de Broglie wave �thick line� and an
ensemble of particles �dashed line� initially in a Gaussian distribu-
tion after a scaled propagation time t=500. The initial probability
distributions, shown in the inset, have �p=0.5 and �z=1. The gray
line shows scaled diffusion coefficient D	 /D0 as a function of 	
�arbitrary units�.
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FIG. 4. �a� Variance in the momentum space �dark lines� and
standard deviation in the coordinate space �gray lines� as a function
of time for 	=1.7. The coherent acceleration results in a breathing
of the atomic wave packet, as evidenced by the out-of-phase oscil-
lations of the variances. �b� Dynamics for 	=2.4, a modulation
strength that does not result in coherent acceleration. Note the ab-
sence of breathing in that case. The two values 	=1.7 and 2.4
correspond to the first maximum and first minimum in Fig. 3. Same
parameters as in Fig. 3.
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not correspond to the phase-space area supporting acceler-
ated dynamics display maximum dispersion instead.

From the numerical results of Fig. 2, we conjecture that
the spikes are well described by a sequence of Gaussian dis-
tributions separated by a distance �, in both momentum
space and coordinate space. We can therefore express the
complete time-evolved wave packet composed of a series of
sharply peaked Gaussian distributions superposed to a broad
background due to diffusive dynamics, such that

P�p� = Ne−p2/4�p2 �
n=−�

�

e−�p − n��2/4�2
, �8�

where ���p, and N is a normalization constant.
Further insight into the quantum acceleration of the

atomic wave packet is obtained by studying its temporal evo-
lution. We find that within the window of acceleration the
atomic wave packet displays a linear growth in the momen-
tum variance and the standard deviation in coordinate space

as a function of time. Figure 4 illustrates that, for modulation
strengths within the acceleration window, the growth in the
momentum variance displays oscillations of increasing peri-
odicity whereas the standard deviation in coordinate space
follows with a phase difference of 180°. The out-of-phase
oscillatory evolutions of �p2 and �z indicate a breathing of
the wave packet and are a signature of the coherence in ac-
celerated dynamics as it disappears outside. As a final point
we note that outside the acceleration window the linear
growth in the momentum variance, a consequence of normal
diffusion, translates into a t� law, with ��1, which is a
consequence of anomalous diffusion.
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