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We have performed numerical analysis of the two-dimensional �2D� soliton solutions in Bose-Einstein
condensates with nonlocal dipole-dipole interactions. For the modified 2D Gross-Pitaevski equation with
nonlocal and attractive local terms, we have found numerically different types of nonlinear localized structures
such as fundamental solitons, radially symmetric vortices, nonrotating multisolitons �dipoles and quadrupoles�,
and rotating multisolitons �azimuthons�. By direct numerical simulations we show that these structures can be
made stable.
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I. INTRODUCTION

The recent experimental realization of a degenerate dipo-
lar atom gas �1�, where a Bose-Einstein condensate �BEC� of
52Cr atoms has been observed, and optimistic perspectives in
creating a degenerate gas of polar molecules �2� have stimu-
lated a growing interest in the study of BEC with nonlocal
dipole-dipole interactions �3–5�. Dipole-dipole forces are an-
isotropic and long range, so that the interparticle interaction
becomes essentially nonlocal.

Nonlocal nonlinearity naturally arises in many areas of
nonlinear physics and plays a crucial role in the dynamics of
nonlinear coherent structures. In particular, a rigorous proof
of absence of collapse in arbitrary spatial dimensions during
the wave-packet propagation described by the nonlocal non-
linear Schrödinger equation �NLSE� with sufficiently general
symmetric response kernel has been presented in Refs. �6,7�.
Stable vortex �8,9�, dipole �10–13�, and rotating �12–14�
solitons in media with nonlocal nonlinear response were
theoretically predicted. Finally, nonlocality induces attraction
between solitons and allows for the formation of bound
states of out-of-phase bright solitons �15� and dark solitons
�16�.

A very attractive feature of BEC with dipole-dipole inter-
actions is that the interplay between the nonlocal interaction,
which is only partially attractive and may be tuned by means
of rotating orienting fields �17�, and the usual local short-
range contact forces, leads to the possibility of experimental
realization of highly controllable and stable solitary struc-
tures in BEC �3�.

Recently, Pedri and Santos �3� have studied the physics of
bright solitons in two-dimensional �2D� dipolar Bose-
Einstein condensates with repulsive short-range interactions.
Using the reduction procedure, they have obtained 2D modi-
fied Gross-Pitaevski equation with the nonlocal term describ-
ing dipole-dipole interaction and showed that the existence
of stable 2D solitary waves is possible.

In this paper, using 2D model suggested by Pedri and
Santos �3�, we study 2D solitary waves in BEC with attrac-
tive short-range and nonlocal dipole-dipole interactions. As

is known, the collapse of BEC’s at some critical number of
atoms is the main consequence of the attractive nonlinearity
�18�. The presence of nonlocal interaction, however, signifi-
cantly changes the situation and leads to stable localized
states. We present different types of SWs �fundamental soli-
tons, vortices, nonrotating and rotating multisolitons� and by
direct numerical simulations show that these localized struc-
tures can be made stable.

II. MODEL AND BASIC EQUATIONS

A dipolar BEC, consisting of N particles with the dipole
moment d oriented along the z axis, at sufficiently low tem-
peratures is described by a NLSE with nonlocal nonlinearity

i�
��

�t
= �−

�2

2m
� + U�r� + g���2 +� V�r − r��

����r���2dr��� , �1�

where ��r , t� is the condensate wave function normalized to
the total number of particles: 	���r��2dr=N. The coupling
constant g corresponds to the local contact interaction and
g=4��2a /m, where a is the s-wave scattering length. In the
following, we consider a�0, i.e., attractive short-range in-
teractions. An external trapping potential is assumed to be of
the form U�r�=m�z

2z2 /2, with no trapping in the xy plane.
All dipoles are assumed to be oriented along the trap axis.
The nonlocal potential is due to the dipole-dipole interaction,
and the kernel V�r� is given by V�r�=gd�1−3 cos2 �� /r3,
where gd=	
0d2 /4�, � is the angle between the vector r
and the dipole axis, 
0 is the magnetic permeability of the
vacuum, and −1/2�	�1 is a tunable parameter �3,17�.

Assuming the ansatz ��r�=��r��0�z�, where the func-
tion 0�z�, describing the condensate in the direction of the
tight confinement, is the ground state of the 1D harmonic
oscillator in the z direction and normalizing the length, time,
and wave function by lz /
2, 1 /�z, and �N / lz

3�1/2, respec-
tively �where lz= �� /m�z�1/2�, the authors of Ref. �3�, follow-
ing the standard reduction procedure, obtained the following
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i
��

�t
= − ��� + ḡ�����2 + �� R�r − r�����r���2dr�� ,

�2�

with the two free dimensionless parameters

ḡ =
g


2���zlz
3

=
2
2�a

lz
, � =

gd

g
. �3�

The Fourier transform of the kernel R�r� in Eq. �2� is

R̂�k� = 2 − 3
�kek2
erfc�k� , �4�

where erfc�x� is the complementary error function, so that

R�r� =
1

�2��2 � eik·rR̂�k�dk . �5�

In what follows, since Eq. �2� admits an additional rescaling,
the parameter ḡ has been fixed at ḡ= �1, where the ����
sign corresponds to attractive �repulsive� short-range interac-
tion.

Equation �2� conserves the 2D norm N=	���2dxdy and
energy

E =� � ��

�x
2

+  ��

�y
2

+
1

2
ḡ���4 +

1

2
ḡ����2

� �� R�r − r�����r���2dr���dxdy . �6�

The 2D norm N is related to the number of atoms N by the
relation �19�

N =
lz

�g�
N . �7�

III. MODULATIONAL INSTABILITY

An important feature of the dipole-dipole interaction is
that, due to the anisotropy, it is only partially attractive. Cor-

respondingly, the spectrum R̂�k� of the response function

R�r� is not sign definite �note, in this connection, that an
analysis of 2D soliton dynamics in the framework of Eq. �2�
somewhat resembling Eq. �4�, but positive definite, kernel

R̂�k� was performed in Ref. �13��. Equation �2� has a solution
in the form of plane wave

�0 = ��0�exp�ik0 · r − i�t� �8�

provided �=k0
2− ḡ�1+�	R�r�dr���0�2. The stability proper-

ties of the plane wave essentially depend on sign definiteness
of the spectrum of nonlinear response function �7,20�. On the
other hand, modulational instability �MI� �instability of the
plane wave with amplification of both sidebands� is often
considered as a precursor for the formation of bright solitons.
Considering perturbed plane wave solutions in the form

� = ���0� + ���exp�ik0 · r − i�t� , �9�

where

�� = �+eik·r−�t + �−e−ik·r+�t, �10�

and linearizing Eq. �2� around �0 in ��, one can obtain the
growth rate � of MI of homogeneous field �k0=0� for the
model Eq. �2�

�2 = − 2��0�2k2ḡ�1 + �R̂�k�� − k4. �11�

Instability occurs if �2�0. In Fig. 1 we show the depen-
dence of the growth rate of MI on k for the cases of attractive
�ḡ=−1� and repulsive �ḡ=1� short-range interactions. In the
attractive case, the growth rate is equal to zero for 0�k
�kcr, where kcr is some critical value depending on � �the
ratio between dipole-dipole and short-range interaction�, if
��0.5 �i.e., in particular, for all negative ��, so that long
wave modes are stable. Optimal, i.e., corresponding to maxi-
mum of the growth rate, wave number kopt decreases with
increasing �. In the repulsive case, the growth rate of MI is
equal to zero for all positive � and for ��−0.4. This is in
agreement with results of Ref. �3�, where bright solitons �for
the repulsive case ḡ=1� were predicted only for negative �
and �� � �0.12.
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FIG. 1. The growth rates � of
the modulational instability for �a�
attractive �ḡ=−1� and �b� repul-
sive �ḡ=1� short-range interac-
tions. Values of � �the ratio be-
tween dipole-dipole and short-
range interaction� are shown near
the curves.
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IV. NUMERICAL RESULTS

We look for stationary solutions of Eq. �2� with ḡ=−1
�attractive short-range interaction� in the form ��x ,y , t�
=��x ,y�exp�−i
t�, where 
 is the chemical potential, so
that � obeys the equation

�
 + ���� = − �����2 + �� R�r − r�����r���2dr�� ,

�12�

where R�r� is determined by Eqs. �4� and �5�. To numerically
solve Eq. �12�, we impose periodic boundary conditions on
Cartesian grid and use the relaxation technique similar to one
described in Ref. �22�. We have not found any localized so-
lutions with 
�0. Fundamental soliton solutions of Eq. �12�
with ��0 or ���cr, where �cr�2.1, turn out to be unstable
with �N /�
�0. Thus, in what follows, we consider the re-
gion 0����cr and specifically set �=2. Choosing an ap-
propriate initial guess, one can find numerically with high
accuracy �the norms of the residuals were less than 10−9�
three different classes of spatially localized solutions of Eqs.
�12�—the nonrotating �multi�solitons, the radially symmetric
vortices, and the rotating multisolitons �azimuthons�.

The real �or containing only a constant complex factor�
function ��x ,y� corresponds to nonrotating solitary struc-
tures. Examples of such nonrotating �multi�solitons for Eq.
�12�, namely, a monopole, a dipole, and a quadrupole are
presented in Figs. 2�a�–2�c�. The nonrotating multipoles con-
sist of several fundamental solitons �monopoles� with oppo-
site phases.

The second class of solutions, vortex solutions, are the
solutions with the radially symmetric amplitude ���x ,y��,
that vanishes at the center, and a rotating spiral phase in the
form of a linear function of the polar angle �, i.e., arg �
=m�, where m is an integer. The index m �topological
charge� stands for a phase twist around the intensity ring.
The important integral of motion associated with this type of
solitary wave is the angular momentum, which can be ex-
pressed through the vortex amplitude and phase. The numeri-

cally found single-charged �m=1� vortex solution of Eq. �12�
is shown in Fig. 2�d�.

The third class of solutions, rotating multisolitons with
the spatially modulated phase, were first introduced in Ref.
�21� for models with local nonlinearity, where they were
called azimuthons. The azimuthons can be viewed as an in-
termediate kind of solutions between the rotating radially
symmetric vortices and nonrotating multisolitons. Using
variational analysis to describe azimuthons, the authors of
Ref. �12� considered the following trial function in polar co-
ordinates �r ,��:

��r,�� = r�m���r��cos m� + ip sin m�� , �13�

where � is the real function, which vanish fast enough at
infinity, m is an integer, and 0� p�1. The case p=0 corre-
sponds to the nonrotating multisolitons �e.g., m=1 to a di-
pole, m=2 to a quadrupole, etc.�, while the opposite case p
=1 corresponds to the radially symmetric vortices. The inter-
mediate case 0� p�1 corresponds to the azimuthons. In our
case, the numerically found complex function ��x ,y� with a
spatially modulated phase corresponds to the azimuthons.
We introduced the parameter p �modulational depth�, which
is similar to the one in Eq. �13�, in the following way:

p = max�Im ��/max�Re �� . �14�

For fixed chemical potential 
, there is a family of azimuth-
ons with different p. As with the radially symmetric vortices,
the azimuthons carry out the nonzero angular momentum. In
Figs. 2�e� and 2�f� we demonstrate two numerically found
examples of the azimuthons for the nonlocal model de-
scribed by Eqs. �2�. Figure 3 shows the dependences of the
chemical potential 
 and energy E on the normalized number
of atoms N �recall that N is related to the number of atoms N
by the relation Eq. �7��, for the dipoles �p=0� and vortices
�p=1�.

Note that the condition for the applicability 2D approxi-
mation implies that a chemical potential is significantly
smaller �in absolute value� than the harmonic oscillator en-
ergy in the z direction. Since, after additional rescaling we

FIG. 2. Numerically found sta-
tionary localized nonrotating �a�–
�c� and rotating �d�–�f� solutions
of Eq. �2� with �=2: �a� mono-
pole with 
=−2, �b� dipole with

=−2, �c� quadrupole with 

=−2, �d� vortex with 
=−5, �e�
azimuthon with 
=−5, p=0.6 and
two intensity peaks, and �f� azi-
muthon with 
=−5, p=0.9 and
four intensity peaks.
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set �ḡ�=1, it follows from Eqs. �2� and �3� that the chemical
potential in absolute values is 
��z�2
2��a� / lz�1/2 and for
the typical values of 
 turns out to be much smaller than the
harmonic oscillator energy in the z direction. Under this, the
typical length of the soliton is much larger than the harmonic
oscillator length in the z direction �the “pancake” configura-
tion�.

We next addressed the stability of these localized solu-
tions and study the evolution of the solitons in the presence
of small initial perturbations. We have undertaken extensive
numerical modeling of Eq. �2� initialized with our computed
solutions with added Gaussian noise. The initial condition
was taken in the form ��x ,y��1+���x ,y��, where ��x ,y� is
the numerically calculated exact solution, ��x ,y� is the
white Gaussian noise with variance �2=1, and the parameter
of perturbation �=0.005–0.1. In addition, azimuthal pertur-
bation of the form i� sin � was taken for the vortices and
azimuthons. Spatial discretization was based on the pseu-
dospectral method. Under this, since the Fourier transform of
the kernel R is known, the nonlocal term can be easily com-
puted with the aid of the convolution theorem. Temporal t
discretization included the split-step scheme. As was said
above, we consider the region 0����cr.

The fundamental solitons are stable for all 
�0. These
solitons have �N /�
�0 so that the Vakhitov-Kolokolov sta-
bility criterion is met.

Depending on the parameter 
, we observed three differ-
ent scenarios of the nonrotating dipole evolution, which are
presented in Fig. 4 �for �=0.01�. The first regime corre-
sponds to the region 
cr�
�0, and for �=2 we found

cr�−0.2, which corresponds to the normalized number of
atoms Ncr�15.5. If 
cr�
, the initial dipole splits in two
monopoles which move in the opposite directions without
changing their shape and without radiation, i.e., the mono-
poles just go away at infinity. This type of the evolution is
shown in the left column of Fig. 4. Under this, the value
�N=Ndip−2Nmon, where Ndip and Nmon are 2D norms for the
dipole and monopole, respectively, tends to almost zero as 

approaches 
cr.

The second regime of the dipole evolution corresponds to
the region 
th�
�
cr, where �for �=2� 
th�−3.1. The
numerical simulations clearly show that in this range of the
parameter 
 the dipoles are stable with respect to initial
noisy perturbations and survive over huge times. In terms of
the 2D norm �normalized number of atoms�, the stability
region is written as Ncr�N�Nth, where Nth�71. The stable
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FIG. 3. �a� Chemical potential 
 and �b� en-

ergy E versus normalized number of atoms N.
Solid line: nonrotating dipoles �p=0�. Dotted
line: vortices �p=1�.

FIG. 4. Left column: Splitting of the dipole
with 
=−0.2 into two monopoles, middle col-
umn: stable dynamics of the dipole with 
=−3,
right column: unstable dipole with 
=−4.
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dynamics of the dipole is illustrated in the middle column of
Fig. 4 �for �=2, 
=−3, and �=0.01�.

The further �after 
th�−3.1� decreasing of the chemical
potential 
 �or, equivalently, increasing of the normalized
number of atoms N� sharply shortens the times at which the
dipole survives, and, the dipoles with 
�
th are unstable.
The typical decay of the unstable dipole below the threshold
value 
th of the chemical potential is shown in the right
column of Fig. 4. Thus, the stable dipoles exist only within a
finite, rather narrow range of the normalized number of at-
oms N.

A somewhat different behavior we observed for the vor-
tices. The numerical simulations clearly show that the vorti-
ces with 
�
cr, where 
cr is some critical value and for
�=2 we found 
cr�−1.4 �with corresponding Ncr�45�, are
stable with respect to small initial noisy and azimuthal per-
turbations up to the maximum times used �of the order of t
=1000�. The vortices with 
�
cr �i.e., N�Ncr� splits in two
fundamental solitons moving in opposite directions. These
two different scenarios of the vortex evolution are illustrated
in Fig. 5. Thus, the vortices can be made stable if the 2D

norm �normalized number of atoms� exceeds some critical
value Ncr.

We have not performed numerical analysis of the azimu-
thon evolution for different � and arbitrary p because of the
difficulties in finding azimuthon solutions with arbitrary p.
Nevertheless, we can conclude that azimuthons with two in-
tensity peaks and not too small p can be made stable if the
2D norm �normalized number of atoms� N exceeds some
critical value depending on p. Splitting of the azimuthon
with two intensity peaks and 
=−1, p=0.4, and stable dy-
namics of the azimuthon with 
=−5 and p=0.6 are shown in
Fig. 6. Numerically estimated rotational velocity of the
stable azimuthon in Fig. 6�b� is �=0.18 so that it survives
over many dozens of rotational periods.

Note that one point should be emphasized. Strictly speak-
ing, our direct numerical modeling cannot give a rigorous
proof of the stability or instability of the multisolitons. First,
in the the direct numerical experiments one can consider the
evolution over finite times only. Second, the results are lim-
ited to the perturbation profile. A rigorous proof could, for
instance, include a linear stability analysis with the corre-

FIG. 5. �a� Splitting of the vortex with 

=−1, �b� stable dynamics of the vortex with 

=−5.

FIG. 6. �a� Splitting of the azimuthon with
two intensity peaks and 
=−1, p=0.4, �b� stable
dynamics of the azimuthon with two intensity
peaks and 
=−5, p=0.6.
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sponding eigenvalue problem. Nevertheless, from our nu-
merical simulations of the dynamics over finite, but large,
times we can conclude that �in stable cases� the potential
growth rates of unstable modes are very small. The structures
�if stable� survive over huge times and hundreds of rotational
periods, and from the practical point of view they can be
regarded as stable.

V. CONCLUSION

In conclusion, we have demonstrated the existence of 2D
localized nonlinear structures in BECs with nonlocal dipole-
dipole and attractive short-range contact interactions and
studied their stability. We have found numerically three kinds
of soliton families: nonrotating multipole solitons �funda-
mental one-hump soliton, dipole, and quadrupole�, radially

symmetric vortices, and rotating multihump �with two and
four intensity peaks� solitons with the spatially modulated
phase �azimuthons�. We have shown that stable solitons may
exist only within a finite range of the ratio between dipole-
dipole and short-range interactions �both of which are tun-
able�. The anisotropy of the dipole-dipole interaction is cru-
cial, since this leads to partially attractive nature of the
interaction. Sufficiently large dipolar interactions destabilize
the SWs. By direct numerical simulations, we have found
that dipole nonrotating solitons, vortices, and two intensity
peak azimuthons can be stable for some values of the chemi-
cal potential �or, equivalently, normalized number of atoms�.
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