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Atomic collisions are included in an interacting system of optical fields and trapped atoms allowing field
amplification. We study the effects of collisions on the system stability. Also a study of the degree of entangle-
ment between atomic and optical fields is made. We found that, for an atomic field initially in a vacuum state
and optical field in a coherent state, the degree of entanglement does not depend on the optical field intensity
or phase. We show that in conditions of exponential instability the system presents at long times two distinct
stationary degree of entanglement with collisions affecting only one of them.
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I. INTRODUCTION

Bose-Einstein condensation of trapped atomic gases �1–3�
has produced a fantastic advance in atom optics. Particularly,
the interaction of condensates with single mode quantized
light fields has been a fascinating topic �4–17�, allowing, for
instance, light and matter wave amplification �12–14�, opti-
cal control of atomic statistical properties �15,16�, and poten-
tial applications in quantum information technology �17�.

It is known that the trap environment can modify the
properties of ultracold atoms, such as its critical temperature
�18,19�. Then it is expected that trap environment also influ-
ences the interaction between ultracold atoms and optical
fields. In Ref. �20�, the trap environment effects on the con-
densate collective atomic-recoil laser �CARL� �21,22� was
considered by expanding the matter-wave field in the trap
matter-wave modes. Such a situation was called cavity atom
optics �CAO�, in analogy with the cavity quantum electrody-
namics �CQE� where the spontaneous emission is modified
by the presence of the cavity. The model obtained presents
interesting properties such as two regimes of exponential in-
stability �20� and statistical properties that depend on inten-
sity and phase of the optical field �23�. However, neither
atomic collisions was taken into account nor a detailed study
of the degree of entanglement between atomic and optical
fields was done. Entanglement, one of the most notable char-
acteristics of quantum mechanics �24�, has been object of
intense study, both in systems involving light and matter
�25,26� and in solids �27,28�, due to its important role for
quantum-information processing �29�. Therefore, inclusion
of collisions and characterization of entanglement are impor-
tant in order to turn the model more realistic and potentially
useful for applications in the context of quantum information
theory.

This paper deals with the extension of the model of atom-
optical parametric amplifier considered in Refs. �20,23� by
including collisions between atoms. A study of the changes

due collisions on the thresholds of exponential instability as
well as in growth rate of the fields amplitudes is presented.
Also a characterization of the degree of entanglement be-
tween atomic and optical fields is done. We show that in
conditions of exponential instability the system presents at
long times two distinct stationary degree of entanglement
with collisions affecting only one of them.

The article is organized as follows. In Sec. II we derive
the effective Hamiltonian describing the system studied. In
Sec. III we present an analysis of the system stability. In Sec.
IV we consider the atom-photon degree of entanglement in
the regime of field amplification. Finally, in Sec. V we
present the conclusion.

II. MODEL

We consider a Schrödinger field of bosonic two-level at-
oms, with transition frequency �, interacting via two-body
collisions and coupled by electric-dipole interaction to two
single-mode running wave optical fields of frequencies �1
and �2, treated as a quantum and a classical field, respec-
tively. Both optical fields are assumed being far off-resonant
from any electronic transition. Thus, although the atom’s in-
ternal state remains unchanged, the center-of-mass motion
may change due to the atomic recoil induced by two-photon
virtual transitions. In the far off-resonance regime the excited
state population is small, and therefore spontaneous emission
as well as collisions between excited state atoms, and be-
tween ground state and excited states atoms, may be ne-
glected. In this regime the excited state can be adiabatically
eliminated and the ground state atomic field evolves coher-
ently under the effective Hamiltonian

Ĥ =� d3r�̂†�r��H0 +
U

2
�̂†�r��̂�r�

+ ��g1
*g2

�
â1

†a2e−iK·r+g2
*g1

�
a2

*â1eiK·r�	�̂�r� + ��â1
†â1,

�1�
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H0 = −
�2

2m
�2 + V�r� , �2�

m is the atomic mass, V�r� is the trap potential, �=�2−� is
the detuning between atoms and the classical optical field, g1
and g2 are the optical fields coupling coefficients, K=k1
−k2 is the difference between their wave vectors, and �
=�1−�2 is the detuning between them. The operator â1 is
the photon annihilation operator for the quantized optical
field, taken in the frame rotating at the classical field fre-
quency �2. The optical field treated classically is assumed to
remain undepleted, so that a2 is simply a constant related to
its intensity. Terms corresponding to the spatially indepen-
dent light shift potential were neglected, so that the index of
refraction of the atomic sample was assumed the same of the
vacuum. Two-body collisions were included in the s-wave
scattering limit by the second term inside brackets in the
Hamiltonian �1�, where

U =
4��2a

m
, �3�

and a is the s-wave scattering length, which depending on
the repulsive or attractive character of the interaction can
assume positive or negative values, respectively. We consider
only positive values of scattering length, which are suitable
for the creation of large condensates, and correspond to a
situation more consistent with the approximations in this pa-
per.

We assume that the atomic field is initially a Bose-
Einstein condensate with mean number of condensed atoms
N, and that this condensate is well described by a number
state so its initial state is described by


��t = 0�� =
1

�N!
�ĉ0

†�N
0� , �4�

where 
0� is the vacuum state and

ĉ0
† =� d3r	0�r��̂†�r� �5�

is the creation operator for atoms in the condensate state
	0�r�. Due to the presence of collisions the condensate wave
function 	0�r� satisfies the Gross-Pitaevskii equation �30,31�

�H0 + NU
	0�r�
2�	0�r� = 
	0�r� , �6�

where 
 is the chemical potential.
Now we expand the atomic field operator in terms of the

trap eigenmodes 	n�r�� according to

�̂�r� = 	0�r�ĉ0 + ��̂�r� , �7�

where ��̂�r�=�n�0
� 	n�r�ĉn annihilates particles in the ex-

cited trap modes, ĉn is the annihilation operator for atoms in
mode n, and �d3r	m

* �r�	n�r�=�mn. We are interested in the
linear regime, valid for interaction times so that

��d3r��̂†��̂�� �ĉ0
†ĉ0�. Then we can maintain only quadratic

terms in the fields operators and invoke the undepleted ap-
proximation, which permits to substitute the condensate
mode by a c number evolving as

c0�t� � �Ne−i
t. �8�

Therefore, in the linear regime, by inserting expansion �7�
and taking into account the Gross-Pitaevskii equation �6�, the
Hamiltonian �1� reduces to

Ĥ = ��â1
†â1 + �� d3r��̂†�H0 + 2NU���̂

+ �
U

2
�Ne2i
t� d3r	0

*2��̂2 + H.c.�
+ ��g1

*g2a2

�
�Nâ1

†� d3r�ei
t	0
*e−iK·r��̂

+ e−i
t��̂†e−iK·r	0� + H.c.	 , �9�

which in terms of the trap excited modes expansion becomes

Ĥ = ��â†â + ��
n�0

�nĉn
†ĉn + � �

nl�0

nl

2
�ĉnĉl + ĉn

†ĉl
†�

+ ��â + â†��
n�0

�n�ĉn + ĉn
†� , �10�

where

��n =� d3r	n
*�H0 + 2NU
	0�r�
2�	n �11�

is the collision modified energy of the nth trap level, �n

=�NA0n
g1

g2

a2
 / 
�
 is the effective coupling constant be-
tween the condensate and the quantum optical field, â
= �g1g2

*a2
*� / 
g1

g2

a2

�
�â1 is the optical field operator mul-

tiplied by a phase factor that is related to the classical optical
field phase,

nl =
2NU

�
� d3r	0

2	n
*	l

* �12�

and

A0n =� d3r	n
*e−iK·r	0 �13�

are the collision parameter and the element of matrix for the
optical transition, respectively, both assumed being real num-
bers. The phase factors e±i
t were included in the operators
ĉn and ĉn

†.
For simplicity, we assume that the overlap-integral in the

collision parameter given by Eq. �12� has a significant con-
tribution for a given n= l=m and the matrix for optical tran-
sition A0n is sharply peaked for n=m �37�. In this case we
can neglect all excited trap modes except the m mode in the
Hamiltonian �10�, and the following effective Hamiltonian is
obtained:

Ĥ = ��â†â + ��mĉm
† ĉm + �

m

2
�ĉm

2 + ĉm
†2�

+ ��m�â†ĉm
† + â†ĉm + ĉm

† â + ĉmâ� . �14�
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Terms such as â†ĉm
† in Hamiltonian �14� correspond to the

generation of correlated atom-photon pair. These terms are
analogous to the nondegenerated optical parametric amplifier
�32�. Inclusion of collisions introduces terms such as ĉm

†2,
which are responsible by creation of an atomic pair, and are
analogous to the degenerated optical parametric amplifier
�32�. The Heisenberg equations of motion for the field op-
erators obtained from Hamiltonian �14� result in the follow-
ing 4�4 linear system of equations:

d

dt�
ĉ

ĉ†

â

â†
� = i�

− 1 −  − � − �

 1 � �

− � − � − � 0

� � 0 �
��

ĉ

ĉ†

â

â†
� , �15�

where the index m was dropped in order to simplify notation,
and we introduced the dimensionless parameters t=�mt, �
=� /�m, =m /�m, and �=�m /�m.

III. STABILITY

The solution of the linear system �15� can be written as

x̂i�t� = �
j=1

4

Gij�t�x̂j�0� , �16�

where we defined x̂1= ĉ, x̂2= ĉ†, x̂3= â, and x̂4=a† for conve-
nience, Gij�t�=�k=1

4 �U�ik�U−1�kje
i�kt, �U�ik is the ith compo-

nent of the kth eigenvector of the matrix on the right-hand
side of Eq. �15�, and �k are the system eigenfrequencies.

Stability analysis shows two regimes of exponential insta-
bility: �i� For ��0 and �2���1+� /4 there are two purely
real and two purely imaginary eigenfrequencies of the form
�1=� ,�2=−� ,�3= i� ,�4=−i��, where � and � are both
real quantities. There is only one exponentially growing so-
lution at the imaginary frequency �4 and the system is un-
stable. �ii� For ��0 and �2� �1−2−�2�2 /16
�
�1−� the
eigenfrequencies are complex numbers of the form �1=�
+ i� ,�2=−�+ i� ,�3=�− i� ,�4=−�− i��. This case pre-
sents two exponentially growing solutions, �3 and �4, which
grow at the same rate �, but rotate at equal and opposite
frequencies ±�, producing a beating in the exponential
growth of the fields intensities. Otherwise the eigenfrequen-
cies are real and the system is stable.

In Fig. 1 we plot in the �−�2 plane the values of param-
eters defining the threshold between stable and unstable so-
lutions. Points inside region I correspond to one exponen-
tially growing solution, whereas for points inside region II
there are two counter-rotating exponentially growing solu-
tions. The full line indicates the threshold in the absence of
collisions whereas dashed and dotted lines shows the change
due collisions, which have the effect of reducing the unstable
regions. In addition, for small �2 the region II is centered
around �=−�1−2 and at asymptotically large detunings its
threshold grows as �2�−�3 /16�1−�.

In order to illustrate the effects of collisions on the fields
intensities Ii�t�= �x̂i

†�t�x̂i�t��, with i=1,3, we consider that the
atomic mode begins in a vacuum state 
0� whereas the light

field is initially in a coherent state 
��. Then, with the help of
Eq. �16�, we found

Ii�t� = 
Gi2�t�
2 + 
Gi4�t�
2 + 
Gi3�t�� + Gi4�t��*
2. �17�

Figures 2�a� and 2�b� show the logarithmic plot of the optical
field intensity I3�t� as a function of time for parameters lying
in the regions I and II of instability, respectively. The inten-
sity of the atomic mode has a similar behavior. We see that
collisions reduce the rate of exponential growing and change

FIG. 1. Instability domains. Points inside region I correspond to
one exponentially growing solution, whereas for points inside re-
gion II there are two counter-rotating exponentially growing solu-
tions. The full line defines the threshold in the absence of collisions
�=0.0�. Change in the threshold due to collisions correspond to the
dashed �=0.4� and dotted lines �=0.8�. The parameters are
dimensionless.

FIG. 2. Logarithmic plot of the light field intensity as function
of time. �a� Parameters lying over the region I of the instability
domains. �b� Parameters lying over the region II of the instability
domains. Full line corresponds to absence of collisions �=0.0�
while dashed and dotted lines correspond to inclusion of collisions
with =0.4 and =0.8, respectively. We set �=1 and �=2. The
parameters are dimensionless.

STABILITY AND ENTANGLEMENT IN OPTICAL-ATOMIC… PHYSICAL REVIEW A 75, 043604 �2007�

043604-3



the beating frequency of oscillation of the field intensity. The
change in the density distribution of atoms in the condensate
mode due to collisions reduces the scattering of photons into
the optical field, as well as the scattering of atoms by the
optical field into the atomic mode, in opposition to field am-
plification.

IV. ENTANGLEMENT

Now we turn to analyze the atom-photon degree of en-
tanglement for the exponential growing regimes of fields am-
plitudes. It is known that for a two-component system in a
pure state the degree of entanglement can be characterized
by the entropy or purity of one of the system components
�34,35�. Such entanglement measures require the calculation
of the time-dependent quantum state for the system, which
may not be an easy task. Instead, we consider a recently
proposed entanglement coefficient in terms of cross-

covariances of the fields operators defined by �36�

Y = � 
âĉ†
2 + 
âĉ
2

2�â†â +
1

2
��ĉ†ĉ +

1

2
��

1/2

, �18�

with the notation xixj = �xixj�− �xi��xj� for the unsymetrized
centered second-order moments of the operators. Since we
know the time dependent solutions for the fields amplitudes
the parameter Y is easily calculated for the system consid-
ered in this paper.

The coefficient Y satisfies the inequality 0�Y �1, where
at the maximum value of Y the system is maximally en-
tangled and was introduced taking into account that for two

systems with operators Â and B̂, if any of the cross-
covariances with these operators differs from zero, then the
modes are entangled. For the excited trap mode starting in a
vacuum state and the light field in a coherent state, we obtain

Y = � 
G31�t�G11
* �t� + G33�t�G13

* �t�
2 + 
G31�t�G12�t� + G33�t�G14�t�
2

2�
G32�t�
2 + 
G34�t�
2 +
1

2
��
G12�t�
2 + 
G14�t�
2 +

1

2
� �

1/2

. �19�

Equation �19� shows that the degree of entanglement do not
depend on the optical field intensity or phase. Furthermore,
in the regime of exponential instability the parameter Y at-
tains at long times a stationary value thats is dependent on
the signal of the detuning �. To see that, in Fig. 3 the param-
eter Y is plotted as a function of time for several values of
detunings in the absence of collisions. We observe that for
��0 �one exponentially growing solution� the system attains
at long times the maximum degree of entanglement, while
for ��0 �two exponentially growing counter-rotating solu-
tions� the long time degree of entanglement attains an oscil-
lating stationary value far below the maximum one.

The effects of collisions are presented in Figs. 4�a� and
4�b� which show the entanglement coefficient as a function

δ = 0.5
δ = 1.0
δ = 1.5

δ = − 1.5
δ = − 1.0
δ = − 0.5

FIG. 3. Plot of the entanglement coefficient as a function of time
in absence of collisions for several values of detuning �. We set �
=1. The parameters are dimensionless.

FIG. 4. Plot of the entanglement coefficient as a function of
time. �a� Parameters lying over the region I of the instability do-
mains. �b� Parameters lying over the region II of the instability
domains. Full line corresponds to absence of collisions �=0.0�
while dashed and dotted lines correspond to inclusion of collisions
with =0.4 and =0.8, respectively. We set �=1. The parameters
are dimensionless.
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of time for values of parameters lying in regions of one and
two exponential growing solutions, respectively, and consid-
ering different values for the collision parameter . We see in
Fig. 4�a� that collisions do not affect at long times the degree
of entanglement for ��0, which always tend to the maxi-
mum value. However, for ��0 �Fig. 4�b�� collisions
strongly affects the long time degree of entanglement by
changing the amplitude of oscillations of its stationary value.

V. CONCLUSION

In conclusion, in this work we have included atomic col-
lisions in a model of an atom-optical parametric amplifier of
trapped atoms. Analyzing the system stability in the regime
of field amplification, we found that atomic collisions reduce
the growth rate of the fields amplitudes. For an atomic field

initially in a vacuum state and optical field in a coherent
state, we have verified that the degree of entanglement be-
tween atomic and optical fields does not depend on the op-
tical field intensity or phase. Furthermore, in conditions of
field amplification the degree of entanglement attains at long
time a stationary value dependent on the regime of exponen-
tial instability, being maximum only in the case of one ex-
ponentially growing solution. Finally, atomic collisions only
affect the long time degree of entanglement in the case of
two exponentially growing solutions.
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