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We study the coherent association of a two-species atomic condensate into a condensate of heteronuclear
diatomic molecules, using both a semiclassical treatment and a quantum mechanical approach. The differences
and connections between the two approaches are examined. We show that, in this coupled nonlinear atom-
molecule system, the population difference between the two atomic species plays a significant role in the
ground-state stability properties as well as in coherent population oscillation dynamics.
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I. INTRODUCTION

After the experimental realization of the trapped atomic
Bose-Einstein condensates �BEC’s�, achieving molecular
BEC’s has been regarded as another milestone in the field of
ultracold atomic physics. As molecules are inherently much
more complex in energy spectrum than their atomic constitu-
ents, direct laser cooling methods popular with atoms are
ineffective with molecules. Many recent activities, both in
experiments �1–7� and in theory �8–10,12–24�, have been
focused primarily on converting ultracold atoms into ultra-
cold molecules by means of magnetoassociation �Feshbach
resonance� or photoassociation, in which two atoms are com-
bined into a diatomic molecule mediated by either a mag-
netic field or an optical field. Both ultracold degenerate
bosonic and fermionic atoms have been successfully con-
verted into molecules. Considerable theoretical efforts have
been devoted to improving the conversion efficiency �8–12�
and understanding the molecular association �13–24� as well
as the dissociation dynamics �25–27� of the atom-molecule
coupling model.

It needs to be emphasized that most of the aforementioned
studies, with the notable exception of Refs. �12,13�, are con-
cerned with homonuclear molecules. The interest of this pa-
per is, however, heteronuclear molecules in coupled atom-
molecule systems with two different atomic species. As a
natural progression, quantum-degenerate heteronuclear mol-
ecules are expected to be the next challenge to the atomic
physics community, because heteronuclear molecules pos-
sess intriguing properties that will open up many new av-
enues of research. For example, unlike their homonuclear
counterparts which are always bosonic, heteronuclear di-
atomic molecules can be either bosons or fermions; hence,
quantum statistics will play important roles in such systems

�12�. Furthermore, a large electric-dipole moment can be in-
duced in heteronuclear molecules with the prospect of creat-
ing dipolar superfluids �28� and with potential applications in
quantum computing �29� and quantum simulations �30� and a
test of the fundamental symmetry �31�. For these reasons,
heteronuclear molecules have recently received much theo-
retical and experimental attention. Already, Feshbach reso-
nances have been observed in various quantum-degenerate
Bose-Fermi atomic mixtures �1–3�, and heteronuclear mol-
ecules from both Bose-Fermi and Bose-Bose mixtures have
been produced through the photoassociation technique �4–6�.

In this paper, we consider, within a three-mode model, a
system of bosonic diatomic heteronuclear molecules coupled
to their constituent atoms, both types of which are also as-
sumed to be bosonic. Besides the collisional strengths and
the detuning �bare energy difference between the molecular
and atomic modes�, due to the presence of two types of at-
oms, we have a new “control knob”—the population imbal-
ance between the two species—which we shall pay special
attention to. We note in passing that recent experiments on
two-component degenerate Fermi gases with population im-
balance �32,33� have generated great excitement due to their
rich phase diagrams with various exotic quantum phases in
which the population imbalance plays a critical role. We will
study our system using both a mean-field semiclassical and a
full quantum mechanical method. The differences as well as
the connections between the two approaches will be exam-
ined.

The paper is organized as follows. In Sec. II we present
our model in both the full quantum and mean-field versions.
In Sec. III we study the ground-state properties and their
relevance in creating molecules from atoms by adiabatically
sweeping the detuning. The population dynamics is pre-
sented in Sec. IV, and finally we conclude in Sec. V. Our
work differs from Refs. �12,13� in the following ways: Ref-
erence �12� focuses on the quantum statistical properties of
the molecules and does not consider the effect of population
imbalance, while Ref. �13� uses a very different quantum
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approach �Bethe ansatz� from ours and does not pay much
attention to the atom-molecule conversion process.

II. QUANTUM MODEL AND MEAN-FIELD
APPROXIMATION

We adopt a simple three-mode model in which we de-
scribe our atom-molecule system with two atomic modes �1
and 2� and one molecular mode �m�. The basic assumption
here is that the spatial wave functions for these modes are
fixed so that we can associate each mode with an annihila-
tion operator âi of a particle in mode i �=1, 2, and m�. Similar
models have been extensively used in studies of condensates
in double-well potentials �34,47,48� and coupled atom-
molecule condensates �10–19�, as well as spinor condensates
�35�.

Within the three-mode approximation, the second-
quantized Hamiltonian reads

Ĥ = �âm
† âm + g�âm

† â1â2 + H.c.� + �
i,j

�ijâi
†âj

†âjâi, �1�

where the detuning � represents the energy difference be-
tween the molecular and atomic levels which can be tuned
by external field, g is the atom-molecule coupling strength,
and �ij =� ji is the s-wave collisional strength between modes
i and j. Without the collisional terms our model will reduce
to a trilinear Hamiltonian describing the nondegenerate para-
metric down-conversion in quantum optics �36,37�.

There are two obvious constants of motion from Hamil-
tonian �1�:

N̂ = â1
†â1 + â2

†â2 + 2âm
† âm, D̂ = â1

†â1 − â2
†â2, �2�

which account for the total particle number and the number
difference between the two atomic species, respectively. Tak-
ing advantage of the constants of motion, Hamiltonian �1�
can be simplified as

Ĥ =
G

�2N
�âm

† â1â2 + H.c.� +
�G

4N
�â1

†â1 + â2
†â2�2

−
�G

2
�â1

†â1 + â2
†â2� , �3�

where we have introduced two dimensionless quantities

� = N��11 + �22 + �mm + 2�12 − 2�m1 − 2�m2�/G ,

� = �� − �D − 1��11 + �D + 1��22 + �N − 1��mm − �N − D��m1

− �N + D��m2�/G ,

with G=g�2N as the rescaled atom-molecule coupling
strength. In writing Eq. �3�, we have neglected the constant
terms proportional to D and N.

To complement the quantum study, we develop a semi-
classical description of our system by following the usual
mean-field approach, which has proven to be a powerful tool
for the study of Bose-Einstein condensates. As a first step,
we apply the Heisenberg equation to arrive at the operator
equation for âi and then replace âi with the corresponding C

number ai. Next, we change the equation for ai into the ones
for Ni and �i through the transformation ai=�Nie

i�i, where
Ni and �i represent the number and phase of the bosonic field
for the particles in species i, respectively. Finally, we take
advantage of the existence of the two conserved quantities N
and D, and simplify our problem into a one described by two
variables: the normalized population in the two atomic
modes,

x = �N1 + N2�/N ,

and the phase difference

� = �1 + �2 − �m.

The equations of motion for x and � can be easily obtained
as

dx

d�
= − ��1 − x��x2 − d2� sin � , �4a�

d�

d�
= � − �x −

d2 + 2x − 3x2

2��1 − x��x2 − d2�
cos � , �4b�

where �=Gt is the dimensionless time and d=D /N the nor-
malized atomic population imbalance. Without loss of gen-
erality, we will assume a non-negative d� �0,1�.

In the language of Hamiltonian mechanics, x and � form
a pair of canonically conjugate variables satisfying the equa-
tions

dx

d�
=

�H

��
,

d�

d�
= −

�H

�x
,

with the dimensionless mean-field Hamiltonian H given by

H =
�

2
x2 − �x + ��1 − x��x2 − d2� cos � . �5�

We note that if d=0—i.e., when the two atomic modes have
the same population—Hamiltonian �5� would have the same
form as the corresponding Hamiltonian describing homo-
nuclear molecule association from a single atomic mode
�18,19�. The quantum mechanical Hamiltonian �3� and its
semiclassical counterpart �5� serve as the starting point of
our study.

III. STEADY STATES AND RAPID ADIABATIC PASSAGE

Semiclassically, the fixed points �x0 ,�0� are the steady-
state solutions to Eqs. �4� and the ground state corresponds to
the ones that give rise to the smallest energy. Obviously x
� �d ,1�. For convenience, we also introduce a variable

y = 1 − x ,

which lies in the range of �0,1−d� and has the physical
meaning that y /2 represents the normalized molecular popu-
lation. For clarity, we will separately discuss the two cases
�=0 and ��0.
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A. Case 1: �=0

In order to illustrate the effect of atomic population im-
balance, we first present the results for d=0. The ground
state in this case is given by

y0 = 1, �0 undefined, for � � − 1,

y0 =
1

9
���2 + 3 − ��2, �0 = 	 , for � 
 − 1,

from which one can see that although y0 is continuous
throughout the � space, the derivative dy0 /d� has a discon-
tinuous jump at �=−1. Therefore �=−1 represents a critical
point that separates the pure molecule phase �y0=1� from the
atom-molecule mixture phase in the semiclassical theory.

To study the corresponding quantum behavior and its con-
nection with the semiclassical approach, we expand Hamil-
tonian �3� using a Fock-state basis for a given set of N and D
and diagonalize the resulting Hamiltonian matrix. Both the
quantum and semiclassical results of the ground-state mo-
lecular population are shown in Fig. 1�a�. The quantum cal-
culation always results in a smooth y0 curve although it also
shows a rapid change from 0 to 1 in a small region near �
=−1. As expected, the quantum results approach the semi-
classical limit as N increases.

Further insights into the properties of the system can be
gained by studying the excitations above the ground state.
The quantum many-body excited states are obtained in the
same manner as above through diagonalization of the Hamil-
tonian matrix. We are particularly interested in the “energy
gap” �E, defined as the energy difference between the first
excited state and the ground state, which is plotted in Fig.
1�b� for several different N. The energy gap shows a mini-
mum, which is always finite, at the value of � around which
y0 rapidly approaches 1. The semiclassical energy gap can be
obtained through the following linearization procedure: Sub-
stituting x=x0+�x and �=�0+�� into Eqs. �4� where

�x0 ,�0� are the steady-state solution and ��x ,��� represent
the small fluctuations away from the steady state, keeping
terms up to first order in fluctuations, we have

d

d�
�x = − ��1 − x0��x0

2 − d2� cos �0�� ,

d

d�
�� = �− � −

�1 − 3x0�
��1 − x0��x0

2 − d2�
cos �0

+
�d2 + 2x0 − 3x0

2�2

4��1 − x0��x0
2 − d2��3/2 cos �0��x , �6�

where, in anticipation of later studies, we have not made the
assumption of �=0. The oscillation frequency of �x and ��
can be derived straightforwardly as

�2 = 	 �d2 + 2x0 − 3x0
2�2

4�1 − x0��x0
2 − d2�

+ 3x0 − 1
cos2 �0

− ���1 − x0��x0
2 − d2� cos �0. �7�

For the ground state in the case of �=0, the semiclassical
excitation frequency reduces to

� = ��2 + 3x0 − 1,

which is the semiclassical energy gap. In particular, for d
=0, we have

� = ���2 − 1, for � � − 1,

��2 + 2 − ���2 + 3 − ��2/3�1/2, for � 
 − 1,
�

which is plotted in Fig. 1�b�. The semiclassical energy gap
vanishes at the critical point �=−1 with a discontinuous
jump in its derivative.

Figures 1�a� and 1�b� clearly show that the quantum result
approaches the semiclassical limit as N→�, and hence the
much simpler semiclassical theory is reliable for large N.
Furthermore, there is a critical point at �=−1 for d=0 in the
semiclassical theory which is absent in the quantum calcula-
tions with finite N, indicating the fact that no true quantum
phase transition can occur in a finite system.

We now discuss the case with finite atomic population
imbalance—i.e., d�0. Although semiclassical solutions to
the ground-state population and excitation can be obtained
analytically in the same fashion as in the previous case for
d=0, the expressions are generally too messy to be instruc-
tive. We therefore simply display the results in Figs. 1�c� and
1�d�. Again we find that the semiclassical calculation repro-
duces the quantum result �not shown in the figure� in the
large-N limit. One major difference between d�0 and d=0
is that in the former there is no quantum phase transition
even in the semiclassical limit: both the population and the
energy gap changes smoothly as � varies, and the energy gap
never becomes zero.

From Fig. 1, we can also see that starting from a pure
two-species atomic condensate, we can coherently create
molecular condensate using the method of rapid adiabatic
passage—e.g., by tuning � from a large positive value to a
large negative value. Near-perfect atom-to-molecule conver-

y0

y0

(a)

(c)

(b)

(d)

FIG. 1. �Color online� Ground-state molecular population y0 and
energy gap �E as functions of �. For �a� and �b�, d=0, the thin
black lines represent the semiclassical results, dashed green lines
are quantum results for N=10, and thick red lines are quantum
result for N=100. For �c� and �d�, d=0.2 and only the semiclassical
results are shown.
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sion �38� is achieved when � is swept adiabatically �39�
which is confirmed by our numerical calculations. However,
as we demonstrate next, such a smooth conversion of atoms
into molecules by a slow sweeping of � cannot be taken for
granted when ��0.

B. Case 2: �Å0

With a finite �, the algebra becomes much more compli-
cated. We resort to numerical calculations in this case. Con-
sider first the semiclassical situation. The left panel of Fig. 2
illustrates the properties of the system with d=0 and �=−5.
Figures 2�a� and 2�b� show the molecular population and
mean-field energy for the semiclassical steady states. In the
region �� �−3.56,−1�, there exist three steady states with
similar energies as shown in the figure �40�. The mean-field
energy exhibits a swallowtail loop structure. Similar struc-
tures have been observed in condensates moving in optical
lattice potentials �41� and in two-component condensates
�42� under certain conditions, and are associated with dy-
namical instability.

In our system, by calculating the excitation frequency us-
ing Eqs. �6� and �7�, we find that one of the three steady
states, represented by the red dashed lines in Figs. 2�a� and
2�b�, possesses imaginary excitation frequency, a signature
of dynamical instability. This unstable state links the two
stable ones, representing a classical example of bistability
which has been intensely studied in the context of nonlinear
optics and laser theory �43�. The existence of such a state is
the key to the development of atom-molecule switch, the
matter-wave analog �44� of optical bistable switch, for con-
trolling matter waves by matter waves in a coherent and
bistable fashion. Under such a bistable situation, no matter
how slow we tune �, the system will not be able to follow
the ground state—when we enter the dynamical unstable re-
gion, a discontinuous jump will necessarily occur and the
atom-molecule conversion efficiency will suffer. This is con-
firmed in our numerical simulation as shown in Fig. 2�c�
where we linearly sweep � from a large positive to a large
negative value starting from a pure two-species atomic con-
densate. In this example, only about 60% of the initial atoms
will associate into molecules.

It is instructive to examine the situation from the quantum
many-body point of view. Figure 2�d� shows the five lowest
eigenenergies of the quantum Hamiltonian �3� for N=20. The
quantum mechanical energy spectrum exhibits a net of anti-
crossings enveloped by a swallowtail loop structure that will
morph into the semiclassical energy diagram as shown in
Fig. 2�b�. A similar semiclassical-quantum correspondence
was observed in two-component condensates �45,46� and
condensates in double-well potentials �47,48�.

In comparison, the right panel of Fig. 2 shows a situation
without dynamical instability. In this case, rapid adiabatic
passage results in a near perfect atom-molecule conversion
and the system follows the ground state closely as � is tuned.

Figure 2 shows that in order to create molecular conden-
sates with high efficiency using the rapid adiabatic passage
method, it is of crucial importance to avoid the unstable

regimes �8�. Figure 3 shows the stability phase diagram in
�-� parameter space. We find that dynamical instability oc-
curs in the region of �−1 and �−1 and is quite sensitive
to the atomic population imbalance d: With an increase of d,
the unstable region shrinks. Therefore tuning the population
imbalance provides us with a handle to control the dynamical
stability of the system.
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FIG. 2. �Color online� Left panel shows an example of dynami-
cal instability with d=0 and �=−5. �a� Molecular population in the
low-lying semiclassical steady states as functions of �; the state
represented by the red dashed curve is dynamically unstable. �b�
Corresponding dimensionless semiclassical mean-field energies as
calculated using Eq. �5�. �c� Molecular population as � is linearly
swept. �d� The corresponding quantum many-body energy spectrum
for N=20, only the lowest five eigenenergies are shown. As the
classical Hamiltonian �5� represents the energy per pair of atoms,
the quantum eigenenergy �in units of G� has been rescaled by a
factor of �N /2�−1. The right panel is the same as the left except for
�=5 where there is no dynamical instability.
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IV. COHERENT ATOM-MOLECULE POPULATION
OSCILLATIONS

Coherent population oscillations have been predicted
�15–22� and experimentally measured �7� in systems of
homonuclear molecules coupled to atomic condensates. Be-
sides proving a phase coherence between atoms and mol-
ecules, a measurement of the oscillation frequency can tell us
many properties of the system such as the molecular binding
energy, atom-molecule coupling strength, etc. We therefore
want to study in this section the population oscillation dy-
namics in our system starting from a pure atomic cloud, fo-
cusing again on the effect of atomic population imbalance.

In a dissipationless system, the total energy is conserved
so that the Hamiltonian represents another constant of mo-
tion and the semiclassical problem becomes integrable. For
an initial state with pure atoms—i.e., x=1—the energy con-
stant according to Eq. �5� is E=−�+� /2. By inserting

cos � =

�x −
�

2
x2 + E

��1 − x��x2 − d2�
, �8�

which is obtained from Eq. �5�, into Eqs. �4�, we can easily
find that

�dy

d�
�2

= y�1 − d2 − ���2 + 2�y + �1 − ����y2 − �2y3/4� ,

�9�

where ��=�−� and y=1−x as before.
The solution to Eq. �9� can be expressed in terms of the

elliptical functions and strongly depends on the roots of the
cubic equations inside the square brackets. A discussion of
the solution for the model with homonuclear molecules �d
=0� can be found in Refs. �16,20�. Here, in order to gain
physical insight into the effect of the population imbalance
on the oscillation dynamics, we will focus on the simpler
case with �=0. Under this condition, Eq. �9� reduces to

�dy

d�
�2

= y��1 − y�2 − d2� −
1

4
�2y2,

whose solution, when expressed in terms of Jacobi’s elliptic
function, has the form

y = y−sn2��y+�/2,�y−/y+� , �10�

where

y− =
1

2

1 − d2

1 +
�2

4
+�d2 − 1 + �1 +

�2

4
�2

,

y+ =
1 − d2

4y−
. �11�

Equation �10� describes an undamped oscillation in which
y changes from 0 to the peak value y− with a period

T =

4F�	

2
,�y−/y+�
�y+

, �12�

where F�	 /2 ,k� is a complete elliptic integral of the first
kind.

We plot the amplitude y− and period T of the molecular
population oscillation with respect to � for different d in
Figs. 4�a� and 4�b�, respectively. The figure is symmetric
with respect to �=0 so we only present the case with �
�0. From Eq. �11�, we find that for any given d, the oscil-
lation reaches a maximum value of

y− = 1 − d ,

at resonance—i.e., �=0.
One peculiarity from the semiclassical calculation is that

when d=0, the oscillation period diverges at �=0. In this

(a)

(b)

FIG. 3. Stability phase diagram in �-� parameter space. The
black regions are dynamically unstable. �a� d=0 and �b� d=0.2.

y_

y T

T

(c)

d

(d)

(a) (b)

FIG. 4. �a� and �b� Molecular population oscillation amplitude
and period, respectively. The three curves correspond to d=0, 0.2,
and 0.5 in descending order. �c� Molecular population dynamics for
�=�=d=0. Solid line: semiclassical result. Dashed and dotted
lines: quantum result for N=100 and N=1000, respectively. �d� On
resonance semiclassical oscillation period as a function of d.
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case we have y+=y−=1 and Eq. �10� becomes

y = tanh2��/2� ,

which shows that atomic �molecular� population decreases
�increases� monotonically until all the atoms are converted to
molecules. The quantum mechanical calculation, however,
does show damped population oscillations under the same
condition, as illustrated in Fig. 4�c�. The difference between
the semiclassical and the quantum results arises because the
former does not take atom-molecule entanglement into ac-
count. The same behavior will also occur in homonuclear
molecule association and has been studied in Ref. �17�. In
heteronuclear molecule association with finite d, the period T
as given by Eq. �12� never diverges. Using the asymptotic
formula for F�	 /2 ,k�, one can show that, on resonance,

T 
2

�1 + d
ln

16

d
,

for small d. The resonant oscillation period as a function of d
is shown in Fig. 4�d�.

The situation becomes much more complicated in the case
of ��0 and in general no simple analytic formula for popu-
lation oscillations can be found. The general features are
nevertheless still preserved: the semiclassical result shows

undamped oscillations while quantum calculations yield
damped oscillations, and the quantum result approaches the
semiclassical limit as N increases.

V. CONCLUSION

In conclusion, we have studied the coherent association of
a two-species atomic condensate into heteronuclear molecu-
lar condensate using a three-mode model, emphasizing the
effect of atomic population imbalance. In particular, the
population imbalance, together with detuning and collisional
interaction strength, will significantly affect the excitation
and stability properties as well as coherent population oscil-
lations of the system. We have also carefully analyzed the
differences and connections between the semiclassical and
quantum many-body treatments.
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