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In a typical experiment aiming to control quantum dynamics phenomena, each molecule experiences the
same temporal laser field, but with an amplitude that depends on the spatial location and orientation of the
molecule in the laser beam. It is proved under commonly arising conditions that at least one optimal laser field
exists which will control all molecules in the sample, regardless of their orientation or spatial location. The
optimal laser field may consist of a multipolarization control containing up to three orthogonal, independently
shaped components. The analysis also includes the prospect of multipartite control where the field couples
distinct groupings of states �e.g., multiple vibronic states�, but without direct coupling within a group of states.
This conclusion shows that achieving quantum control is not a matter of striking a compromise over the sample
diversity, but rather a task subject to optimization to reach the highest possible level of control for all molecules
in the sample.
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The control of quantum phenomena is being increasingly
explored, both theoretically �1–4� and in the laboratory
�5–9�. An important goal is to explain the growing number of
successful experiments as a foundation for understanding
what may be expected for the future of the field. A recent
paper identified one key factor as the simplicity of the quan-
tum control search landscape permitting ready access to
high-quality solutions �10�. This paper lays out a second
critical factor as the ease of achieving control over a full
sample of molecules, despite the presence of spatially inho-
mogeneous effects and random molecular orientations.

Optimally shaped laser pulses currently can have tempo-
ral structure on the order of femtoseconds and total pulse
lengths of a picosecond or less. The samples under control
are often optically thin and the pulses sufficiently intense
such that back action to reshape the pulses in the medium
can be ignored. However, the pulses have spatial profiles
�e.g., a Gaussian� transverse to the direction of propagation.
The beam is frequently also focused down to have a narrow
waist in a plane at some point along the direction of propa-
gation, with the beam fanning out before and after the focal
plane. Thus, a molecule in one spatial location will experi-
ence a field amplitude distinct from another molecule in a
different location. This situation can be described by each
molecule being exposed to the same temporal laser field mul-
tiplied by an overall factor depending on the spatial location
of the molecule in the laser beam. Compounding this situa-
tion is the fact that the molecules in the sample will generally
be randomly oriented. A basic question is whether a single
temporal laser pulse shape can control all of the molecules,
regardless of their spatial location or orientation. Previous
optimal control simulations �11,12� hinted that the answer is
positive. Based on recent theoretical advances in assessing

quantum controllability, this paper addresses this question to
reveal that full control can be achieved regardless of spatial
location or molecular orientation, including in cases with
multiple polarized and shaped laser pulses.

Consider a collection of identical molecules of internal
Hamiltonian H0 subjected to external control from laser
pulses of temporal structure �s�t�, s=1, . . . ,S and linear po-

larization directions �ŝ that couple to the molecules through a
dipole moment vector operator �s. Here S can be 1, 2, or 3
corresponding to there being up to three mutually perpen-
dicular polarized control pulses. We denote by x the internal
coordinates of each molecule, and the goal is to achieve con-
trol over some aspect of the internal motion. The propagating
laser pulse has the spatial profile us�R� with R denoting a
location in the sample within a laboratory-based frame �see
Fig. 1�. The figure shows a single polarized pulse �i.e., s=1�
propagating, and a second polarization s=2 rotated 90° could
propagate as well in the same direction. If a third shaped
polarization control s=3 was used �4� it would propagate
perpendicular to the configuration in the figure �see also
�13��. Typically, us�R� may have a Gaussian-like shape or
some other form �11�. The sth control field seen by a mol-
ecule at location R is us�R�cos��R

s ��s�t�, where us�R� acts as a
constant amplitude factor for any value of R, and �R

s �de-
pending on R� is the angle between the pulse polarization

unit vector �ŝ and the molecular dipole vector �s. Addition-
ally, the spatial dependence of u�R� may also contain a phase
factor, which can result in us�R� changing sign at certain
locations R. See also Remark 2 below. The wave function
��t ,x ;R� of the molecule at R and orientation �R

s obeys the
Schrödinger equation

i�
�

�t
��t,x;R� = �H0�x� − �

s=1

S

us�R�cos��R
s ��s�x��s�t��

���t,x;R� ,
*Electronic address: hrabitz@princeton.edu
†Electronic address: Gabriel.Turinici@dauphine.fr

PHYSICAL REVIEW A 75, 043409 �2007�

1050-2947/2007/75�4�/043409�5� ©2007 The American Physical Society043409-1

http://dx.doi.org/10.1103/PhysRevA.75.043409


��t0,x;R� = �0�x;R� . �1�

In this analysis the pulse time scale is assumed to be short
compared to the molecular rotational periods, as expected for
large molecules and in condensed phases. Thus, the coordi-
nates R act as parameters characterizing each molecule’s
wave function under the action of the control. The analysis
below may also be extended to consider the density matrix.

The question is whether it is possible to find a set of pulse
shapes (�s�t�)s=1

S capable of driving the collection of mol-
ecules in the entire sample to a common target, despite the
fact that molecules at R and R� may experience distinct am-
plitudes us�R�cos��R

s ��s�t� and us�R��cos��R
s ���s�t� with

us�R�cos��R
s ��us�R��cos��R

s ��. This question can be under-
stood as a controllability issue. The assessment of whether a
single shaped laser pulse can drive independent �i.e., distinct�
quantum systems to their respective target states was ad-
dressed theoretically �14� and applied to the optimal dynamic
discrimination of separate quantum systems �15�. To treat the
particular case of identical molecules, we proved in �16� a
theoretical result for S=1 whose generalization will be given
below.

Before stating the key result in this work, H0 is first rep-
resented in its eigenbasis �1 , . . . , �N as H0
=diag��1 , . . . ,�N	, and 	ab denotes the transition frequencies
	ab=�a−�b. We construct for each coupling dipole �s the
connectivity graph �17� by drawing an edge between any two
states coupled by some dipole �s: Gs= �V ,Es�, V
= �1, . . . ,N	, Es= ��i , j� ; 
�i ��s �� j��0	. We also introduce
the total graph G= �V ,�s=1

S Es�. A graph Gs is said to be bi-
partite if the set of states V can be partitioned into two dis-
joint sets V1 and V2 �V1�V2=V, V1�V2=�� such that all
edges are between one element in V1 and one element in V2:
Es�V1�V2. The same definition applies for G �see Fig. 2�.

The bipartite nature of a graph is often encountered in the
laser manipulation of matter �e.g., when lasers couple some
states on a “ground” state surface with states on some
“higher” electronic excited state surface, but do not couple
states from the same surface �3��. The prior work �16� did not
treat such common bipartite situations. The present analysis
will allow for identifying the compatibility conditions that
ensure positive results under these circumstances.

A preliminary condition for the controllability of the full
collection of molecules with a single set of laser fields
(�s�t�)s=1

S is that the laser pulses us�R�cos��R
s ��s�t�, s

=1, . . . ,S, are capable of controlling a molecule at least at
one location R in the profile.

Theorem. Consider a characteristic sampling of M mol-
ecules located at R1 , . . . ,RM with dynamics described by Eq.
�1�, none with dipole components orthogonal to any of the
laser polarization directions: us�Ri�cos��Ri

s ��0, for all s
S,
i
M. Suppose that at least one molecule is controllable. To
avoid trivial settings we consider that controllability does not
hold if one laser is omitted. Also suppose that

	ab � 	a�b� for all �a,b� � �a�,b�� . �2�

�1� If at least one of the following hypotheses �3� or �4� is
true:

None of the connectivity graphs Gs = �V,Es�,

s = 1, . . . ,S is bipartite. �3�

Any two molecules are distinguishable,

i . e . , for any i � j 
 M there exists s 
 S such that

FIG. 1. Shaped laser pulse ��t��̂ �i.e., linearly polarized for il-
lustration with the superscript label s=1 implicitly understood; see
the text for a discussion of the generalized situation with up to two
additional polarized control fields s=2 and 3� control propagates
with a spatial profile u�R�=u�r ,� ,
� dependent on the location R,
with R= �r ,� ,
� being cylindrical coordinates, where �r ,�� denote
the radial r�0 and angular 0
�
2� variables in the plane per-
pendicular to the direction of propagation and 
 is the coordinate
along the axis of propagation. A molecule with internal coordinates
x at location R and orientation � between the dipole � and the pulse
polarization direction �̂ will experience a control of amplitude
u�R�cos��R�. Despite the spatial and orientational effects, the inter-
nal dynamics of all molecules �depicted here as diatomics for illus-
trative simplicity� in the volume can be fully controlled, if one
molecule is controllable anywhere.

FIG. 2. Example of a total bipartite graph G. The partition of
vertices into two classes �left and right� is such that no edges exist
between vertices of the same class. Different classes of edges �solid,
dotted, and dashed� correspond to the S=3 distinct polarized laser
pulses. All graphs G1, G2, and G3 are bipartite as well.
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0 � �us�Ri�cos��Ri

s �� � �us�Rj�cos��Rj

s �� � 0, �4�

then the full collection of molecules is controllable implying
that a laser pulse (�s�t�)s=1

S exists such that the ensemble
starting from � f�t0 ,x ;Rk�k=1

M =�0�x� and propagating under
the Schrödinger equation �1� reaches � f�tf ,x ;Rk�k=1

M =� f�x�
at some time tf.

�2� Let S=1. Consider that the hypothesis �4� is not veri-
fied and the connectivity graph G of the system is bipartite
V=V1�V2, E�V1�V2. In this case a laser pulse ��t� exists
such that the ensemble starting from � f�t0 ,x ;Rk�k=1

M =�0�x�
and propagating under the Schrödinger equation �1� reaches
� f�tf ,x ;Rk�k=1

M =� f�x� at some time tf, provided that we do
not require moving population between the bipartite compo-
nents

�
��V1



�0���
2 = �
��V1



� f���
2. �5�

Proof of the Theorem. Without loss of generality we may
assume that H0 and �s are traceless. We also denote by
diag�d1 , . . . ,dP� the matrix obtained by setting the square
matrices d1 , . . . ,dP on its diagonal �16�. This definition al-
lows for introducing H0=diag�H0 , . . . ,H0�, as an �MN�
� �MN� matrix constructed from M replicas of H0 and Bs

=diag�u1
s�s , . . . ,uM

s �s� for uk
s =us�Rk�cos��Rk

s �, 1
k
M. By
assembling the M Schrödinger equations �1�, the evolution of
the set of molecules can be written as a system with block
diagonal entries:

i�
�

�t
���t�� = �H0 − �

s=1

S

Bs�s�t�����t�� . �6�

Denote by L the Lie algebra generated by the matrices iH0
and iBs, s=1, . . . ,S. We index by ��� �of cardinality K� all
pairs �= �a ,b�, a�b, with ��=�a,b�

s �0 at least for some s

S. We also denote �†= �b ,a�. For each s
S we compute
adiH0

� iBs= [iH0 , . . . , �iH0 , iBs� , . . . ] with the iterative
commutators taken �=1, . . . ,2K times. We show as in
�16� that under the hypothesis �2� all ele-
ments �diag�u1

sS� , . . . ,uM
s S�� ,diag�u1

sY� , . . . ,uM
s Y�� ;��

s �0,s
=1, . . . ,S ,���	 are obtained. The commutators built from
these elements will also be computed. When either hypoth-
esis �3� or �4� is verified the algebra �k=1

M su�N� is obtained.
The connecting-path approach �16� needs to be modified by
the presence of differently polarized lasers. The existence of
such a path is a nontrivial consequence of the hypotheses �3�
and �4�, which generalizes the controllability condition in
�16� for S�1. We refer the reader to the Appendix for further
details.

Consider now S=1 �we drop all indices s� and the circum-
stance that, for some i� j
M, ui=−uj, and place all such j
at the end of the list: u1 , . . . ,uT, uT+1 , . . . ,uU, uU+1
=−u1 , . . . ,uM =−uT �U�T, U+T=M�. When the total graph
G is bipartite we obtain the following structure for the ma-

trices H0 and �: H0= �H0
1 0

0 H0
2 �, �= � 0 B

B* 0 �. Define

LU = �diag�X1, . . . ,XM	, Xp � su�N�, p 
 U;

XU+k = � Xk
1 − Xk

�

�Xk
��† Xk

2 � if Xk = � Xk
1 Xk

�

− �Xk
��† Xk

2 �
�7�

�here † represents transpose conjugation�. Note that iH0 and
iB belong to LU and that the set LU is an algebra, i.e., it is
closed to commutation. This result shows that L=LU. The
matrix corresponding to the �U+k�th system is thus com-
pletely determined by the matrix of the kth system. In par-
ticular, L is isomorphic to �k=1

U su�N�. Using a result from
�18� we conclude that, starting from � f�t0 ,x ;Rk�k=1

M =�0�x�,
one can reach any � f�tf ,x ;Rk�k=1

M = (eXk�0�x�)k=1
M at some

time tf, with X=diag�X1 , . . . ,XM	�LU.
Let � j

0 be the components of �0�x� over the set span�Vj�,
j=1,2, and similarly � j

f be the components of � f�x� over
span�Vj�, j=1,2. Under the compatibility condition �5�
�� j

0�2= �� j
f�2, j=1,2. Thus, for any k
T one can find anti-

Hermitian matrices Xk
1 and Xk

2 with �1
f =eXk

1
�1

0 and �2
f

=eXk
2
�2

0. It follows that � f =ediag�Xk
1,Xk

2	�0. Q.E.D.
The theorem implies that at least one laser pulse exists

which can simultaneously steer all molecules in the sample
to the desired final state from a common initial condition
�regardless of their spatial location and orientation�, with the
only caveat that finite pulse energy will ultimately limit the
extent of the sample volume where control can be achieved.
As the pulse amplitude is locally specified by an overall
multiplicative factor us�R�cos��R

s � that depends on the spatial
coordinates and local orientation of the molecules within the
sample, it follows that different quantum dynamical path-
ways will be taken by molecules at distinct spatial locations
and orientations before they all eventually reach the same
common target at the final time tf �i.e., molecules at distinct
locations and orientations will reach the same target state by
different mechanisms�. This analysis explains the success of
simulations reported earlier �11,16� and, most importantly,
provides the basis to understand how the molecules in a fi-
nite volume transcending different laboratory environments
�i.e., locations and molecular orientations� can all be swept
to the target by a suitable optimal pulse. If the theorem were
not true, then at best only a small subset of molecules could
be fully controlled within the sample. However, applying a
nonoptimized pulse will likely result in control of each mol-
ecule in the sample to a different degree, depending on its
location and orientation.

Remark 1. The proof of the theorem also implies that a
field �s�t�, s=1, . . . ,S, exists which will permit control over
any subset of molecules that have a specific combined spatial
location and orientation such that us�R�cos��R

s �, s=1, . . . ,S,
has a constant value As, s=1, . . . ,S. A collection of equiva-
lence classes of molecules is defined with each class having
a specific set of values of As. In contrast to the objective in
the theorem, in some circumstances the goal may shift to
controlling those molecules just belonging to one such class.
In the laboratory this outcome would call for a feedback
signal sensitive to spatial location and molecular orientation.

Remark 2. A further refinement of the model in Eq. �1� is
obtained from the effect of the field on the coordinate 
 along
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the direction of propagation, where up to two S=2 mutually
perpendicular polarizations propagate along 
. Consider two
molecules with coordinates r ,� ,� ,
 and r ,� ,� ,
�, with 
�
�
 �i.e., the two molecules differ only in their locations
along the direction of propagation�; the molecule at 
 will
see the field first while the other molecule will see the same
field but starting at a later time with a shift of �
�−
� /c,
where c is the speed of light. The theorem ensures that all
molecules will reach the target in the same time interval tf

after initiation of the interaction with the laser field. In abso-
lute terms, the time to reach the target is tf +
 /c for a mol-
ecule at location 
. Several comments are pertinent concern-
ing the role of 
.

�1� If the target is a stationary state of the internal Hamil-
tonian H0, then the effect of 
 is not an issue. In this case
once a molecule reaches a target state it will remain there
and “wait” for the other molecules to reach the same target
value. A practical example of this behavior is controlled mo-
lecular fragmentation, where the products fly off for detec-
tion.

�2� If the probe pulse propagates collinearly with the con-
trol pulse, then 
 has no role regardless of whether the target
is a stationary state or not, since the relative timing between
the control and probe pulses is the same for any 
 value.

�3� If the probe propagation direction is perpendicular to
the control pulse and if the target state is not stationary, then
there are two good operating conditions. �a� The relevant
controlled process occurs over a short longitudinal distance
such that there is essentially no 
 dependence in the dynam-
ics. In this circumstance the theorem still covers the trans-
verse spatial effects and the molecular orientation effects. �b�
The relevant controlled process occurs over an extensive lon-
gitudinal distance, and the probe can spatially resolve the
dynamics along the 
 direction. In this case the probe could
be tuned to take into account the local 
 dependence.

Under these various conditions the theorem still applies.
However, this general situation becomes more complex if a
third polarization field s=3 is involved. A number of sce-
narios can be envisioned in this case along the same lines as
discussed above.

The very positive result reported in the theorem has im-
portant consequences for the implementation of quantum
control in the laboratory. The theorem implies that the appli-
cation of adaptive control techniques �5� will automatically
seek out a single shaped optimal field �s�t�, s=1, . . . ,S for
each polarization, working to sweep all of the molecules
�quantum systems� to a common target regardless of �a� the
spatial beam profile perpendicular to the direction of propa-
gation, �b� the location of the molecules relative to the beam
focal plane, and �c� the orientation of the molecules. How-
ever, accompanying this collective control will generally also
be a distribution of control mechanisms existing over the full
sample. Molecules at distinct locations and orientations will
likely follow different quantum control pathways, yet all col-
lectively arrive at the same final desired state. In practice, the
availability of only a finite pulse energy will ultimately limit
the achieved control to lie in spatial regions and molecular
orientations where cos��s�us�R�, s=1, . . . ,S, is greater than
some small cutoff value uc.

Bandwidth and other constraints on the pulse can also

limit the attained control regardless of spatial or orientation
effects. Most importantly, the theorem implies that achieving
control under spatially diverse conditions and random mo-
lecular orientations is not a matter of striking a compromise,
but rather a task subject to optimization to reach the highest
possible level of performance for all the molecules in the
sample. This feature forms the foundation for attaining a
practical level of signal intensity for feedback in the control
experiments. Under the same conditions of the theorem in
this paper, it has recently been shown that the search for an
optimal control field will not encounter any false extrema
�10�. This latter result and the theorem in this paper provide
the primary basis to expect the success of future state prepa-
ration quantum control experiments, provided that suffi-
ciently flexible control sources are available.

H.R. acknowledges support from the Department of En-
ergy and G.T. acknowledges PICS CNRS-NSF and ANR
C-QUID grants and support from INRIA Rocquencourt.

APPENDIX: PROOF DETAILS OF THE EXISTENCE
OF A PATH

We proved that the Lie algebra generated by iH0 and iBs

contains all elements

�diag�u1
sS�, . . . ,uM

s S��,diag�u1
sY�, . . . ,uM

s Y��; ��
s � 0,

s = 1, . . . ,S, � � �	 . �A1�

Consider now a path i1 , . . . , iL in the graph G �the vertices are
not necessarily unique�. Since at least one individual system
is controllable, the graph G is connected �19�; thus, a path
exists between any two vertices. But the path may be formed
from different dipoles �s: �ijij+1

sj �0, j=1, . . . ,L−1.
By iterating the commutators of these matrices in Eq.

�A1� one obtains that diag�u1
s1 , . . . ,u1

sL−1S�i1,iL� , . . . ,uM
s1 , . . . ,

uM
sL−1S�i1,iL�� is in L too. We will show that the set of all such

vectors �u1
s1 , . . . ,u1

sL−1 , . . . ,uM
s1 , . . . ,uM

sL−1� is of rank at least M,
implying that all of the elements �S�i1,iL� ,0 , . . . ,0� , . . .,
�0, . . . ,S�i1,iL� ,0 , . . . ,0� , . . ., �0, . . . ,S�i1,iL�� belong to the Lie
algebra. Then we construct commutators of these elements
and conclude as in �16� that the algebra spanned by iH0 and
iBs is maximal.

It is necessary to prove that under the hypothesis �3� or
�4� for any I , I�

rank��u1
s1, . . . ,u1

sL−1, . . . ,uM
s1, . . . ,uM

sL−1�; �ijij+1

sj � 0,

L � 0, i1 = I, iL = I�	 � M . �A2�

Notice that for any i� j, 1
 i , j
M under �3� or �4� there
exists a s� �1, . . . ,S	 such that either �ui

s � � �uj
s� or a cycle of

odd length �i.e., involving an odd number of vertices� exists
in the graph Gs and ui

s�uj
s. In both situations a cycle of

length Pij exists in the graph Gs �thus in G too� such that
�ui

s�Pij � �uj
s�Pij. We now consider such cycles for each pair

�i , j�. The cycle for �i , j� can be repeated an arbitrary number
of times if necessary. We may link cycles by paths in the
connected graph G: thus, a larger cycle c1 , . . . ,cP=c1 may be
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constructed in the graph G, with edge cici+1 from the sub-
graph Gsi such that the coefficients k1=u1

s1 , . . . ,u1
sP−1 , . . . ,kM

=uM
s1 , . . . ,uM

sP−1 are all different. We also used the following:
if for some i , j either 0�bi�bj�0 or 0�ai�aj�0 then
aibi

f �ajbj
f except for possibly only one value f �N.

Now for any couple I , I� as in Eq. �A2� we can construct
a path i1= I , . . . , iR= I� from I to I� in G that passes through c1

at some intermediary step i�. We can insert the cycle
c1 , . . . ,cP=c1 an arbitrary number of times into this path.
Thus � �u1

s1 , . . . ,u1
sL−1 , . . . ,uM

s1 , . . . ,uM
sL−1�; �ijij+1

sj �0, L�0, i1

= I, iL= I�	 will contain �u1
s1 , . . . ,u1

s�−1k1
vu1

s� , . . . ,u1
sR−1 , . . . ,

uM
s1 , . . . ,uM

s�−1kM
v uM

s� , . . . ,uM
sR−1�= �k1

v �� = 1
R1 u1

s� , . . . ,kM
v ��=1

RM uM
s��

for any v�N. Since all km, m=1, . . . ,M are different, we
obtain Eq. �A2�.
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