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We present the theory for a technique, based on multistate variants of the stimulated Raman adiabatic
passage �STIRAP� process, that allows efficient and robust preparation of a preselected superposition of two or
three degenerate states �magnetic sublevels of an atom� and the measurement of their relative amplitudes and
phases. Because the preparation utilizes adiabatic passage it is robust against small fluctuations of the Rabi
frequencies and temporal shapes of the coupling fields. We here describe and, in the following companion
paper we demonstrate, an approach to the experimental characterization of the superposition state, i.e., the
measurement of the relative phases and the ratios of amplitudes of the components. That technique, termed
phase-to-population mapping, is applicable to the characterization of a stream of identically prepared atoms
and is based on laser-induced fluorescence after the atoms have undergone optical pumping cycles induced by
an additional laser. The optical pumping process maps the phase into populations of a subset of levels by means
of a filtering laser field, and is robust against variations in the intensity and detuning of that field. We describe
four linkage patterns appropriate to the creation of superpositions of two or three degenerate states of angular
momentum J=2, starting from J=0. We offer an interpretation, from three different perspectives, of the
subsequent characterization procedure.
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I. INTRODUCTION

Techniques for the preparation and experimental charac-
terization of coherent superpositions of discrete quantum
states are crucial to many applications of quantum physics.
When the states are nondegenerate, as is the case with mo-
lecular vibrational excitation �1� or Rydberg levels �2�, the
result is a spatial wave packet that moves within a bounded
region; the superposition is not stationary in time �3�. When
the superposition is degenerate it remains static, i.e., the am-
plitudes and phases of the constituents are time independent.
Such situations are of particular interest for quantum infor-
mation processing �4� or the preparation of Fock states in a
cavity �5�.

A portion of this interest in superpositions has centered on
trapped atoms �6� or ions �7�; each such atom is addressed
individually with carefully crafted pulses that create the de-
sired superposition. Often the techniques rely on variants of
� pulses, i.e., excitation in which the time-integrated Rabi
frequencies have precisely specified values �7,8�. It has been
shown that using such pulses allows one to create arbitrary
superpositions of nondegenerate states �9�, but the technique
described in �9� cannot be extended to degenerate states.

Techniques based on � pulses are of limited use for the
preparation of superpositions in atomic beams, because the
inevitable distribution of atom velocities produces a corre-

sponding distribution of pulse durations, as experienced by
the moving atoms, which leads to, e.g., a reduction of the
contrast in Ramsey-Bordé interferometers �10,11�. Instead,
beam studies typically rely on some form of adiabatic pas-
sage, because these are insensitive to details of the pulsed
excitation �12� and allow the creation of superpositions �13�
and the preparation of entangled states �14�. By using suit-
able couplings, and adiabatic passage, one can reach the full
Hilbert space spanned by the Zeeman states of a degenerate
level �15�.

It is important to be able to not only prepare a superposi-
tion, but to verify its construction. Equivalently, one must be
able to determine the properties �amplitudes and phases� of
an unknown superposition. Several techniques for the mea-
surement of the phase between degenerate states as well as
their relative amplitudes have been proposed �16,17�. These
techniques rely on the measurement of fluorescence after ex-
citation to energetically higher atomic levels with different
laser polarizations. Because the radiation characteristics of
the fluorescence depend sensitively on the polarization and
strength of the exciting laser these proposals are experimen-
tally difficult; they are not robust against fluctuations in the
laser parameters.

Our concern is with atoms in a collimated collisionless
atomic beam that passes through various cw laser beams. As
an atom enters and leaves a laser beam, it experiences a
time-dependent pulsed field. The response of the atom to this
sequence of time varying fields obeys the time-dependent
Schrödinger equation. For a given atom, there is a unique
one-to-one connection between spatial position and time, but
because atoms have a range of velocities, different atoms
experience different pulse durations. Thus for beam excita-
tion, it is desirable to develop techniques that do not require
precise adjustment of pulse durations.

An earlier paper described a technique for preparing and
characterizing such degenerate superpositions in an atomic
beam �18�. The present paper extends that technique to ad-
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ditional linkage patterns, and provides further details for the
measurements of the superposition amplitudes and phases.

The preparation technique is an extension of stimulated
Raman adiabatic passage �STIRAP� �19–21�, to multistate
systems. It allows the preparation of a superposition with
predefined relative phases and amplitude ratios within a set
of degenerate quantum states. Specifically, the superpositions
are of degenerate magnetic sublevels—often termed Zeeman
coherences—of quantum states having well-defined angular
momentum J. When the laser conditions ensure adiabatic
evolution, the resulting superposition is robust against small
fluctuations of the Rabi frequencies and temporal shape of
the coupling fields.

For the characterization, we here describe a procedure
that can fully determine the relative amplitudes and phases of
a degenerate superposition. The technique relies on optical
pumping of the superposition with a filtering laser, a process
that maps the phase onto populations. The full characteriza-
tion of the superposition is obtained by measuring, as a func-
tion of the polarization of the filtering field, the fluorescence
from steady-state population of some sublevels after optical
pumping.

The paper is organized as follows. First we introduce the
different linkage patterns for the creation of the coherent
superposition states. We identify related adiabatic dark states,
of which one is the desired state for the transfer of popula-
tion into the superposition. Thereafter, we introduce the con-
cept of phase-to-population mapping and discuss it from
three different perspectives.

In a companion paper �22�, we describe our experimental
setup and results, which we compare to the theoretical pre-
dictions of this publication. We thereby demonstrate that this
technique allows creation, and subsequent measurement of,
not only the relative amplitudes but also the relative phases
of the superposition components.

II. STIMULATED RAMAN ADIABATIC PASSAGE
WITH DEGENERACY

A. STIRAP linkage

The conventional STIRAP process �20,21� involves three
nondegenerate quantum states, having energies E1�E2 and
E3�E2. These undergo excitation by stimulated Raman tran-
sitions induced by two pulsed laser fields, P and S, having
carrier frequencies �P and �S, respectively. The carrier fre-
quencies may be detuned from the single-photon resonance
with the excited intermediate state 2, but they must together
maintain the two-photon resonance condition ��P− ��S
=E1−E3 between states 1 and 3. The P- and S-laser pulses
arrive sequentially, with S preceding �but overlapping with�
P. When the time evolution is adiabatic, then this pulse se-
quence transfers all population from state 1 to state 3, with
negligible population in state 2 at any time.

Here, we apply the STIRAP method to transfer population
from a single quantum state into a superposition of degener-
ate states. Specifically, we deal with magnetic sublevels of
metastable neon with total angular momentum J=0 �ini-
tially� and J=2 �finally�. Figure 1 shows the relevant part of
the level scheme of neon, together with the laser excitation

pathways. As shown in Fig. 1�a�, the initial state 3P0 is
coupled via the P field to three magnetic sublevels of the
excited level 3P1, whose lifetime is 18.28 ns �23�, i.e., two
orders of magnitude shorter than the pulses of �2.5 �s used
in the experiment. The pulse length is determined by the
transit time of the atoms through the laser beams. In turn, the
S field couples these to the degenerate magnetic sublevels of
3P2; within these the desired superposition is formed. Two
other fields, D and F, are required for the detection stage.
Figure 1�b� shows these. We take care that, within the region
between preparation by the S and P pulses and subsequent
action by the F laser, magnetic fields are sufficiently weak
that the magnetic sublevels of a given angular momentum J
remain very nearly degenerate; this means that the Larmor
precession angle for the atom flight between the P and F
laser must be much less than �.

B. Rotating wave approximation Hamiltonian

The state vector ��t� representing the system of interest
lies in a nine-dimensional Hilbert space, whose basis states
we denote as �k, k=1, . . . ,9. We take state 1 to be the initial
state, the nondegenerate level 3P0 of the 2p5 3s electronic
configuration. We take states 2, 3, and 4 to be degenerate
sublevels �E2=E3=E4� of the J=1 excited level 3P1 of the
2p5 3p configuration, and we take states 5 through 9 to be
degenerate states �E5= ¯ =E9� of the 3P2 level of 2p5 3s
electronic configuration. It is these latter states that will form
the constructed superposition. Figure 2 shows the numbering
scheme.

Except for the consequence of radiative decay it is the
linkage pattern that matters for the laser excitation dynamics,
not the relative ordering of the energies. To make these link-
ages clear, we place the initial state, state 1, uppermost in the
linkage diagrams shown in Fig. 2. This state has energy E1
�E2, as indicated on the left-hand side of Fig. 2.

We control the relative phases and the ratio of amplitudes
of the superposed magnetic sublevels of the 3P2 level by
means of a pair of elliptically polarized laser beams, S
�Stokes� and P �pump�, during a STIRAP-type adiabatic pro-

FIG. 1. Energy levels of 20Ne relevant to the experiment. Ar-
rows mark the laser-excitation linkages. �a� Linkages P �pump� and
S �Stokes� used during excitation. �b� Linkages F �filtering� and D
�detection� used during detection. Dashed lines mark relevant spon-
taneous emission transitions.
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cess. The P-laser field couples the initially populated J=0
state to �preselected� sublevels of the J=1 level. In turn, the
S field couples these to sublevels of the J=2 level.

As is customary, we adopt the rotating wave picture and
the rotating wave approximation �RWA� �24�, writing the
state vector as a superposition of the nine bare atomic basis
states. Expressing these in a rotating basis we write the con-
struction as

��t� = �
n

An�t��n�t� . �1�

The connection between the stationary states �n and the ro-
tating ones �n�t� is

�1�t� = �1,

�2,3,4�t� = e−i�Pt+i�P�2,3,4,

�5,. . .,9�t� = e−i�Rt+i�S−i�P�5,. . .,9. �2�

The intermediate states rotate with the P-laser frequency,
while the target states rotate with the Raman frequency

�R = �P − �S. �3�

The resulting time-dependent RWA Schrödinger equation
reads

d

dt
An�t� = − i�

m

Wn,m�t�Am�t� , �4�

where �W�t� is the RWA Hamiltonian matrix. Initially, at
time t=0, the state vector is taken to be a single state,

��0� = �1. �5�

After the conclusion of a STIRAP-like pulse sequence, at
time tf, the state vector is expressible as some combination
of states 5 through 9; we write this superposition as

��t� = �
n=5

9

�An�exp�i	n��n�t�, t 
 tf , �6�

thereby defining the relative phases 	n and the amplitudes
�An�. Because the states �n�t�, 5�n�9, are degenerate, they
evolve with the same time dependence, i.e., they undergo no
wave-packet dynamics. Our objective is to adjust the pulse
sequence and polarizations so as to produce a desired set of
complex-valued amplitudes �An �exp�i	n� at time t= tf.

We consider only cases of two-photon resonance �see Fig.
1�,

��S − ��P = E1 − E9, �7�

but we allow for a one-photon detuning �,

�� = E2 − E1 − ��P = E2 − E9 − ��S. �8�

Thus, the diagonal elements of the RWA Hamiltonian matrix
W�t� are

W11 = W55 = W66 = W77 = W88 = W99 = 0,

W22 = W33 = W44 = � . �9�

C. Polarization choices

Although the frequency choices dictate the connection
3P0↔ 3P1↔ 3P2, it is the polarization choices which dictate
the specific final states that will form the superposition. Here,
we discuss the beam geometry and polarizations that provide
the desired control.

The P and S fields have electric vectors expressible as
products of unit vectors êk, slowly varying envelopes Ek�t�,
and carriers at frequencies �k,

ES�t� = Re�êSES�t�e−i�St+i�S� , �10�

EP�t� = Re�êPEP�t�e−i�Pt+i�P� . �11�

We take the envelope functions to be real valued; the field
phases appear explicitly as �k. The P-field carrier is on or
near resonance with the transition between the metastable
state J=0, and the degenerate excited level with J=1, see
Fig. 1. The S-field carrier frequency is on or near resonance
with the transition between these excited sublevels and the
degenerate magnetic sublevels of the metastable level having
J=2.

We choose the quantization axis ẑ to lie along the propa-
gation direction of the S-laser beam, and express the S-laser
electric vector in a helicity basis involving two basis vectors
ê+ and ê−, corresponding to right- and left-circular polariza-
tion. These provide the angular-momentum selection rules
�J= ±1 for the linkages between quantum states. In general,
both polarization components may be present; it proves con-
venient to introduce independent amplitudes �with equal time
dependence� for the two polarizations, and to write the S
field as

êSES�t� = ê+ES1�t� + ê−ES2�t�e−i2
S, �12�

where 2
S is the phase difference between the two polariza-
tion components of the S field, i.e., the semimajor axis of the

FIG. 2. The linkage pattern and state labels for degenerate an-
gular momentum states considered in this work. Linkages are la-
beled S1 and S2 for the two helicity amplitudes of the S laser. The
labels P1 and P2 refer to the helicity amplitudes of the P laser
when it is collinear with the S laser, see Fig. 3. The label P3 denotes
a linkage available when P and S beams are perpendicular and the
P beam is linearly polarized in the ẑ direction, see Fig. 4. To the left
is an energy scale; light arrows point to the actual energies associ-
ated with the levels J=0, J=1, and J=2.
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S-laser polarization ellipse forms an angle 
S with the x di-
rection �see Fig. 3 or Fig. 4�.

The amplitudes of the superposition components are fixed
by the amplitudes of the two helicity components of each
beam. In turn, these are adjusted by means of quarter-wave
plates inserted into the beams. For example, the S beam is
created with linear polarization in the x direction and ampli-
tude ES. Upon passing through a quarter-wave plate whose
optical axis is oriented at an angle �1/4 to the x axis the
resulting two helicity amplitudes are

ES1 = ES�cos �1/4 + sin �1/4�/�2, �13�

ES2 = ES�cos �1/4 − sin �1/4�/�2. �14�

From the angular-momentum selection rules, it follows
that the component S1 couples the pairs of states �2,5�, �3,6�,
�4,7�, while component S2 couples the pairs �2,7�, �3,8�,
�4,9�. The nonzero off-diagonal elements Wij�t� of the RWA
Hamiltonian W�t� originating from this S field are, for i� j,

�Wij�t� = − dijES1�t�; 	i, j
 � ˆ	2,5
,	3,6
,	4,7
‰ ,

�Wij�t� = − dijES2�t�e−i2
S; 	i, j
 � ˆ	2,7
,	3,8
,	4,9
‰ ,

�15�

The remaining elements, i
 j, are complex conjugates of
these. Here, dij is the electric-dipole transition moment be-

tween states i and j. These incorporate dependence upon
magnetic quantum numbers through Clebsch-Gordon coeffi-
cients �24,25�.

We will discuss two possibilities for the polarization of
the P field. These relate to two choices for the propagation
direction for the P beam. When it is parallel to the S-laser
beam, see Fig. 3, as for three of the examples discussed
below, then the helicity basis is appropriate, and we write the
P field as

êPEP�t� = ê+EP1�t� + ê−EP2�t�e−i2
P. �16�

Here, as with the S field, the phase angle 
P expresses the
rotation of the P-field polarization ellipse from the vertical.
We adjust this by means of a half-wave plate inserted into
the P beam. This rotates the angle of polarization by twice its
rotation angle, 
S= 1

2��/2.
The helicity components P1 and P2 couple states �1,2�

and �1,4�, respectively. The nonzero off-diagonal matrix ele-
ments of the RWA Hamiltonian originating with the P field
are then

�W12�t� = − d12EP1�t� , �17�

�W14�t� = − d14EP2�t�e−i2
P, �18�

together with complex conjugates.
We orient the P-laser beam perpendicular to the S-beam

axis, see Fig. 4, in order to treat excitation that involves
�M =0 linkages. We adjust the P-laser polarization to be
linear and aligned parallel to the quantization axis, i.e., the
S-beam propagation axis. With this configuration there oc-
curs only a single polarization component, P3. It couples the
pair �1,3�. Then the only nonzero off-diagonal element from
the P field is

�W13�t� = − d13EP3�t� , �19�

together with its complex conjugate W31�t�.
We express all these RWA matrix elements Wij�t� in terms

of the Rabi frequency

� = − dijE/� , �20�

where E�t� is the electric field coupling the transition i↔ j.
Here, the time dependence originates entirely with the slowly
varying pulse envelopes Ek�t�. Their time variation is deter-
mined by the spatial profile of the laser beams, through the
relationship t=x /v for an atom whose longitudinal velocity
�perpendicular to the laser beams� is v. Simulation must ac-
count for variations in this velocity, as well as Doppler shifts
originating in transverse velocity components.

D. Adiabatic evolution

As with conventional STIRAP, the simplest description of
the proposed adiabatic evolution into a superposition state is
by means of adiabatic states. By definition, adiabatic states
are eigenvectors of the RWA Hamiltonian �in the rotating
basis�,

FIG. 3. Experimental setup for the realization of the different
coupling schemes. The quantization axis ẑ is chosen to be parallel
to the S-laser propagation axis. The P-laser beam is parallel to the S
beam; its polarization then must be expressed in a helicity basis,
thereby coupling transitions with �M = ±1.

FIG. 4. Experimental setup for the realization of the different
coupling schemes. The quantization axis ẑ is chosen to be parallel
to the S-laser propagation axis. The P-laser beam axis is perpen-
dicular to the S beam, and it is linearly polarized along the z axis; it
couples states for which �M =0.
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W�t��k�t� = �k�t��k�t� . �21�

We are particularly interested in null-eigenvalue adiabatic
states that have no component among states 2–4; these do
not undergo loss by spontaneous emission—they are “dark”
states �26,27�. These are generalizations of the single dark
state of the three-state Raman linkage used in STIRAP. They
have the form

�D�t� = A1�t��1 + exp�− i�Rt��
n=5

9

An�t��n. �22�

As is characteristic for STIRAP, one of the dark states can be
chosen such that, prior to the arrival of the S , P pulse se-
quence at t=0, the coefficient A1�t� has unit magnitude,
while after the pulse sequence it has negligible amplitude.
We call this state the transfer state.

The N dark states form an N-dimensional subspace of the
nine-dimensional Hilbert space. Within this subspace we can
choose a basis �n

D�t�, n=1,N for which the diabatic coupling

��̇k
D�t� ���

D�t�� to the transfer state vanishes, and thus there is
no mixing between the degenerate basis states �19�. If the
initial state vector ��t=0� is parallel to the transfer state, say
��t=0�
�1

D�0�, it will stay in this state during the adiabatic
evolution, i.e., ��t�
�1

D�t�. In this case the adiabatic evo-
lution is completely described by the time evolution of the
dark state �1

D�t�.

III. EXAMPLES

In the following, we present four specific linkage patterns
leading to superpositions of two or three states. A companion
paper �22� discusses experimental results for these linkages.

A. Extended diamond STIRAP

The most elaborate linkage pattern we consider occurs
when the S- and P-laser beams are collinear, and each is
elliptically polarized. Figure 5 shows the resulting linkages.

This linkage allows the construction of a three-state su-
perposition having arbitrary amplitudes and relative phases.
The RWA Hamiltonian for this system is

W = 1
2�

0 �P1 �P2e−i2
P 0 0 0

�P1 2� 0 b�S1 a�S2e−i2
S 0

�P2ei2
P 0 2� 0 a�S1 b�S2e−i2
S

0 b�S1 0 0 0 0

0 a�S2ei2
S a�S1 0 0 0

0 0 b�S2ei2
S 0 0 0

�
1

2

4

5

7

9

. �23�

The numerical factors a and b incorporate Clebsch-Gordan
coefficients for the different transitions �24,25�. We here omit
explicit indication of time dependence.

This RWA Hamiltonian has a degenerate two-dimensional
dark space. It proves convenient to define the two dark states
such that one of the dark states aligns initially with state 1,
while the other dark state has no contribution from this state.
We take the first dark state of this system to be

�1
D�t� = A1�1 + e−i�Rt�A5�5 + A7�7 + A9�9� , �24�

where, with normalization factor N1,

A1 = − ab�b2�S1
2 �S2

2 + a2��S1
4 + �S2

4 �� , �25�

A5 = a�S1�b2�P1�S2
2 + a2�S1

���P1�S1 − e−2i�
S−
P��P2�S2��/N1, �26�

A7 = a2b�e2i
P�P2�S1
3 + e2i
S�P1�S2

3 �/N1,

A9 = a�S2e2i�
S+
P��b2�P2�S1
2 − a2�S2

��e2i�
S−
P��P1�S1 − �P2�S2��/N1. �27�

This state incorporates all the coupling with state 1. The
other dark state is

�2
D�t� = e−i�Rt�A5��5 + A7��7 + A9��9� , �28�

A5� = ae−4i
S�S2
2 /N2, �29�

FIG. 5. The linkage pattern associated with circular polarization
of P and circular polarization of S; energies are as indicated in Fig.
2. States shown as light lines are either not affected by this radiation
or do not participate in the transfer process.
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A7� = − be−2i
S�S1�S2/N2, �30�

A9� = a�S1
2 /N2. �31�

Expressions for the two normalization factors N1 and N2 are
not needed here. The second dark state �2

D�t� is not involved
in the transfer process, because the diabatic coupling be-

tween the two dark states vanishes identically, ��̇1
D ��2

D�

0.

The adiabatic state �1
D�t� has the property that initially it

aligns with �1

�1
D�t� → �1 when ��S1

2 + �S2
2 � ��P1�, ��P2� , �32�

and that, upon completion of the pulse sequence, when
��S1 � , ��S2 � ���P1

2 +�P2
2 , it becomes a superposition of

states 5, 7, and 9. The final state, after the S, P pulse com-
bination, is the superposition

��t� = e−i�Rt�A5�5 + A7�7 + A9�9� . �33�

The real-valued coefficients Ai and the phases 
S and 
P do
not change for t
 tf. As can be seen from Eq. �28�, the two
relative phases and two amplitude ratios of the superposition
can be controlled independently using the ellipticity and di-
rection of polarization of the S and P field, which gives four
controllable parameters. Using the four parameters, the
whole Hilbert space spanned by states 5, 7, and 9 can be
reached �15�.

The populations Pi in the Zeeman levels at the end of the
STIRAP sequence can be written, for the simplifying case
�P1=�P2 and �S1=�S2, as

P5 = P9 =
a2 + b2

2a2 + b2 −
b2

2�a2 + b2 − a2 cos�2
S − 2
P��
,

P7 =
2a2b2 cos2�
S − 
P�

�2a2 + b2��a2 + b2 − a2 cos�2
S − 2
P��
. �34�

This population distribution shows an oscillatory dependence
on the relative phase between the P and S fields, which is a
manifestation of the interference between the two excitation
pathways 1→2→7 and 1→4→7, �see also �22��. Due to
the different magnitudes of the Clebsch-Gordan coefficients
for the pathways leading to state 7 its population is bounded
by 1/4, as can be seen by replacing a and b with the appro-
priate value, a=1/�3 and b=�2 �24,25�.

B. Extended tripod STIRAP

The three-state superposition of Eq. �28� occurs even
when the P field is circularly polarized. Figure 6 shows the
linkages for this choice of polarizations.

The RWA Hamiltonian is that of Eq. �23� but without the
elements that depend on �P2. This RWA Hamiltonian has
again a two-dimensional dark space; we take these as in the
previous section, Eqs. �24�–�31�, with �P2=
P=0.

With the completion of the adiabatic passage, t
 tf, the
state vector will have the construction

��t� = e−i�Rt�A5�5 + �A7�e2
S�7 + �A9�e4
S�9� . �35�

The phase 
S is the phase difference between the two Stokes
fields, while the three coefficients An express the relative
amplitudes of the two pulses. With the linkages of Fig. 6, it is
not possible to achieve independent control of the relative
phase between states 5 and 7 or between states 7 and 9.

C. Twin STIRAP

A simpler situation, producing only a two-state superpo-
sition, occurs when the S laser is circularly polarized while
the P laser is elliptically polarized. Figure 7 shows the re-
sulting linkage pattern, which we term “twin STIRAP.” Be-
cause there is only a single helicity component of the S field,
we set 
S=0.

Only five atomic states are involved, but we retain the
numbering of the more complete system shown in Fig. 2.
The RWA Hamiltonian matrix is obtained from that of Eq.
�23� by omitting elements involving �S1.

This RWA Hamiltonian has a single null-eigenvalue adia-
batic state. It is

�D�t� = A1�1 + e−i�Rt�A7�7 + A9�9� , �36�

where, with normalization factor N, the coefficients are

FIG. 6. The linkage pattern associated with circular polarization
of P and elliptical polarization of S; energies are as indicated in Fig.
2. States shown as light lines are either not affected by this radiation
or do not participate in the transfer process.

FIG. 7. The twin STIRAP linkage pattern associated with ellip-
tical polarization of P and circular polarization of S; energies are as
indicated in Fig. 2. States shown as light lines are not affected by
this radiation or do not participate in the transfer process. When the
evolution is adiabatic state 8 is not populated by spontaneous emis-
sion since states 2 and 4 remain unpopulated. Therefore, the cou-
pling between states 3 and 8 is irrelevant.
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A1 = − ab�S2/N , �37�

A7 = b�P1/N , �38�

A9 = a�P2e+i2
P/N . �39�

This state has the required property that, with the usual STI-
RAP sequence of S before P, it is initially aligned with the
initially populated state 1,

�D�t� → �1, when ��S2� � ��P1
2 + �P2

2 , �40�

and that towards the completion of the pulse sequence, when
��S2 � ���P1

2 +�P2
2 , it becomes the superposition of only

states 7 and 9. Thus, with the completion of the adiabatic
passage, the state vector will have the construction of a two-
state superposition

��t� = e−i�Rt�A7�7 + A9�9�, t 
 tf . �41�

The relative phase of the superposition is determined by the
relative phase of the P laser helicity components, while the
amplitudes �Ai� are determined solely by the ellipticity of the
P laser.

D. Tripod STIRAP

The transfer of population from state 1 to the states 6 and
8 requires one transition with �M =0 together with a transi-
tion with �M = ±1. To achieve such transitions it is neces-
sary that the two laser beams are not collinear. This linkage
is realized when we orient the P beam to be orthogonal to the
S beam, and the linear polarization lies in the ẑ direction
�i.e., along the S-beam propagation direction, see Fig. 4�.
Figure 8 shows the linkages produced by this choice of po-
larizations �19�. The rows refer to the coupling of the states
1, 3, 6, and 8 �from top to bottom�.

Only four states are now involved; we parametrize the
RWA Hamiltonian as

W = 1
2�

0 �P3 0 0

�P3 2� �S1 �S2e−i2
S

0 �S1 0 0

0 �S2e+i2
S 0 0
�

1

3

6

8

. �42�

This RWA Hamiltonian has a degenerate two-dimensional
dark space. We choose the first null-eigenvalue eigenvectors
�written in the nonrotating basis �n� to be

�1
D�t� = A1�1 + e−i�Rt�A6�6 + A8�8� , �43�

where, with normalization N1,

A1 = ��S1
2 + �S2

2 �/N1, �44�

A6 = − �P3�S1/N1, �45�

A8 = − �P3�S2ei2
S/N1. �46�

The second dark state, not needed, is

�2
D�t� = e−i�Rt�A6��6 + A8��8� , �47�

where, with normalization N2,

A6� = �S2e−i2
S/N2, �48�

A8� = − �S1/N2. �49�

The adiabatic state �1
D�t� has the property that it aligns

initially with �1,

�1
D�t� → �1 when ��S1 + �S2� � ��P3� , �50�

and that, upon completion of the pulse sequence, when
��S1+�S2 � � ��P�, it becomes a superposition of states 6 and
8. Thus, with the completion of the adiabatic passage, the
state vector will have the construction

��t� = e−i�Rt�A6�6 + �A8�e−i2
S�8�, t 
 tf , �51�

where the constant coefficients A6 and A8 are completely
determined by the polarization of the S field.

E. Preparation of superpositions using coherent
population trapping

The preceding sections discussed the possibility of prepar-
ing superpositions between multiple states using adiabatic
transfer, when the two-photon resonance condition is ful-
filled. If the laser fields are detuned from the two-photon
resonance, the dark states containing state �1 are no longer
eigenstates of the system, while the dark states without a
contribution from state �1 remain dark states. Thus, a mix-
ture of coherent superposition states within the 3P2 manifold
is populated by coherent population trapping �CPT� in the
following way: The population of state 1 will be excited to
the states 2–4, depending on the polarization of the P laser.
Part of that population decays to the states N=5–9, where it
will either be trapped in the dark states or it will be excited to
the states 2–4, from where it may decay back to states 5–9 or
to state 1, or to other states outside the level system shown in

FIG. 8. The linkage pattern associated with linear polarization
�z direction� of P and elliptical polarization of S energies are as
indicated in Fig. 2. States shown as light lines are either not affected
by this radiation or do not participate in the transfer process.
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Fig. 1. After a few cycles of absorbtion followed by sponta-
neous emission all population will be trapped in a dark state
of the system. A comparison of the dark states shown in the
former sections reveals that the phases as well as the ampli-
tudes of the prepared superposition in the CPT case differ
from the ones in the case of adiabatic transfer. This property
can be used for optical phase switching. This has been de-
tailed in �28�, and will not be discussed here further.

IV. PHASE-TO-POPULATION MAPPING

As explained in the preceding discussion, one can prepare
a variety of superpositions by suitably choosing the polariza-
tions of the two lasers, and then proceeding through a
STIRAP-like adiabatic passage that restrains the state vector
to remain aligned with a particular adiabatic state. The ques-
tion remains: how can one verify the successful production
of such a superposition, or how can one measure the ampli-
tude ratios and the relative phases for the components of an
unknown superposition.

Some populations can be measured quite easily by optical
pumping with different polarizations, thereby accessing dif-
ferent components of the population distribution. For ex-
ample, optical pumping of the transition J↔J with linearly
polarized light leaves all population in the state with M =0.
However, the phases are not accessible by such a straightfor-
ward measurement.

Procedures for measuring both amplitudes and phases, by
mapping superpositions onto populations of fluorescing ex-
cited states, have been described �16,17�. We here present
variants of the mapping concept appropriate to the experi-
ments described above and reported in �22�.

A. Filtering and detection lasers

We accomplish these measurements by using a combina-
tion of a third �filtering� laser F and fourth �detection� laser
D to probe the superposition, as shown in Fig. 9. Atoms pass
first through the S-P interaction region where the superposi-
tion is prepared, then through the F-laser beam. This region
needs to be free of magnetic fields to ensure degeneracy of

the Zeeman states. The region between the F- and D-laser
beams does not underly such restrictions.

Both of the F- and D-laser beams are aligned parallel to
that of the S laser—the quantization axis for the Zeeman
coherences. The polarization of the D laser is linear and
fixed, while that of the F laser is linear with an adjustable
angle � measured from the vertical direction �the x axis�.

Atoms enter the F-laser beam in a superposition state,
defined with respect to the quantization axis ẑ. The F laser
removes population from the superposition state in a manner
dependent on �. Subsequent probing of the remaining popu-
lation by the D laser essentially maps the phase and ampli-
tude distribution of the prepared superposition onto excited-
state populations. The strength of the resulting fluorescence
signal, as a function of �, provides the needed key to evalu-
ate the superposition amplitudes and phases.

Alternatively, the fluorescence resulting from the excita-
tion with the F laser can be measured directly �16,17�. This
is experimentally difficult to implement and analyze because
only the fluorescence emitted in a limited solid angle d� can
be measured using, e.g., a channeltron detector. As the emis-
sion characteristics depends on the polarization of the excit-
ing laser the fluorescence is not a direct measure for the
populations, but has to be weighted with the direction of the
exciting laser. Measuring the populations with an additional
D laser with a fixed polarization, as in our scheme, over-
comes this problem.

In the cases considered here, with linearly polarized F
laser aligned collinear with the S laser, it is only possible to
determine the phases between states with magnetic quantum
numbers differing by even-integer �M. This restriction can
be overcome by using an elliptically polarized F laser whose
direction of propagation forms an angle � with respect to the
S laser. It has been shown that this configuration allows the
measurement of the full density matrix �17�.

The combined action of the F and D lasers can be under-
stood in any one of three different pictures. We term these
the optical pumping picture, the dark state picture, and the
interferometer picture. The following sections present these
explanations.

B. Optical pumping picture

The preceding sections described the preparation of the
superposition state using a coordinate system in which the
quantization axis ẑ lies along the S-laser propagation direc-
tion. It proves convenient to regard the direction of the
F-laser linear polarization as quantization axis ẑ�. The con-
nection between the states of angular momentum J in the
original reference frame �unprimed� �J ,M� and �primed�
�J ,M��� is provided by the rotation matrix of order J �25�:

�J,M��� = �
M

DM�,M
�J� ��,�,���J,M� . �52�

The matrix elements D
M�,M
�J� �� ,� ,�� are parametrized using

the Euler angles � ,� ,� that connect the original and the new
reference frame �25�. In our experiment the first Euler angle
� is changed, while the second is kept fixed at �=� /2. The
third Euler angle does not influence the measurement; it only

FIG. 9. Geometric layout of the F- and D-laser beams. Atoms
pass first through the S-P interaction region, then through the
F-laser beam. This region needs to be essentially free of magnetic
fields to ensure degeneracy of the 3P2 manifold and thus avoid
Larmor cycling within the Zeeman states.
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adds an irrelevant phase and can thus be chosen as �=0.
In our experiments, the F laser connects the J=2 levels of

the superposition with an excited level having J=1. It is
linearly polarized along the rotated quantization axis, and
thus it acts only on those states whose magnetic quantum
numbers lie between +1 and −1, i.e., the states 6�, 7�, and 8�
of the rotated reference frame. Under the influence of the
filtering laser, the system undergoes optical pumping. The
populations originally found in states 6�, 7�, and 8� are,
through excitation and subsequent spontaneous emission, en-
tirely removed. They are redistributed, partly into states 5�
and 9� and partly into other states of the atom �3P0 and the
ground state 1S0 via cascade transitions, see Fig. 1�, which
are not probed. With the neglect of population added to the
states 5� and 9� through optical pumping, we can write their
population S���= �A5��

2+ �A9��
2 as

S��� = 2 �
M�M̃

�1 + �− 1�M+M̃�d2,M
J ��

2
�d

2,M̃

J ��

2
�CMCM̃

�cos���M̃ − M� + �	M − 	M̃��

+ 2�
M

�d2,M
J ��/2��2CM

2 . �53�

Here, the coefficients CM bear labels of the magnetic quan-
tum number prior to the rotation of the reference frame; in
this reference frame the superposition reads

��t� = e−i�Rt�
M

�CM�t��ei	M�J = 2,M� . �54�

The summed populations, Eq. �53�, exhibits a sinusoidal de-
pendence on �; from the phase of these oscillations one can
evaluate the superposition phase. From the amplitude of the
signal modulation, one can determine the magnitude of the
probability amplitudes. Figure 10 shows the principle of the
phase-to-population mapping, interpreted by means of opti-
cal pumping.

Following optical pumping induced by the F laser, the
atoms travel some 45 cm before reaching the D laser. In that
region the magnetic field needs to be sufficiently inhomoge-

neous and strong to induce Larmor precessions that distrib-
ute the remaining population equally among the sublevels
M�=5� . . .9� because of the finite width of the velocity dis-
tribution of the beam. Thus, the population in anyone of the
M� states is proportional to the population in the states M�
=5� and 9� after completion of the F-laser-induced optical
pumping.

After this Larmor mixing the atoms encounter the D laser.
This laser-induces transitions, to another J=2 level, whose
subsequent spontaneous emission is observed as a fluores-
cence signal proportional to the total population of all the
magnetic sublevels. This signal comprises two components:
One from the population which was in states 5� and 9� be-
fore the optical pumping, see Eq. �53�, and one from the
population which was added as a result of optical pumping
of the levels M�=6�, 7�, and 8� by the F laser and subse-
quent spontaneous emission, Pn�

op. The relative weights of
these two components vary with the polarization angle � and
with the phase angles 	M; we write the fluorescence signal,
proportional to the sum of these populations, as

F��,	M� = ��P5�
op + P9�

op + P5� + P9�� , �55�

where � is the detection probability. The populations P5�
+ P9� are given by Eq. �53�. The terms Pn�

op, which also de-
pend on � and the relative phases 	M, can be evaluated using
numerical simulations. These simulations show that these
populations can be neglected if one is only interested in the
phase of the superposition, but their knowledge is crucial for
the retrieval of the relative amplitudes.

In our experiments, we measure the D-laser-induced fluo-
rescence signal as a function of the angle �, set by the direc-
tion of the linear polarization of the F laser. We illustrate the
procedure with the example of a coherent superposition cre-
ated by twin STIRAP. When specialized to the linkage of
Fig. 7 the rotation of the coordinates, Eq. �52�, has the fol-
lowing consequences for the superposition given by Eq. �41�:

5

6

7

8

9
�

0

0

�A7�
0

�A9�ei2
P

�→
1

4�
�6�A7� + �A9�e2i��+
P�

2�A9�e2i��+
P�

− 2�A7� + �6A9e2i��+
P�

2�A9�e2i��+
P�

�6�A7� + �A9�e2i��+
P�
�

5�

6�

7�

8�

9�

. �56�

The F laser acts to optically pump all population from states
6�, 7�, and 8�. Thus, the fluorescence subsequently produced
by the D laser originates in states 5� and 9�; the signal is

F��,
P� = ��P5�
op + P9�

op + �A5��
2 + �A9��

2�

= ��P5�
op + P9�

op +
1

8
�6�A7�2 + �A9�2

+ 2�6�A7A9�cos�2� + 2
P��� . �57�

By monitoring this fluorescence signal as the polarization
angle � is varied, we are able to determine the unknown
phase 
P from the phase of the oscillatory term in Eq. �57�.

FIG. 10. Principle of the phase-to-population mapping scheme.
�a� The initial superposition, with � /2 given as a sample phase. �b�
The population distribution after the rotation of the coordinate sys-
tem. �c� The F laser acting on the rotated population. Dashed lines
show the effect of spontaneous emission. �d� The population after
interaction with the F laser. This population, including some from
spontaneous emission �dark overlay�, is detected by the D laser.
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C. Dark state picture

The concept of phase-to-population mapping may also be
viewed in the original coordinate system, wherein the quan-
tization axis relevant for the F-laser interaction remains
aligned with the S-laser propagation direction. In that refer-
ence frame the F-laser beam is parallel to the quantization
axis ẑ, and its polarization must be expressed in the helicity
representation

êFEF�t� = ê+EF1�t� + ê−EF2�t�e+i2�. �58�

Here, � is the angle between the x axis and the main axis of
the �in general elliptical� polarization of the F laser. Figure
11 shows the coupling scheme of the F laser in this coordi-
nate system.

Analysis of this coupling system reveals two orthogonal
dark states

�1
F�t� =

1

N1
�− �F2�6 + �F1e+i2��8� ,

�2
F�t� =

1

N2
�a�F2

2 e−i2��5 − b�F1�F2�7 + �F1
2 ei2��9� ,

�59�

where N1 and N2 are normalization factors and the factor a
and b incorporate the Clebsch-Gordan coefficients. These
dark states contain a phase that depends on the angle �, and
their relative amplitudes are given by the ellipticity of the F
laser.

Population which is in either of these two dark states will
be unaffected by the F-laser radiation. The remaining popu-
lation, residing in bright states, will be removed through op-
tical pumping by the F laser. As a result, the population
remaining within the 3P2 level is given by the projection of
the superposition state ��t� onto the two dark states, �1

F�t�
and �2

F�t�, i.e., by

P2 = ����t���1
F�t���2 + ����t���2

F�t���2. �60�

This fraction varies with the angle � and depends on the
relative phases 	n �see Eq. �1�� of the components of the
superposition state to be characterized. When � is changed
one observes the same variation of the signal S�� ,
S�, as
shown in Eq. �53�. This picture of the filter process is espe-
cially convenient if the polarization of the F laser is elliptical
rather than linear. In this case, our scheme allows not only
the measurement of the phases, but also the amplitudes of the
given superposition states, if the measurement is done for a

number of different ellipticities of the F laser �and thus dif-
ferent ratios �F1

/�F2
�.

D. Interferometer picture

An interferometric concept is at the heart of any measure-
ment of a phase. Here, we present a qualitative discussion
that identifies the various paths which can be viewed as com-
bining to an interferometer for the measurement procedures
described in this paper. For the purpose of this discussion,
we consider the tripod scheme of Fig. 8.

Figure 12 presents the essentials of the interferometer as-
sociated with the amplitude and phase measurements of the
two-state superposition associated with this linkage. The fig-
ure represents, schematically, a timeline of the effects of the
pulse sequence that affects a moving atom or, alternatively, a
spatial distribution of events associated with the constant-
velocity atom. The horizontal lines of this figure represent
magnetic sublevels, labeled M =−2, . . . , +2.

As the atoms enter the apparatus �moving left to right in
the figure� they are initially in the 3P0 level �see the topmost
labels�. The atoms encounter a STIRAP-like pulse sequence,
indicated as S and P pulses along the bottom of the figure,
and thereby undergo adiabatic transition into two of the five
possible magnetic sublevels of the 3P2 level, as indicate
along the top of the figure. With the tripod linkage, the two
magnetic sublevels have magnetic quantum numbers M

= ±1, in a reference frame aligned with the propagation k̂S of
the S laser; the other sublevels are unpopulated.

The result of the S , P pulse sequence is a coherent super-
position of two states, differing in phase by 2
S, as indicated
by the encircled label on one of the two alternative excitation
paths. The phase angle 
S is controlled by the direction of the
linear polarization of the S laser relative to the P laser, see

FIG. 11. The couplings of the F laser viewed in the reference
system aligned with the S-laser axis.

FIG. 12. Schematic representation of the interferometer inter-
pretation of the phase measurement scheme, shown for the example
of population transfer by the tripod linkage scheme. Horizontal
lines represent Zeeman sublevels; arrows along the top show spec-
troscopic notation for the energy levels that are populated. The bot-
tom timeline shows the location of the cw laser beams S, P, F, and
D. The moving atoms experience these as pulses. Vertical grey
bands mark the several interaction regions. In the region between S,
P, and F pulses we change the quantization axis; labels change
from M to M�. Thick lines connecting M =0 at the left to M�=2 at
the right show one of two interferometer paths; the other path leads
to M�=−2.
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Fig. 3. This step is the beam-splitter portion of the interfer-
ometer. When the S laser is linearly polarized the amplitudes
of the two states are equal.

The atoms move out of the S , P interaction region and
subsequently encounter the F laser, and later the D laser.
Vertical grey bands on the figure mark the locations of inter-
actions with the lasers. The F laser beam is parallel to the S
and P beams, and has linear polarization oriented at an angle
� relative to the linear polarization of the P laser. Therefore,
we consider the action of this laser in a rotated reference
frame. Prior to the encounter of the atoms with the F laser,
we replace the original quantization axis �along k̂S� with an
alternative axis rotated by � in a plane perpendicular to k̂S

and then by �=90° relative to k̂S. This rotation aligns the
new quantization axis along the direction of linear polariza-
tion of the F laser. The reorientation, defined by the Euler
angles � and �, is not a physical change in the apparatus; it
is merely a change of the coordinate system. Thus, the re-
sulting effect can be placed anywhere between the S, P, and
F laser interactions. For phase measurement the angle � is
varied linearly with time, thereby generating an output that
varies sinusoidally with time.

The use of the coordinate system has two consequences.
First, it introduces a phase M� to sublevel M, as indicated by
encircled labels. Second, it redistributes population among
all sublevels: population initially regarded as being in the
sublevel having M = +1, for example, must be regarded as a
coherent superposition of all sublevels, M�=−2, . . . , +2 in
the rotated coordinate system. Specifically, the population
amplitudes of the states in the rotated frame are given by the
rotation matrix elements D�2��� ,� ,�� with �=0, see Sec.
IV B.

Having expressed the population distribution by alter-
ations along the timeline, we next discuss the action of the F
laser upon these populations. This laser-induces transitions to
an excited level and thereby removes all population from
sublevels having M�=−1,0 , +1. The removal is by optical
pumping, so some of this population is redistributed, with
random phases, into M�= ±2. However, most of it is lost
through spontaneous emission into other levels. The net ef-
fect is to leave only population in levels M�= +2 and M�
=2.

It is at this point that we identify the interferometric as-
pects of the measurement procedure. As indicated by heavy
lines in the figure, there are two coherently phased paths that
lead from the initial state, M =0, to the final state, M�= +2.
Another pair of paths leads to the final state M�=−2. Each of
these interferometric paths is independent; the output signal
is the sum of the two individual interferometer signals.

During their flight between the S , P interactions and the F
pulse, the atoms move through a region in which stray mag-
netic fields have been made insignificant by applying
feedback-controlled compensation fields; thus, there is no
field-induced change of the sublevel composition. However,
between the F- and D-laser beams there is no such field
compensation, and the prevailing magnetic fields there are
sufficient to induce Zeeman precession that effectively
scrambles the populations and phases.

The atoms then move into the D-laser beam. The resulting
excitation produces a fluorescence signal proportional to the

total population, i.e., to the sum of the populations left in
M�= ±2 by the F laser.

The output of the interferometer �i.e., the population in
M�= +2 or M�=−2� depends on the initial phase 
S intro-
duced by the S , P lasers, on the adjustable phase �, and on
the fixed angle �=� /2. By varying � we alter the interfer-
ometer output from constructive to destructive interference.
As is typical of an interferometer, the output signal exhibits a
sinusoidal dependence upon �. Therefore, the simultaneous
detection of the population M�= +2 and M�=−2 by the D
laser exhibits the sinusoidal variation with �, offset by the
phase 
S, which can thus be retrieved.

Interferometers have, in addition to two interfering paths,
two output ports. The population of the M�= ±2 sublevels
leads, upon detection via the D-laser field, to one output
port. The other port corresponds to the population of the
M�=−1,0 , +1 sublevels. This is blocked, in the present ex-
periment, by the F-laser optical pumping. Were it not
blocked, the D-field detector would have input from both
ports of the interferometer, and no modulation would be ob-
servable.

V. SUMMARY

We have presented a method that allows the preparation
of a superposition of degenerate Zeeman sublevels compris-
ing two or three components, each with a well-defined phase.
In particular, the extended diamond STIRAP coupling
scheme allows the preparation of an arbitrary but well-
defined superposition state of three magnetic sublevels. This
coupling scheme also exhibits quantum interference between
two pathways. For the preparation of arbitrary two state su-
perpositions we presented twin STIRAP and tripod STIRAP,
each addressing different subsets of Zeeman states.

The preparation procedure using adiabatic transfer allows
a high degree of flexibility in the choice of amplitudes and
phases, and is thus suitable for the manipulation and obser-
vation of quantum states where phase control is crucial. Due
to its adiabatic nature the preparation is robust against small-
to-moderate fluctuations in the Rabi frequencies of the cou-
pling laser fields, allowing its application in experiments
where the interaction time is not well defined �as in beam
experiments�, or the coupling strength of the used transitions
is not well known.

We have also presented a scheme for the measurement of
the relative phase between the components as well as the
ratio of amplitudes. The detection technique described here
can be used, quite generally, to measure the superposition
phase in a stream of identical systems prepared by any tech-
nique.
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