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We investigate the influence of the Coulombic nature of the binding potential on high-order harmonic
generation in Hj molecules. We show that two-center interference effects are predicted accurately using
approximated two-center Coulomb wave functions for the electron continuum state in the recombination
amplitude that determines the probability for harmonic emission upon recollision.
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I. INTRODUCTION

Physical phenomena in molecules are sensitive to the mo-
lecular structure and composition. In particular, the presence
of two or more atomic sites leads to fundamental quantum
mechanical interference effects. For example, in the electron
emission from H, molecules by ion impact, it has been pos-
sible to observe a phenomenon that can be regarded as a
Young’s two-slit experiment on the atomic scale [1]. For
such processes, there is a persisting effort to model the initial
(bound) and final (continuum) channels. In many cases, the
ground state of a molecule is well approximated using a
linear combination of atomic orbitals (LCAO). On the other
hand, the continuum electron in the presence of the molecu-
lar centers is difficult to model, because the exact solution of
the Schrodinger equation for three or more bodies with Cou-
lomb interaction is unknown. Nevertheless a number of ap-
proximated models have been capable of reproducing the
available experimental data reasonably well. As an example,
for electron impact ionization of H3 and H, there are several
approaches that take into account the multicenter nature of
the initial and final molecular wave functions [2—4].

Within the area of intense laser-molecule interactions, in-
terference patterns appear in several processes such as high-
order harmonic generation (HHG) and above-threshold ion-
ization (ATI), including both direct and rescattering ATI
[5-14]. Due to the two-center interference in diatomic mol-
ecules, HHG exhibits a strong dependence on the molecular
orientation so that the suppression or enhancement of certain
harmonic-frequency ranges is possible [5,6,12—14].

In the semiclassical recollision model [15,16], high har-
monics are generated by a three-step sequence of ionization,
acceleration of the continuum electron by the laser field, and
recombination with the core. The third step, i.e., the recolli-
sion of the laser-driven electron, provides the link between
the two research areas of strong-field physics and collisions
with external particle beams. In particular, it is expected that
the molecular interference effects observed under these quite
different experimental situations are closely related to each
other.
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A widely used semianalytical approach to describe HHG
is the strong field approximation (SFA) or Lewenstein model
[17], which is applicable to atoms and molecules. It can be
regarded as the quantum mechanical version of the semiclas-
sical recollision model. The Lewenstein model has the ad-
vantage of requiring less computational effort than the ab
initio solution of the time-dependent Schrodinger equation
(TDSE), which becomes very demanding at high laser inten-
sities. Another advantage of the model is that it yields a
physical interpretation of the underlying mechanisms and a
certain degree of analytical description.

As the SFA model was previously used successfully to
model HHG in atomic systems [17], we consider the same
model for molecules. More specifically, we use it to study the
two-center interference. Namely, we compare the SFA pre-
diction of the interference-minimum position to the exact
value (obtained from the ab initio calculations). We observe
that using the two-center continuum wave functions, instead
of a plane wave to describe the continuum electron, greatly
improves the comparison. The usage of the continuum wave
functions can be considered as an attempt to take into ac-
count Coulomb effects on the returning electron.

In [18,19] the authors propose the use of the Coulomb-
eikonal Volkov states (i.e., states that at the end of the pulse
become the exact free-field states, and are propagated back-
wards in time using the Volkov propagator, corrected for the
effect of the binding potential). The agreement with ab initio
calculations improves when compared to the standard SFA,
where the electron is considered to be unaffected by the
binding potential during its propagation in the continuum
(i.e., it is described by a superposition of plane waves).

In HHG with molecules, the two-center interference is
mostly determined by the recollision step. The simple plane-
wave (PW) approximation, where the recolliding wave
packet is modeled as a superposition of Volkov states, is used
in most implementations of the Lewenstein model.

In the present work we investigate the influence of the
Coulombic binding potential on HHG in H3, namely we fo-
cus on the orientation dependence of the high harmonics and
interference effects. We investigate different models for the
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Coulomb continuum state based on the Coulomb-Volkov
states [20] and its incorporation into the recombination am-
plitude of the Lewenstein model. For atoms, the influence of
the Coulomb potential on HHG has been studied by several
authors using various approaches: in [21] the effects of the
Coulomb potential are incorporated in the three steps of the
Lewenstein model, i.e., ionization, propagation of the un-
bound electron, and recombination (by taking into account
the Stark shift of the ground state and adding the contribu-
tion of the Coulomb potential to the semiclassical action,
defined in the next section); meanwhile, in [22] a Coulomb-
Volkov approach has been used (the present work uses the
same approach, but we focus here on the recombination pro-
cess, and we apply the method specifically to Hy molecules).

The paper is organized as follows. In Sec. II we briefly
describe the Lewenstein model for molecules and various
approximations for the electron continuum state in the pres-
ence of the binding potential. In Sec. III, we show the result-
ing orientation dependence of the high harmonics and a com-
parison with the usual PW treatment. Finally, Sec. IV
contains our conclusions and future perspectives. Atomic
units are used throughout the paper.

II. THEORY
A. The strong-field approximation

We start from the dipole approximation and the length-
gauge Hamiltonian for an H; molecule with fixed nuclei,
irradiated by a laser pulse with electric field E(¢) linearly
polarized along the x axis,

2

H=—%+V(r,R)+E(t)x, (1)

where V is the Coulomb interaction with the two protons and
R is the internuclear distance, here taken as a parameter. Its
orientation with respect to the laser polarization direction is
arbitrary. The molecule is in the (x,y) plane and the laser
propagates along the z axis.

We are interested in modeling high-order harmonic spec-
tra from the interaction of an Hj molecule with an intense
and short laser pulse. Following the strong-field approxima-
tion formulated in Refs. [17,23], the time-dependent dipole
moment is given by

D(r) =- iJl dr' f d*pd,, (p + A(1).R)dion(p + A(').R.1")
0
X exp[-iS(p,t’,t)] + c.c., (2)

with S=[ ;,dt”{[p+A(t”)]2/ 2+1,} being the semiclassical ac-
tion and /, the ionization potential of the electronic ground
state. Here, A(t)=—/" _E(#')dt'. The spectrum of the emitted
light polarized along a certain direction e is obtained by
modulus squaring the Fourier transform of the dipole accel-

eration component along that direction,
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TP .
e-a(Q))= f dre - D(t)exp(iQe), (3)
0

where the integration is carried out over the duration of the
laser pulse, 7,,. Due to the anisotropy of the molecular sys-
tem, in contrast to atoms, the emitted radiation can be polar-
ized along other directions than the laser polarization axis.
Here we consider only the harmonic radiation polarized
along the direction of the laser electric field, X.

In Eq. (2), d;,, represents the ionization amplitude

dion(k, R, 1) = (¢(K) [E(0)x| ¢ (R)). (4)

It has the simple interpretation of the electron transition
amplitude from the ground state to a PW [(k)) with mo-
mentum k.

For the recombination step, we have

d,..(k,R) = (¢(K)| - r|t4y(R)), (5)

describing an electron in a PW state recombining with the
molecular core.

In order to calculate the dipole moment, we adopt for the
molecular ground state the LCAO approximation, i.e., the
ground-state wave function is taken to be

1
#o(r,R) = \/m[(//h(rl) + (ra)], (6)
with ¢;,(r) being the ground state of the hydrogen atom and
r;=r+R/2 and r,=r-R/2. Furthermore, s(R)=exp(-R)(3
+3R+R?)/3 is the overlap integral between the two atomic
orbitals. By using Eq. (6) in Eq. (5), the recombination am-
plitude reads

Aok, R) =~ i) — [ B'<k'R)~k
rec( ’ )__l 1+S(R) _2 sin 2 lv[/h( )

. cos<@)—f"7’h(")} , )
2 Jk

where J/h(k) is the Fourier transform of the hydrogen

ground-state wave function, Jh(k)=(7r\f'5)‘1(k2/ 2+1/2)2
The ionization amplitude has a similar form. In comparison
to the atomic case, the transition amplitude (7) depends on
the internuclear distance and the molecular orientation, giv-
ing rise to two-center interference effects in the harmonic
spectrum [5].

In practice, the SFA model provides more accurate results
when the momentum expectation value (which we refer to
hereafter as the velocity form) is used to calculate the dipole
acceleration [24]. According to the Ehrenfest theorem, if the
exact wave function is used, this would give the same result
for the harmonic spectrum as when using the length form
[see Eq. (7)]. Because in the SFA model the wave function is
only calculated approximately, different results are obtained
from both procedures. The recombination amplitude in the
dipole-velocity form reads

[ 2 _
Vieo(k,R) = - k 1+S(R)cos(kR/2)¢/h(k). (8)
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The recombination matrix element determines the inter-
ference pattern in the harmonic generation spectrum, while
the ionization matrix element mainly dictates the amplitude
of the harmonic intensity. In [14] the position of the interfer-
ence minimum in the harmonic spectrum obtained from the
time-dependent Schrodinger equation (TDSE) has been com-
pared with the predictions from the length form and the ve-
locity form of the SFA recombination amplitude. While the
length form overestimates by far the position of the mini-
mum, the velocity form gives a somewhat better prediction.

While both the ionization and the recombination steps are
amenable to Coulomb corrections [21,22], the purpose of
this paper is to investigate whether the use of Coulomb-
corrected two-center continuum wave functions in the re-
combination matrix element could help improve the predic-
tive power of the SFA model for diatomic molecules. In the
context of single-photon ionization (the inverse process of
electron recombination), it was shown [25] that the use of
two-center continuum wave functions instead of plane waves
greatly improves the agreement with the ab initio ionization
spectra. Concerning the ionization step in the HHG process,
we expect that the influence of Coulomb corrections on the
two-center interference is negligible. This is because in the
length-gauge approach used in this work, the electrons re-
sponsible for HHG are “born” in the continuum with almost
zero kinetic energy. Ionization of H} by ultrashort laser
pulses based on Coulomb-Volkov solutions has recently been
addressed by other authors (see [26], and references therein).

B. Two-center continuum wave functions

We will incorporate the Coulomb nature of the molecular
centers in the description of the recombination step, Eq. (5).
For this purpose we follow the studies carried out in single
ionization of molecules by electron impact where a similar
scenario takes place for the ejected electron as a consequence
of the presence of the Coulombic residual nuclei [2—4].

Instead of using a plane wave |¢/(k)) in (5), we propose
a two-center continuum (TCC) wave function for the elec-
tron moving in the combined field of the two protons,

d (k. R) = (3 (k. R)| - r[fy(R)), )
where
ikr
JTC(k, 1, R) = (;TWC(k,rl)C(k,rz) (10)
with
C(k,r) = N(v),F\[iv,1,ikr -k - 1)], (11)

and r;=r+R/2 and r,=r—-R/2. Here, N(v)=exp(mv/
2)I'(1—iv) is the usual Coulomb normalization factor and
v=1/k defines the Sommerfeld parameter. Each of these
wave functions corresponds to the well-known solution of
the two-body Coulomb continuum problem with outgoing
boundary conditions. Equation (10) is inspired from the
Pluvinage approach for heliumlike systems, with one of the
nuclei of Hj replacing the second electron in the equation of
He (see [2], and references therein). Within the framework of
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electron-molecule collisions, wave functions of the type de-
fined by Eq. (10) have been used to model the ionized elec-
tron in the presence of two Coulombic centers. The results
obtained with such a scheme are in better agreement with the
experimental data than other simpler ones where the electron
is simply considered as a plane wave [3,27]. Furthermore,
the wave function (10) possesses the correct Coulomb
asymptotic conditions for one electron in a field of two nu-
clei,

lim [y “(k,r,R)]

|kr—Kk-r|—o0
=2m P explik-r-2ivin(kr—k-r)]. (12)

Using Fourier transform techniques together with the usual
Nordsieck’s method [28,29] it is possible to obtain suitable
expressions for the integrals involved in Eq. (9) (see the
Appendix).

On the other hand, we are interested in finding an analyti-
cal formula replacing Eq. (9). To this end, we approximate
the Coulomb continuum wave functions C(k,r;) and
C(k,r,) by their zeroth order around each nuclei [25] in the
integral of Eq. (9), ie., C(k,r;)=C(k,R) and C(k,r,)
=~ C(k,-R), respectively. We call this model two-center ap-
proximate continuum wave functions (TCA). With this ap-
proximation an analytical expression for the recombination
amplitude reads

N'(v)

d" Ak R) = - ———
V2[1+5(R)]

rec

{exp(ik -R/2)C"(k,—R)

R
X ELO(I,k,v,k)—Ko(l,k,v,k)}

+exp(- ik - R/2)C"(k,R)

R
X | = SLo(Lk.v.k) ~ Ko(Lk, V,k)”,

(13)

where L, and K, are defined in the Appendix.

More sophisticated wave functions to deal with an elec-
tron in a field of two nuclei have been presented recently in
the study of single ionization of molecules by electron im-
pact. The modified two-center continuum wave model
(MTCC) [30] will be investigated in this work. This model
emerges from the solution of the Schrodinger equation for
one electron in the field of two fixed Coulombic centers, and
the resulting wave functions satisfy the boundary conditions
up to order O[(kr)~%], with k being the momentum of the
electron.

In the next section we calculate the interference patterns,
comparing the predictions made by the various approxima-
tions.

III. RESULTS AND DISCUSSION

For the study of the orientation dependence we follow
Ref. [6] in order to compare directly with the numerical
model developed there. As discussed above, the recombina-
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FIG. 1. Orientation dependence of the harmonic intensity and
phase for the 43rd harmonic of a 780 nm laser field. Dashed line:
PW velocity form (E,=(), see text). Dotted line: PW velocity form
(with the SFA relation between electron energy and harmonic fre-
quency). Solid line: TCA length form.

tion amplitude is responsible for the interference patterns in
molecules. We study the orientation dependence of the har-
monics using the SFA relation Q=k%/ 2+1, with [, being the
ionization potential and () the frequency of the emitted har-
monic. We begin our analysis by studying the PW approxi-
mation in the velocity form. From Eq. (8), the modulus
squared of the matrix element is proportional to
cos’(k-R/2). Consequently, destructive interference appears
when k-R=(2n+1)7, or, in terms of the projected internu-
clear distance R,=R cos 6 and the electron wavelength \
=2/ k,

R.=C2n+ N2, n=0,1,.... (14)

On the other hand, constructive interference occurs when
R.=n\, n=0,1,.... (15)

Note that only from the PW-velocity form, such simple in-
terference conditions emerge.

In Fig. 1 we plot the intensity and phase of the 43rd
harmonic of a 780 nm laser field versus the orientation angle
0. The prediction of the minimum using the TCA formulation
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FIG. 2. Orientation dependence of the harmonic intensity for the
43rd harmonic (see Fig. 1), using the recombination matrix element
in length form. Solid line: TCA approach. Dashed line: eikonal limit
of the TCA approach.

in the length form (as well as in the velocity form, not shown
here) is very close to the numerical results of [6,14]. It is
worth noting that the PW approach using an electron energy
E,=Q gives surprisingly very good predictions [6], but when
the SFA relation is used, i.e., Ek=Q—1p, the results are very
poor, in contrast to the very good agreement of the TCA
model. Similar conclusions can be drawn for H, from [31].
Compared to the velocity form, the interference term is more
complicated in the length form [see Eq. (7)] and the agree-
ment is less impressive, see the results below.

For the non-PW approaches, nonanalytical formulas result
and it is necessary to study the interference minima and
maxima numerically. However, if we proceed using the
asymptotic limit, i.e., taking |kR—k-R| — 0, in the approxi-
mated Coulomb continuum wave functions C(k,R) and
C(k,-R) (this limit is known in collision physics as the ei-
konal limit), we can obtain an analytical formula for the in-
terference patterns.

To explore the TCA behavior in the eikonal limit we do a
similar analysis as in [23] to isolate the interference behav-
ior. Consequently we rewrite (13) as

At (k,R) = rI explik - R/2 + ivIn(kR + k - R)]
+r A exp[— ik - R/2 +ivIn(kR -k - R)].
(16)

From this length form of the recombination amplitude [see
Eq. (16)], it is still not possible to obtain a simple analytical
form of the interference term. However, in the velocity form,
the interference term appearing in the modulus squared
|vrTe(é§ 2, is proportional to COS2(k'R+V1n§§i:§ll§). For v=0,
i.e., for the high-velocity electrons, one recovers the PW
form of the interference factor in the velocity formulation,
see Eq. (8). The interference minima appear thus when
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FIG. 3. (Color online) Projected internuclear separation for in-
terference minima vs electron wavelength. Dashed line: plane wave
in the velocity form. (M) Plane wave in the length form, (4) TCA
model in the length formulation, (A) 2D model from Lein et al. [6]
for I=1x 10" W/cm?, (@) exact from Kamta et al. [14].

kR+k-R
k-R+vinl ————|=Q2n+1)m, n=0,1,...,
kR-k-R
(17)
or in terms of R, and A,
1 +cos 6
R+ (\2m)*In ———=Q2n+1)N2, n=0,1,... .
1 —cos @
(18)

The logarithmic shift in the above formula depends on the
molecular structure only through the geometrical factor
cos O=k-R/kR, not through the value of kR. Similar results
were obtained for molecular photoionization [25].

Figure 2 shows the behavior of the eikonal limit and its
comparison with the TCA formulation in the length gauge.
The eikonal limit predicts exactly the same value of the ori-
entation angle minimum. Only a slight difference in the am-
plitude appears. Furthermore, the phases predicted by this
model are identical to those that emerge from the TCA for-
mulation and for this reason we omit the phase plot.

In Fig. 3 we plot the projected internuclear separation
versus electron wavelength using various approximations
and we compare them with numerical calculations made in
[6,14]. We can observe that in the small- to intermediate-
wavelength region, 1 a.u.<\<4 a.u. (corresponding to high-
energy electrons), the TCA model gives very good predic-
tions. On the other hand, when the electron wavelength
increases, the TCA model is not able to reproduce adequately
the predictions of the numerical calculations. An explanation
of this lies in the fact that the low-energy electrons are sen-
sitive to the quality of the two-center continuum wave func-
tions, and the TCA model is not accurate in the so-called
condensation region, i.e., when all the particles are close. In
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FIG. 4. (Color online) Same as Fig. 3 but using other two-center
Coulomb models. Dashed line: plane wave in the velocity form. (@)
TCC in the length form, (l) MTCC model in the length form, with
73=0.25 and z,=0 (see text), (A) 2D model from Lein et al. [6] for
I=1x10" W/cm?, (#) exact from Kamta er al. [14].

these cases more elaborate wave functions or numerical
wave functions are needed.

To complete our analysis we calculate the internuclear
separation versus electron wavelength using the TCC and
more sophisticated models (MTCC) (Fig. 4). Here we ob-
serve that the more sophisticated two-center models allow us
to predict interference minima in a larger range of wave-
lengths. The MTCC shows the best global performance,
since it reaches the region of low electron energy and the
results are comparable with fully numerical models, but with
less computer requirements. The parameters z; and z, (see
Fig. 4) are free variational parameters [30], and we choose
their values such as to obtain overall good agreement with
the exact position of the interference minima. For a complete
prediction of the molecular interference features, including
the full range of the ionized electron energy, a better descrip-
tion of the electron in the continuum of the two atomic cen-
ters is needed, e.g., using functions that result from the nu-
merical solution of the Schrédinger equation.

IV. CONCLUSIONS

We have investigated how the incorporation of the Cou-
lomb binding potential of the atomic centers modifies the
prediction of two-center interference in HHG with H3 mol-
ecules. Using instead of plane waves various types of Cou-
lomb corrections for the electron continuum state, we have
demonstrated that the prediction of two-center interference is
improved, in particular in the region of small electron wave-
lengths. In previous work [6], a simple formula for the inter-
ference minimum had been derived from the plane-wave ap-
proximation, but good agreement with the exact interference
minimum was obtained only when using a heuristic relation
between electron momentum and harmonic frequency. Here,
we have derived an interference formula in a systematic way
from an approximated Coulomb correction (velocity-form
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TCA) in the eikonal limit. Unfortunately, this approach gives
only modest improvement with respect to the PW approach.
On the other hand, one of the more involved Coulomb cor-
rections is very close to the exact results in the entire inves-
tigated energy range, but is not amenable to deriving a sim-
plified analytical formula. Future work will address the
calculation of harmonic spectra using the SFA with Coulomb
corrections.
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APPENDIX

The integrals involved in the calculation of Eq. (9) can be
of two types: a scalar one

[=e*kR2 f &rie® e F [~ iv,1,—i(kry =k - 11)]

X lFl[_ iV,l,— i(krz—k'rz)] (Al)

and a vectorial one

J = ¢*kR2 f drie ey F\[=iv, 1,—i(kr =k -1})]

X Fi[-iv,1,—i(kry—k -ry)]. (A2)
We begin by defining the function
[(ry)=e 2 F|[-iv,1,—i(kry—Kk - 1;)]
= W f A TV(7)e' ™2, (A3)
with
1 .
W(7)= Py f d’r,[(ry)e ™2, (A4)

where we include a parameter e— 0 to avoid numerical in-
stabilities. Using Eq. (A4) in Egs. (A1) and (A2), one obtains
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+ik-R/2
_ 3 —iTR
I= om " f &>V (7)e
X j drie TR Fil-iv,—ilkr; -k -1))]
(A5)
and
+ik-R/2
3 —irR
J= IRE f &’V (7)e'"

X J d3rl€i(f_k)-rl€_arlrl lFl[_ iV, 1,— i(krl -k- rl)],

(A6)

using that r,=r;—R.
Now using the definitions

LO(a’q’a’p)
1 )
= ?(61/2)3/2 f dre7 e \F\[-ia,1,—i(pr—p-r)]
(A7)
and
KO(a’ q,a, p)
1 )
= ?(41/2)3/2 f &Pre7 ey \F\[-ia,1,—i(pr—p-1)],
(A8)
it is possible to write (A5) and (A6) as
1= (m/a’) ek R2 f &V (n)e ™ RLy(a,k - 7,v,K)
(A9)
and
J = (7/a’) Pet*R2 J EV(De ™ RK (a, k-7, v,k).

(A10)

The remaining three-dimensional integral in the 7 variable
can be evaluated numerically using quadratures. The inte-
grals (A7), (A8), and W(7) are usual in collision physics and
can be calculated analytically using the Norsdieck method as
described in [29].
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