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A relativistic wave equation for bound states of two fermions with arbitrary masses, which are exposed to a
magnetic field, is derived from quantum electrodynamics. The interaction kernels are based upon the general-

ized invariant M̃-matrices for interfermion and fermion-field interactions. As an application we calculate the
energy corrections in a weak homogeneous B field to obtain the Zeeman splitting of the hyperfine structure and
g factors in the lowest order �i.e., to O��4��. Landé g factors are presented for several of the first excited states
of hydrogen, muonium, and muonic hydrogen.
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I. INTRODUCTION

The relativistic treatment of energy levels of two-fermion
atomic systems �including atomic hydrogen, hydrogenlike
ions, helium-3 ion, muonium, and muonic hydrogen�, as well
as their fine structure �FS� and hyperfine structure �HFS� in
an external uniform magnetic field �Zeeman effect�, is an
important problem. The theoretical knowledge of energy
spectra and transition frequencies provides a test of two-
body bound-state QED �1�. One can then obtain information
about the character of the coupling in the system, the gyro-
magnetic ratios of the bound particles, the magnetic mo-
ments �2�, the mass ratio �2–5�, and fundamental physical
constants such as the Rydberg constant R�, and the fine
structure constant � �6�. The Zeeman effect in the HFS can
be used as a diagnostic tool for solar photospheric magnetic
fields �7�, fusion research and plasma physics, where the
magnetic field is applied to control the shape and position of
the plasma �8�.

In the lowest-order approximation the linearly dependent
part of the energy splitting for a two-fermion system placed
in a weak static magnetic field B can be written as �1,9–11�

�EF,mJ,j1,�,s1,I
ext = ��B1g1 + �B2g2�BmF, �1�

where F, mJ, j1, �, s1, I are quantum numbers, which char-
acterize the system: s1 and I are the spins of the first and
second particle, respectively, � and j1 represent the orbital
and total angular momentum quantum numbers of the first
particle. The total angular momentum of the system is de-
noted by the quantum number F= j1+ I, j1+ I−1, . . . , �j1− I�.
The projection of the total angular momentum on the B di-
rection is mF=−F ,−F+1, . . .F−1,F. The “Bohr magnetons”
for the two particles are defined as �B1=Q1� /2m1c, and
�B2=−Q2� /2m2c, where Q1,Q2�0�. Usually, in our nota-
tion m1 and m2 correspond to the light and heavy particle,
respectively. Assuming that the energy-level splitting �1� is
much smaller then the HFS splitting, �Eext��EHFS, the
Landé �g-� factors g1 and g2 take the form �9–11�

g1 = gj1

F�F + 1� + j1�j1 + 1� − I�I + 1�
2F�F + 1�

, �2�

where

gj1
= 1 + �gs1

− 1�
j1�j1 + 1� + s1�s1 + 1� − � �� + 1�

2j1�j1 + 1�
, �3�

and

g2 = gs2

F�F + 1� − j1�j1 + 1� + I�I + 1�
2F�F + 1�

. �4�

Here gs1
and gs2

are the intrinsic spin magnetic moments of
the constituent particles. According to the Dirac theory a free
particle at rest has gs=2. In QED gs is corrected by the
anomaly, which to lowest order is given by the Schwinger
correction. For bound particles the intrinsic moment can be
expressed as

gs1,2
= 2 + �gs1,2

REL + �gs12

QED, �5�

where the terms �gREL, �gQED represent the relativistic
�9,12,13�, and QED corrections, respectively �cf. the review
�14��. There is also an additional higher-order contribution to
Eq. �1�, �g1,2

HFS�B1,2BmF, which is caused by the hyperfine
structure �15�.

The g factors �2� and �4� are not symmetrical, because
they were obtained under the assumption that the orbital mo-
tion of the heavy particle can be neglected. In hydrogen the
nucleus contributes a fraction of m1 / �m1+m2��5	10−4 to
the orbital angular momentum, while for muonic hydrogen
this fraction is �0.1. The relativistic and QED corrections in
Eq. �5� can be comparable with the orbital angular momen-
tum effects of the heavy particle. Recent high-precision mea-
surements of the g factor in hydrogenlike systems have
reached an accuracy of about 5	10−9 �16,17�. Thus, it is
desirable to obtain a more general result for the g factor in
order to overcome the shortcomings of Eqs. �2� and �4�. It
will be shown that this is particularly important for excited
states.

In this work we present an analysis of the HFS of a two-
fermion system in an external magnetic field based upon a
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reformulation of QED and the variational Hamiltonian for-
malism developed earlier �18–20�. A relativistic two-fermion
wave equation for arbitrary fermion masses is, thus, derived
from first principles. A solution of this equation permits, in
principle, to obtain all QED energy corrections to any order
of the coupling constant �18�. In the present paper we extend
the method to derive the integral wave equation in momen-
tum space for the case where a uniform weak magnetic field
is present. We calculate the Zeeman splitting of the HFS
energy levels to O��4� for all quantum states and unrestricted
values for the fermion masses. We obtain a different result
for the g factor, Eqs. �38�–�41�, and demonstrate that it co-
incides with Eqs. �2� and �4� in the case of m2
m1, as long
as the intrinsic moment of m1 is restricted to the Dirac value
gs=2.

The modification of the wave equations due to the exter-
nal magnetic field is presented in Sec. II. In Sec. III we
provide the classification of the quantum states, and a partial-
wave decomposition of the momentum-space equations. Sec-
tion IV contains expressions for the Zeeman energy splittings
of the HFS levels, and the g-factor results. Numerical values
for the Landé factors are compared with data from Eqs. �2�
and �4� for various excited states of hydrogen, muonium, and
muonic hydrogen. In most expressions we use natural units
�=c=1.

II. BOUND-STATE VARIATIONAL WAVE EQUATION

For two-fermion systems without external fields wave
equations were derived in Refs. �18,19� on the basis of a
modified QED Lagrangian �21,22�. With this Lagrangian a
simple Fock-space trial state

��trial� = �
s1s2

	 d3p1d3p2Fs1s2
�p1,p2�bp1s1

† Dp2s2

† �0� , �6�

sufficed to obtain HFS levels correct to fourth order in the
fine-structure constant. Here bq1s1

† and Dq2s2

† are creation op-

erators for a free fermion of mass m1 and an �anti-�fermion
of mass m2, respectively, and �0� is the trial vacuum state
such that bq1s1

�0�=Dq2s2
�0�=0.

As discussed in Sec. III below, the four adjustable func-
tions Fs1s2

must be chosen so that the trial state �6� is an
eigenstate of the relativistic total angular momentum opera-
tor, its projection, and parity �as well as charge conjugation
for the case m1=m2 such as positronium�.

A variational principle is invoked to obtain a momentum-
space wave equation for the amplitudes �18�

0 = �
s1s2

	 d3p1d3p2��p1
+ 
p2

− E�Fs1s2
�p1,p2��Fs1s2

* �p1,p2�

−
m1m2

�2��3 �
�1�2s1s2

	 d3p1d3p2d3q1d3q2


�p1
�q1


p2

q2

F�1�2
�q1,q2�

	�− i�M̃s1s2�1�2
�p1,p2,q1 . q2��Fs1s2

* �p1,p2� , �7�

where �p1

2 =p1
2+m1

2 and 
p1

2 =p1
2+m2

2. The interaction is gov-
erned by the generalized invariant M matrix

M̃s1s2�1�2
�p1 ,p2 ,q1 ,q2�. It has the form

Ms1s2�1�2

�1� �p1,p2,q1,q2� � Ms1s2�1�2

ope �p1,p2,q1,q2�

+ Ms1s2�1�2

ext �p1,p2,q1,q2� ,

�8�

where Ms1s2�1�2

ope �p1 ,p2 ,q1 ,q2� is the usual invariant matrix
element, corresponding to the one-photon exchange Feyn-
man diagram �19,20�.

The element Ms1s2�1�2

ext represents the interaction with a
given external classical field A�

ext,

Ms1s2�1�2

ext �p1,p2,q1,q2� = i�2��3/2�


p2


q2

m2
A�

ext�p1 − q1�ū�p1,s1��− iQ1���u�q1,�1��s2�2
�3�p2 − q2�

+

�p1

�q1

m1
A�

ext�q2 − p2�V̄�p2,�2��− iQ2���V�q2,s2��s1�1
�3�p1 − q1� 
 . �9�

The ansatz �6� cannot accommodate processes that in-
clude the emission or absorption of real, physical �as op-
posed to virtual� photons. Such radiative processes could be
included by generalizing the trial state. Here we limit our-
selves to the form �6�, i.e., the effects of radiative decay or
absorption of radiation are ignored in the present work.

In order to obtain the Landé factors we evaluate the
Ms1s2�1�2

ext matrix �9� in a stationary uniform magnetic field
B=Bẑ. The vector potential can be chosen as

A1
ext�x� = −

1

2
yB, A2

ext�x� =
1

2
xB, A0

ext�x� = A3
ext�x� = 0.

�10�

The inverse Fourier transform of the nonzero components
yields
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A1
ext�k� =

�2��3/2iB

2
��kx�

d��ky�
dky

��kz� , �11�

A2
ext�k� = −

�2��3/2iB

2

d��kx�
dkx

��ky���kz� .

Using the semirelativistic expansion

ū�p1,s1�� ju�q1,�1�

=
1

2m1c
�s1

† �i���1 	 �p1 − q1�� + q1 + p1� j��1
, �12�

where j=1,2, �1
†= �1 0�, �2

†= �0 1�, and ��p1
�q1

�1/2�m1,
and a similar expansion for antiparticle spinors we obtain

Ms1s2�1�2

ext �p1,p2,q1,q2� =
�2��3/2

2c �
Q1

m1
Aj

ext�p1 − q1��s1

† �i���1 	 �p1 − q1�� + q1 + p1� j��1
�s2�2

�3�p2 − q2�

+
Q2

m2
Aj

ext�q2 − p2���2

† �i���2 	 �p2 − q2�� + q2 + p2� j�s2
�s1�1

�3�p1 − q1� 
 , �13�

where �1
†= �0 1�, �2

†=−�1 0�, and j=1,2. It is straightforward to show that

�q1� jAj
ext�p1 − q1� = −

�2��3/2B

2
L̂1z�q1��3�p1 − q1� , �14�

and

Aj
ext�p1 − q1��s1

† �i���1 	 �p1 − q1�� + q1 + p1� j��1
= − �2��3/2B��s1

† �1z��1
+ �s1�1

L̂1z�q1���3�p1 − q1� , �15�

where L̂1z�q1� is the z component of the angular momentum operator of the particle with mass m1,

L̂1z�q1� = − i�q1x
�

�q1y
− q1y

�

�q1x
� . �16�

Taking �s1
to be the eigenstates of the spin operator Ŝ1z= 1

2 �̂1z, and using a similar procedure for the second particle, we obtain

Ms1s2�1�2

ext �p1,p2,q1,q2� = −
�2��3B

2c �
Q1

m1
�2�s1

† Ŝ1z��1
+ �s1�1

L̂1z�q1���s2�2
�3�p1 − q1��3�p2 − q2�

−
Q2

m2
�2��2

† Ŝ2z�s2
+ ��2s2

L̂2z�q2���s1�1
�3�p2 − q2��3�p1 − q1� 
 , �17�

or

Ms1s2�1�2

ext �p1,p2,q1,q2� = − �2��3B� �B1�2m̃�1
+ L̂1z�q1��

− �B2�2m̃�2
+ L̂2z�q2��

��s2�2
�s1�1

�3�p1 − q1��3�p2 − q2� , �18�

where the spin projection quantum numbers m̃� can take the
values ±1/2. The quantities �B1 and �B2 are the “Bohr mag-
netons” defined in the previous section. As expected, a unit
of spin interacts with a magnetic field twice as strongly as a
unit of orbital angular momentum.

By going to the next order in the expansion of the invari-
ant M matrix one can obtain self-energy corrections, which
lead to divergent loop integrals that have to be cured by
charge renormalization. The vertex term modifies the Dirac
value of the magnetic moment by a factor �1+k�, where k is
the anomaly �Schwinger correction�. This factor can be in-
cluded in our calculation by a replacement 2m̃�1

and 2m̃�2
in

Eq. �18� by gs1
m̃�1

and gs2
m̃�2

respectively, where gs1,2
/2

=1+k1,2. The anomaly is the lowest-order QED correction to
the g factor �gs12

QED=2k1,2 in Eq. �5�.

III. PARTIAL-WAVE DECOMPOSITION AND RADIAL
WAVE EQUATIONS

The present work is an extension of Ref. �18�, in which
the partial-wave decomposition of the wave equation has
been provided. The external magnetic field is treated as a
first-order perturbation, which implies that the quantum la-
bels for the eigenstates do not change. The restrictions on the
magnetic field strength to justify a perturbative treatment of
Eq. �18� are

B � min��4mrc
2

�B1
,
�4mrc

2

�B2
� , �19�

where �=Q1Q2 /4�, and mr=m1m2 / �m1+m2� is the reduced
mass. A more explicit restriction on B will be presented in
Sec. IV.
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As outlined in Ref. �18� the trial state �6� is taken to be an

eigenstate of total linear momentum P̂, total angular momen-

tum squared Ĵ2, its projection Ĵ3, and parity P̂. It is natural to
work in the rest frame, where the total linear momentum
vanishes. In this frame the adjustable functions take the form
Fs1s2

�p1 ,p2�=��p1+p2�Fs1s2
�p1�, where Fs1s2

�p1� �using
p1�p� can be written as

Fs1s2
�p� = �

�s1s2

�
ms1s2

fs1s2

�s1s2
ms1s2�p�Y

�s1s2

ms1s2�p̂� , �20�

and Y
�s1s2

ms1s2�p̂� are the usual spherical harmonics. Here and

henceforth we will use the notation p= �p�, etc., while four
vectors will be written as p�. The orbital indices �s1s2

and
ms1s2

and the radial functions fs1s2

�s1s2
ms1s2�p� depend on the spin

variables s1 and s2. In the rest frame, the operators L̂1z�q� and

L̂2z�q� can be expressed in terms of the orbital angular mo-

mentum operator, L̂z�q�, of the relative motion,

L̂1z�q� =
m2

m1 + m2
L̂z�q�, L̂2z�− q� =

m1

m1 + m2
L̂z�q� .

�21�

The substitution of the partial-wave expansion �20� into
the rest-frame form of ansatz �6� leads to two categories of
relations among the adjustable functions Fs1s2

�p�.
�i� The spin-mixed (quasisinglet and quasitriplet) states.

In this case we have �s1s2
� � =J, and the general solution

under the condition of well-defined P̂, Ĵ2, Ĵ3, and P̂ can be
expressed with the help of Dirac � matrices as �18�

Fs1s2
�p� = ūps1

�ms1s2

J�sg��p̂�V−ps2
fJ

�sg��p�

+ ūps1
�ms1s2

J�tr� �p̂�V−ps2
fJ

�tr��p� . �22�

Here fJ
�sg��p� and fJ

�tr��p� are radial functions to be deter-
mined. They represent the contributions of spin-singlet and
spin-triplet states, i.e., the total spin is not conserved in gen-
eral.

�ii� The �-mixed triplet states. These states occur for
�s1s2

� � =J�1. Their radial decomposition can be written as

Fs1s2
�p� = ūps1

�ms1s2

J−1 �p̂�V−ps2
fJ−1�p�

+ ūps1
�ms1s2

J+1 �p̂�V−ps2
fJ+1�p� . �23�

The system in these states is characterized by J, mJ, and P
= �−1�J, and � is not a good quantum number. The two radial
functions fJ−1�p� and fJ+1�p� correspond to the cases
�=J−1 and �=J+1. Mixing of this type occurs only for
principal quantum number n�3.

From the variational method we obtain a system of
coupled radial equations expressed in matrix form as

��p + 
p − E�F�p� =
m1m2

�2��3 	 q2dq

�p�q
p
q

K�p,q�F�q� ,

�24�

where �p
2 =p2+m1

2 and 
p
2 =p2+m2

2, and q= �q� as already
mentioned. Here F�p� and K�p ,q� are matrices composed of
radial functions and kernels, respectively. The kernel matrix
K=Kope+Kext is made up of one-photon-exchange and
external-field parts. Explicit expressions for Kope can be
found in Ref. �18�, while the external-field contributions are
calculated in this work.

For the spin-mixed states the two-component Fock-space
amplitude is given as

F�p� = � fJ
�sg��p�

fJ
�tr��p�

� . �25�

The equations imply a mixing of spin and radial variables,
and the radial equations are usually coupled. We apply a
unitary transformation with rotation angle � to the spin part
of function �22� to diagonalize the kernel matrix. The diago-
nalization can be carried out for arbitrary p and q �cf. Eq.
�A7� in the Appendix�, and defines a new quasispin basis,

�s1,s2, � , s̃,J,mJ� = C1�s1,s2, � ,S = 0,J,mJ�

+ C2�s1,s2, � ,S = 1,J,mJ� , �26�

where �=J ,S is the total spin of the system, and s̃=0 for
quasisinglet and s̃=1 for quasitriplet states. The coefficients
used to express the new basis states in terms of the previ-
ously defined singlet and triplet states are found to be C1
=
�1+�� /2, C2=−
�1−�� /2, for the quasi-singlet states,
and C1=
�1−�� /2, C2=
�1+�� /2 for the quasitriplet states.
Here the rotation angle � has been replaced for convenience
according to tan 2�=
1−�2 /�.

The quasisinglet and quasitriplet states are both character-
ized by the same quantum numbers J, mJ, and P= �−1�J+1,
and they mix the states given in the LS coupling representa-
tion. The states are labeled for convenience not by the qua-
sispin z projection t3= �1/2, but rather by s̃= t3+1/2, which
takes on the values of 0 ,1. In the Appendix the kernels for
spin-mixed states are given explicitly in order to solve for
the angle �, i.e., to determine the � values.

In the limit m2
m1 the total angular momenta of the first
and the second particles are j1=�1±1/2, j2=s2=1/2, where
�1=�. In this case j1 can be used as a good quantum number,
and the role of the indices s̃s , s̃t are played by j1=�1+1/2
and j1=�1−1/2, respectively. In this case the coefficients C1
and C2 reduce to C-G coefficients,

C1,2 = �− 1�1/2+1/2+�1+j1
�2S + 1��2j1 + 1��1/2 1/2 S

�1 �1 j1
� .

�27�
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Note that the one-body limit corresponds to the j1j2 coupling
representation, which cannot be used in the general case of
arbitrary masses since j1 and j2 are not independent �they are
related through the common angular momentum ��. For pos-
itronium the quasistates become true singlet �C2=0� and trip-

let �C1=0� states with different charge conjugation quantum
numbers.

We now proceed to calculate the kernels Kmn
ext�p ,q� asso-

ciated with the classical external field A�
ext. Using Eq. �9� for

Ms1s2�1�2

ext taken in the rest frame, we obtain

Kmn
ext�p,q� = −

��/2�3/2

N�m1m2�2 	 d3p̂d3q̂ 	 Tr� Q1


q
qA�

ext�p − q����q� + m1������q� + m1��n�q̂����q̃� − m2���m�p̂�

− Q2

�p�pA�

ext�q − p����q� + m1��n�q̂����q̃� − m2������q̃� − m2���m�p̂�
� ,

�28�

where N-normalization factor, q= ��p ,q�, and q̃= �
q ,−q�. The � matrices correspond to the various JP states. The evaluation
of these kernels would allow one to obtain all relativistic corrections to the g factor �5�; however, this is a formidable task. To
determine the lowest-order effect it is sufficient to use the nonrelativistic limit �q2 /m2�1�. In this case the kernels �28� take
the form

Kmn
ext�p,q� = −

��/2�3/2

N
	 d3p̂d3q̂ 	 Tr� Q1A�

ext�p − q���0 + I�����0 + I��n�q̂���0 − I���m�p̂�
− Q2A�

ext�q − p���0 + I��n�q̂���0 − I�����0 − I���m�p̂�
� . �29�

These are evaluated for a stationary uniform magnetic field �10�. The results are given separately for the following two types
of states.

�i� The spin-mixed states ��=J ,J�1,P= �−1�J+1�. In contrast to K�ope��p ,q� the kernel matrix K�ext��p ,q� is not diagonal in
the basis of the quasisinglet �sgq� and quasitriplet �trq� states, and can be written as

K11
�ext��p,q� = −

�2��3

2c � Q1

m1
��1 −

1 − �

2J�J + 1�� m2

m1 + m2
+

gs1

2
� 1 − �

2J�J + 1�
− 2

�m1 − m2�
m1 + m2

���
−

Q2

m2
��1 −

1 − �

2J�J + 1�� m1

m1 + m2
+

gs2

2
� 1 − �

2J�J + 1�
− 2

�m1 − m2�
m1 + m2

��� 
BmJ, �30�

K22
�ext��p,q� = −

�2��3

2c � Q1

2m1c
��1 −

1 + �

2J�J + 1�� m2

m1 + m2
+

gs1

2
� 1 + �

2J�J + 1�
+ 2

�m1 − m2�
m1 + m2

���
−

Q2

2m2c
��1 −

1 + �

2J�J + 1�� m1

m1 + m2
+

gs2

2
� 1 + �

2J�J + 1�
+ 2

�m1 − m2�
m1 + m2

��� 
BmJ, �31�

K12
�ext��p,q� = K21

�ext��p,q� = −
�2��3

2c �
Q1

m1
� �


J�J + 1�

gs1

2
+ 2�m1 − m2

m1 + m2
�2

�2�1 −
gs1

2
��

−
Q2

m2
� �


J�J + 1�

gs2

2
+ 2�m1 − m2

m1 + m2
�2

�2�1 −
gs2

2
�� 
BmJ. �32�

Thus, it couples the system �24�.
�ii� The pure triplet and �-mixed states ��=J�1, J

�1, P= �−1�J�. The system �24� cannot be decoupled
for these states, and the matrix K�ope��p ,q� is not diagonal
�19�. The magnetic part of the kernel is, however,
diagonal,

K�ext��p,q� = −
�2��3

2c
�Q1

m1
−

Q2

m2
��1 0

0 1
�BmJ. �33�

All kernels K�ext� vanish in the case of equal masses and
opposite charges �Q1=Q2�, as occurs in the positronium case,
where magnetic effects appear only in O�B2� �23�.
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IV. HFS TO O„�4
… ORDER IN A MAGNETIC FIELD

To obtain results for energy levels to O��4� we solve the
radial equations �24� perturbatively using hydrogenlike ra-
dial functions �nonrelativistic Schrödinger form fn,J,mJ

Sch �p�� in
momentum space �9�. The energy eigenvalues can be calcu-
lated from the matrix equation, which follows from Eq. �24�

E	 p2dpF†�p�F�p�

=	 p2dp��p + 
p�F†�p�F�p�

−
m1m2

�2��3	
0

� p2dp

�p
p

	
0

� q2dq

�q
q

F†�p�K�p,q�F�q� .

�34�

If the system �24� has been decoupled, or the contribution of
nondiagonal elements of the K�p ,q� matrix with given radial
functions in �34� is zero, Eq. �34� immediately gives the
perturbative solution for the energy levels. As shown in Ref.
�19�, the contribution of the nondiagonal elements K12

ope and
K21

ope in Eq. �34� to order O��4� is zero for the �-mixing
states. Thus, in the present scheme the energy corrections for
the �-mixing states can be calculated independently for
�=J−1 and �=J+1 states. As a result, all triplet states with
�=J�1 can be treated as pure states. In the case of spin-
mixed states the kernel matrix Kope has been diagonalized in
the basis of quasistates �26�, however, the magnetic part of
the interaction gives rise to the nondiagonal terms �32�.
Since we are solving the system �34� perturbatively, we can
use a new basis �ext�=C1� �sgq�+C2� � trq�, which mixes the
quasistates with arbitrary constants C1� and C2�. This leads to
a two-level problem with the solution En,J,mJ

= �H11

+H22� /2± ���H11−H22� /2�2+H12H21�1/2, where H11=H11
ope

+H11
ext, H22=H22

ope+H22
ext, and H12=H21=H12

ext=H21
ext. In our

case �H11−H22 � 
H12H21, because the difference �H11−H22�
is of the order of the fine structure, which dominates over the
hyperfine splitting and the magnetic perturbation H12. There-
fore, we can approximate En,J,mJ

�H11,H22.
The results are presented in the form

�En,J,mJ
= En,J,mJ

− �m1 + m2� +
�Z��2mr

2n2

= �En,J��4� + �EJ,mJ

ext , �35�

where Q2=ZQ1. The energy corrections �En,J��4� due to the
kernels K�ope��p ,q� were obtained previously �19�. The cor-
rections �En,J��4� contain spin-spin interactions that lead to
the HFS, which is illustrated in Fig. 1 for the low-lying ex-
cited states. A detailed analysis of the HFS to O��4� is pro-
vided in Ref. �19�. We note that the HFS of the 1S1/2 and
2S1/2 states is obtained in agreement with the known Fermi
splittings �9�, i.e., �EHFS�1S1/2�= �Z��4mr�8mr /3M�, and
�EHFS�2S1/2�= �Z��4mr�mr /3M�, where M =m1+m2. The
HFS of states with ��0, however, is more complicated �19�.
In standard spectroscopic notation it has the form

�EHFS�n, � ,ss�

� �En,J=�+1 − �En,J=�,ss

=
�Z��4mr

n3

1

2 � + 1
�2 � + 1 − �−1

4 � �� + 1�
+

2mr

M

1

2 � + 3
� ,

�36�

�EHFS�n, � ,st�

� �En,J=�,st
− �En,J=�−1

=
�Z��4mr

n3

1

2 � + 1
�2 � + 1 − �−1

4 � �� + 1�
+

2mr

M

1

2 � − 1
� ,

�37�

where the quantity � is defined by Eq. �A8�, but with the
quantum number J replaced by �. The formulas �36� and �37�
are valid for all quantum numbers n, � and for any mass
values m1 ,m2. The weak external field further splits the en-
ergy levels. Equations �36� and �37� give excellent agree-
ment with experiment for the HFS �19�.

The energy corrections �EJ,mJ

ext remove the degeneracy
with respect to the mJ quantum number. The solution of Eq.
�34� in the above-made approximation can be written in the
form of Eq. �1� for all states.

1S
)1( 2/�

)

EHFS

2P )P2( 2/EHFS

1S2( 2/EHFS

3P2( 2/EHFS

Jm
+2
+1

)(2 tr� 0
-1

2/3 � -2
+1

)(1 qsg
� 0

Jm -1
+1

)(1 tr� 0
-1

2/12S
)� Lamb Shift

)(0 sg� 0

Jm
+1

)(1 qtr
� 0

-1
2/1 1�

)(0 tr� 0

Jm
+1

)(1 tr� 0
-1

2/1

1S

(0 sg� 0

2P )

FIG. 1. Zeeman splitting of HFS for two-fermion bound state
systems.
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For all pure states ��=J�1� we obtain the following re-
sults:
for �=J−1:

g1,2 = 1 −
m1,2

m1 + m2

J − 1

J
+ �gs1,2

2
− 1�1

J
, �38�

for �=J+1:

g1,2 = 1 −
m1,2

m1 + m2

J + 2

J + 1
− �gs1,2

2
− 1� 1

J + 1
. �39�

For spin–mixed states �=J�0 the solution of Eq. �34�, as
mentioned, reduces to a standard two-energy level problem.
The diagonal elements of the kernel matrix give the first-
order Zeeman splitting �in O�B�� in the quasispin represen-
tation �26�, which was used to derive the HFS energies �36�
and �37�. Note that the nondiagonal elements give a contri-
bution to higher-order Zeeman splitting corrections.

To first order in the magnetic field strength we obtain the
Landé factors to be

g1 =
m2

m1 + m2
�1 −

1 ± �

2J�J + 1��
+

gs1

2
� 1 ± �

2J�J + 1�
± 2

�m1 − m2�
m1 + m2

�� , �40�

g2 =
m1

m1 + m2
�1 −

1 � �

2J�J + 1��
+

gs2

2
� 1 � �

2J�J + 1�
� 2

�m1 − m2�
m1 + m2

�� , �41�

where the upper sign is taken for sgq and the lower sign for
trq states, respectively. Our expressions �40� and �41� are
symmetrical with respect to the masses of the two particles.
Obviously all these first-order Zeeman corrections �EJ,mJ

ext

vanish for the positronium case �m1=m2=me, Z=1�, as ex-
pected. The intrinsic factors gs1,2

associated with the spins of
the individual particles can include QED corrections.

In the case when m2
m1 our general results agree with
the result from Eqs. �2� and �4� in which the orbital motion
of the heavy particle is ignored. It is only in this limit �as
discussed below Eq. �27��, that the total angular momenta of
the individual particles are not related through the common
angular momentum �, and can be written as j1= � ±1/2, and
j2=1/2. In j1-j2 coupling, the eigenstates are taken to be the

eigenstates of the operators ĵ1
2= �L̂+ ŝ1�2, ĵ2

2= ŝ2
2, Ĵ2, and Ĵz,

and are designated as �j1j2JmJ� in contrast to the spin-mixed
�Ls̃JmJ� and pure states �LSJmJ�, which diagonalize the ex-
pectation value of the Hamiltonian to order O��4�. To facili-
tate the comparison we make the following replacement of
quantum numbers: F→J, J→ j1, L→�1=�, S→s1, I→s2. It
follows that for all pure states �=J�1, formulas �38�, �39�,
and �2�–�4� give the same result, namely,

g1 = 1 + �gs1

2
− 1�1

J
, g2 =

gs2

2

1

J
, �42�

for �= j1−1/2=
or

J−1 and

g1 = 1 − �gs1

2
− 1� 1

J + 1
, g2 = −

gs2

2

1

J + 1
, �43�

for �= j1+1/2=
or

J+1.
In the limit m2
m1 the energy levels of spin-mixed states

�EJ,mJ

ext�sgq� and �EJ,mJ

ext�trq� reduce to �Ej1=�+1/2,J,mJ

ext and

�Ej1=�−1/2,J,mJ

ext , respectively, and the Landé factors given by
Eqs. �40� and �41� take the form

g1 =
2J + 3

2J + 1
+ �gs1

2
− 1�1

J
, g2 = −

1

J + 1
− �gs2

2
− 1� 1

J + 1
,

�44�

for �= j1+1/2=
or

J�trq�, and

g1 =
2J − 1

2J + 1
− �gs1

2
− 1� 1

J + 1
, g2 =

1

J
+ �gs2

2
− 1�1

J

�45�

for �= j1−1/2=
or

J�sgq�. Here the decoupling angle � is given
by ��1/ �2� +1� in the m2
m1 case.

Formula �4� gives a similar result for the second particle,
but for the lighter particle Eq. �2� yields

g1 =
2J + 3

2J + 1
+ �gs1

2
− 1� 2J + 3

�2J + 1��J + 1�
�46�

for �sgq� states, and

g1 =
2J − 1

2J + 1
− �gs1

2
− 1� 2J − 1

J�2J + 1�
�47�

for �trq� states. This result agrees with Eqs. �44� and �45�
only in the particular case of gs1

=2. Note that most theoret-
ical and experimental results are concerned with nS1/2 �J
=1� states for which the “mass ratio” correction in Eq. �38�
disappears. Thus our results will be most useful for ��0
states.

In Tables I–III we present results of our calculations of the
g factors for the first excited states in hydrogen, muonium,
and muonic hydrogen respectively. Only states with nonzero
total angular momentum are included. Equation �40� and
�41� are used for the spin-mixed states P1/2�J=1�, P3/2�J=1�,
D3/2�J=2�, D5/2�J=2�. Equation �38� is used for the pure state
P3/2�J=2�.

Our calculations �given to five digits after the decimal
point� are to be compared with the �m2→ � � results �2� and
�4�. Upper values for each g factor have taken into account
the following anomalous magnetic moment values: ge /2
=1.00118, gp /2=1.792847, and g� /2=1.001166, �1,9,14�.
The intrinsic proton anomaly reflects the fact that it is not a
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fundamental particle, while in the case of electrons and
muons the lowest-order radiative correction was included.
The lower values in each row were calculated with gs1,2

=2.
We used the following values for the mass ratios: mp /me
�1836.15267 and m� /me�206.76828 �1,9,14�.

For the case of muonium we find that the deviations be-
tween the present results and those obtained from the one-
body limit are in the few-percent range. The muon as the
heavier of the two particles acquires a systematically in-
creased Landé factor, while the values are always lowered
for the electron.

For muonic hydrogen the effects are more pronounced,
and range from 3% to 25% for the states shown in Table III.
Only those results that take the anomalous magnetic moment
of the proton into account should be considered as physically
relevant. The systematics are similar to those shown in Table
II for muonium, with the largest decrease in the Landé factor
observed for the muon in the P1/2�J=1� state �−25% �, while
the largest increase �19% � for the proton g value occurs in
the D5/2�J=2� state.

For atomic hydrogen the effect is smallest due to the
small e / p mass ratio. Given that atomic spectroscopy is far
more advanced in hydrogen than in muonic atoms one
should not neglect these corrections. For the two above-
mentioned states that are most affected we observe about
0.1% deviations in the electron and proton Landé factors,
respectively.

As mentioned above, our results are applicable only in
low magnetic fields, such that the hyperfine energy splitting
exceeds the Zeeman splitting, namely,

B �
�EHFS�n, � �

�B
*g

. �48�

Thus, formula �48�, for 2P3/2 states, requires that B�300 G
for muonium and B�100 G for hydrogen.

V. CONCLUSION

We have used the Hamiltonian variational method in re-
formulated QED to derive relativistic stationary-state equa-
tions for two-fermion systems in an external magnetic field.
These equations can include interactions to any order of the
coupling constant, at least in principle. The classification of
the states follows naturally from the conserved quantum
numbers that appear in the trial state �6�. For given total
angular momentum J there are, in general, coupled equa-
tions, both for mixed-spin states, and for triplet mixed-�
states �cf. Eq. �24��. We present explicit forms for the kernels
�momentum-space potentials� for the case of a constant,
weak external magnetic field.

We solved the radial equations perturbatively to obtain the
Zeeman splitting of the HFS to order O��4�, and calculated
the g factors for the system of two bound fermions. Our

TABLE I. g factors for the electron �g1� and proton �g2�, respectively in excited atomic hydrogen states.
Results from the present calculation, Eqs. �38� and �40� for electrons, are compared with Eq. �2� in the top
half of the table. For protons the bottom half displays the present results from Eqs. �38� and �41� in
comparison with Eq. �4�. Each row contains in the upper part the Landé factor where the intrinsic gs value is
corrected for the anomaly �see text�, while the numbers below are based upon the Dirac value gs=2.

pe− P1/2�J=1� P3/2�J=1� P3/2�J=2� D3/2�J=2� D5/2�J=2�

g1 using Eqs. �38� and �40� 0.33237 1.66740 1.00032 0.59912 1.40008

0.33296 1.66622 0.99973 0.59951 1.39949

g1 using Eq. �2� 0.33294 1.66765 1.00059 0.59965 1.39945

1/3 5/3 1 3/5 7/5

g2 using Eqs. �38� and �41� 1.79321 −0.89597 0.89670 0.89691 −0.59711

1.00036 −0.49955 0.50027 0.50049 −0.33283

g2 using Eq. �4� 1.79285 −0.89642 0.89642 0.89642 −0.59762

1 −1/2 1/2 1/2 −1/3

TABLE II. Same as in Table I, but for muonium. The Landé factor for the electron is g1, and for the muon
it is g2.

�+e− P1/2�J=1� P3/2�J=1� P3/2�J=2� D3/2�J=2� D5/2�J=2�

g1 using Eqs. �38� and �40� 0.329451 1.66392 0.99818 0.59527 1.39610

0.33004 1.66274 0.99759 0.59566 1.39551

g1 using Eq. �2� 0.33294 1.66765 1.0006 0.59965 1.39945

1/3 5/3 1 3/5 7/5

g2 using Eqs. �38�–�41� 1.00434 −0.49657 0.50299 0.50491 −0.32923

1.00320 −0.49598 0.50241 0.50433 −0.32884

g2 using Eq. �4� 1.00117 −0.50058 0.50058 0.50058 −0.33372

1 −1/2 1/2 1/2 −1/3
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results are applicable to all states �i.e., for all quantum num-
bers� and any fermion masses. In the limit m2
m1 our for-
mulas reproduce the well-known g-factor result. For the
spin-mixed states, however, Eq. �2� is found to be not exact
if the intrinsic magnetic moment is different from the Dirac
value gs1

=2.
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APPENDIX: ONE-PHOTON EXCHANGE KERNELS FOR
THE SPIN-MIXED STATES TO ORDER �4

We use the notation z= �p2+q2� /2pq, and QJ�z� is the
Legendre function of the second kind �24�. The contributions
of the various terms to the kernel are as follows ��=J �J
�1� ,P= �−1�J+1�:

�i� orbital term:

K11
�orb��p,q� = K22

�orb��p,q�

=
2�Q1Q2

pq
QJ�z� +

�Q1Q2

2m1m2
��m1

m2
+

m2

m1
− �J − 1��

	� p

q
+

q

p
�QJ�z� + 2�J + 1�QJ+1�z�� , �A1�

�ii� spin-orbit interaction:

K11
�s-o��p,q� = 0, �A2�

K12
�s-o��p,q� = −

�Q1Q2

2m1m2
�m1

m2
−

m2

m1
�2
J�J + 1�

2J + 1
�QJ+1�z�

− QJ−1�z�� , �A3�

K22
�s-o��p,q� = −

�Q1Q2

2m1m2
�m1

m2
+

m2

m1
+ 4� 1

2J + 1
�QJ+1�z�

− QJ−1�z�� , �A4�

�iii� spin-spin interaction:

K11
�s-s��p,q� = 0,K22

�s-s��p,q�

=
�Q1Q2

m1m2

1

2J + 1
�QJ+1�z� − QJ−1�z�� . �A5�

The diagonalization condition

tan 2��K22�p,q� − K11�p,q�� = 2K12�p,q� . �A6�

determines the parameters � and �:

tan 2� = 2�m1 − m2

m1 + m2
�
J�J + J� , �A7�

and

� = �4�m1 − m2

m1 + m2
�2

J�J + 1� + 1�−1/2

. �A8�

Therefore, we obtain the diagonalized kernels for the quasis-
tates

K�sgq�,K�trq� = K11
�orb� +

� ± 1

1 − �2

K12
�s-o�

=
2�Q1Q2

pq
QJ�z� +

�Q1Q2

2m1m2
��m1

m2
+

m2

m1
− �J − 1��

	� p

q
+

q

p
�QJ�z� + 2�J + 1�QJ+1�z��

−
�Q1Q2

2m1m2

� ± 1

��2J + 1�
�QJ+1�z� − QJ−1�z�� . �A9�

TABLE III. Same as in Table I, but for muonic hydrogen. The Landé factor for the muon is g1, and for
the proton it is g2.

p+�− P1/2�J=1� P3/2�J=1� P3/2�J=2� D3/2�J=2� D5/2�J=2�

g1 using Eqs. �38� and �40� 0.26707 1.58232 0.95019 0.50961 1.30580

0.26765 1.58116 0.94960 0.51000 1.30521

g1 using Eq. �2� 0.33295 1.66764 1.00058 0.59965 1.39946

1/3 5/3 1 3/5 7/5

g2 using Eqs. �38� and �41� 1.85425 −0.80664 0.94682 0.98584 −0.50225

1.06317 −0.41198 0.55040 0.58982 −0.23836

g2 using Eq. �4� 1.79285 −0.89642 0.89642 0.89642 −0.59762

1 −1/2 1/2 1/2 −1/3
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